基于复杂网络理论的电力系统网络模型及网络性能分析的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统网络是一个有着大量节点、节点之间有着复杂连接关系的网络,它具有复杂网络的一般特征。正是由于电力系统具有复杂性的特征,随着我国电网的地区网络互联的展开,电网变得越来越复杂,大电网的复杂性和大电网运行的安全受到了越来越多的关注。
     在其他领域已有很多根据各自特点建立的复杂网络静态模型,因此,结合电力系统自身特点进行网络简化,引入具有电力系统特征的物理参数来建立电力系统复杂网络模型是十分必要的。本文在对电力系统的自有特征研究的基础上,进行电力系统复杂网络模型的改进,提出具有电力系统自有特征的电力系统复杂网络建模方法,建立了电力系统复杂网络加权模型,同时也提出相应的加权复杂网络统计特征指标,为研究电力系统复杂网络的特性建立了研究基础。
     本文首先介绍复杂网络的基本原理,给出复杂网络的基本模型与一些常用的拓扑构造模型。在对电力系统复杂网络的研究现状进行综述的基础上,指出电力系统复杂网络模型研究现阶段关注的问题。
     本文接下来从两个方面改进了电力系统复杂网络的基本模型,以期更多地描述电力系统有别于其他复杂网络的特性。在拓扑建模时改进复杂网络距离的定义,改进了相应的统计特征指标得到电力系统复杂网络非加权网络模型;然后在非加权网络模型的基础上,提出与复杂网络基本加权方法不同的电力系统复杂网络的加权方法,得到电力系统复杂网络加权模型,同时也提出了相应的加权复杂网络统计特征指标。随后,将大量IEEE模型用于电力系统复杂网络特性仿真研究,通过对计算得到的几种模型下电力系统复杂网络统计特征指标的内在联系进行了详细的分析,同时针对复杂网络的小世界特性和无标度特性展开研究。
     本文在提出网络连通性能这一电力系统复杂网络的特殊统计指标之后,将之应用于关键节点和关键线路的辨识。应用IEEE57节点算例来进行仿真计算,将不同辨识方法得到的结果进行对比分析,进行辨识方法有效性的验证。
     随后,本文介绍现有的电力系统复杂网络动态演化模型,然后采用概率模型的建立方法,以电力系统复杂网络加权模型为基础,提出了电力系统消去动态演化模型,详细描述演化中可能存在的过程。在随后的工作中,引入了风险理论,将其与电力系统复杂网络的动态演化模型相结合,用于电力系统安全综合评估,提出了风险指标,并采用IEEE57节点模型作为仿真算例。
     最后,本文对所作的工作进行了总结,并对电力系统复杂网络的研究发展作出了展望。
The power system network consists of a mass of nodes and the connections between nodes are seriously complex, so it has the common characteristic of complex network. The network connections of local power systems increase the complexity of the power network. Due to the complex characteristic of the power system, more and more attention is paid to the complexity investigation of power system.
     In other fields, there are some static models in terms of respective filed characteristic. As a result, it is significantly important to simplify the power system network according to the power system characteristic and set up an available power system complex network model by introducing some physical parameters with power system characteristic. In particular, this paper investigates the inherent characteristic of power system and improves the complex network model of power system. Furthermore, the modeling method with power system inherent characteristic is proposed and the weighted model to complex network of power system is presented. At the same time, the relevant statistical characteristic indices are addressed. The research on the characteristic of power system complex network is based on the above model.
     Firstly, the paper introduces the fundamental principle of complex network. Some fundamental complex network models and topologies are described. And then, the research background on power system complex network is presented and state of art in the research on complex network model is indicated.
     Secondly, the fundamental model of power system complex network is modified from two parts and the special characteristic different with other complex network is described in detail. The modified model is achieved by the following method. The distance definition of complex network is modified when the corresponding model is constructed. The non-weighted network model of power system complex network is established by modifying the corresponding statistical characteristic index. And then, based on the non-weighted network model, a new weighted method of power system complex network different with fundamental weighted method is proposed and the weighted model of power system complex network is provided, as well as the corresponding statistical characteristic index of the weighted network can be obtained. Furthermore, many IEEE models for power system are applied for the research on power system complex network characteristic. The relationship between statistical characteristic indices of power system complex network on several models achieved by detailed calculation is analyzed. The small world model and scale-free characteristic of complex network are also concerned at the same time.
     Thirdly, the paper proposes a network connection performance index which is a special index for power system complex network. And then, the special index is applied to identify the key node and line in power system in this paper. In addition, the IEEE 57 nodes example is used to carry out the simulation to verify the viability and efficacy of the new identification method by comparing with the results from different identification methods Fourthly, the current dynamics evolutionary models for power system are introduced.
     In terms of the weighted model of power system complex network, the elimination dynamics evolutionary model for power system is addressed by applying the method of establishing model. Accordingly, the potential processes on the evolutionary are described in detail. In the following research, the risk theory is introduced and combined with the elimination dynamics evolutionary model for power system to use for the comprehensive assessment of power system safety. As a result, the risk index is advanced. In the same way, the IEEE 57 nodes example is used to achieve the simulation to verify the effectiveness of the risk index.
     Finally, the achieved research is concluded and Future Perspective on development of power system complex network is highlighted.
引文
[1] Newman M E J. The structure of scientific collaboration networks. Proc Natl Acad Sci. USA, 2001, 98: 404-409.
    [2] Davis G F, Greve H R. Corporate elite networks and governance changes in the 1980s, Amer J Sociol , 1997, 103: 1-37.
    [3] Battiston S, Catanzaro M. Statistical properties of corporate board and director networks. The European Physical Journal B, 2004, 438: 345-352.
    [4] Caldarellia G, Catanzarob M. The corporate boards networks. Physica A, 2004, 338: 98-106.
    [5] Newman M E J. Scientific collaboration networks I. Network construction and fundamental results. Phys Rev E, 2001, 64(1): 016131.
    [6] Newman M E J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E, 2001, 64(1): 016132.
    [7] Redner S. How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B, 1998, 4: 131-134.
    [8] Guimera R, Amaral LAN. Modeling the world-wide airport network. The European Physical Journal B, 2004, 38: 381-385.
    [9] Guimera R, Mossa S, Turtschi A, et al. The worldwide air transportation network: Anomalous centrality, community structure, and cities’global roles. Proc Natl Acad Sci, 2005, 102(22): 7794-7799.
    [10] Jeong H, Tombor B, Albert R. et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 651-654.
    [11] Jeong H, Mason S, Barabasi A-L et al. Lethality and centrality in protein networks, Nature, 2001, 411: 41-42.
    [12] Guelzim N, Bottani S, Bourgine P, et al. Topological and causal structure of the yeast transcriptional regulatory network. Nature Genetics, 2002, 31(1): 60-63.
    [13] Albert R, Jeong H, Barabasi A-L. Diameter of the World Wide Web. Nature, 1999, 401: 130-131.
    [14] Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. Comput Commun Rev , 1999, 29, 251.
    [15] Strogatz S H. Exploring complex networks. Nature, 2001, 410: 268-276.
    [16] Watts D J. Small worlds-the dynamics of networks between order and randomness. Princeton:Princeton University Press, 1998.
    [17] Barabasi A L , Albert R. Emergence of scaling in random networks. Science, 1999, 286 : 5092512.
    [18] Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing random networks with preferential linking. Physical Review Lett, 2000, 85:4633-4636.
    [19] Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks, Physical Review Lett , 2000, 85: 4629-4632.
    [20] Bllobas B, Riordan O. Mathematical results on scale-free random graphs. In: Bornholdt, S, Schuster H G(ed. )Handbook of graphs and networks: From the genome to the internet berlin: Wiley-VCH, 2003, 1-34.
    [21]杨波,陈忠,段文奇.基于个体选择的小世界网络结构演化,系统工程, 2004, 22(12): 1-5.
    [22] Ozik J, Huntb R-B, Otte E. Growing networks with geographical attachment preference: Emergence of small worlds, Physical Review E, 2004: 69(026108 ).
    [23]刘强,方锦清,李永,梁勇.探索小世界特性产生的一种新方法.复杂系统与复杂性科学, 2005, 2(2): 13-19.
    [24] Strogatz S H, Stewart I. Coupled Oscillators and Biological Synchronization. Scientific American, 1993, 269(6): 36-42.
    [25] Gray C M, Synchronous oscillations in neuronal systems: mechanisms and functions. J Comput Neurosci. 1994, 1(1-2): 11-38.
    [26] Glass L. Synchronization and rhythmic processes in physiology. Nature, 2001, 410 (6825): 277-284.
    [27] S. H. Strogatz, Sync: The emerging science of spontaneous order, New York: Hyperion, 2003.
    [28] Wu C W, Chua L O. Application of graph theory to the synchronization in an array of coupled nonlinear oscillators, IEEE Trans. Circuits & Systems–I, 1995, 42: 494–497.
    [29] Belykh I V, Lange E, Hasler M. Synchronization of bursting neurons: what matters in the network topology, Phys. Rev. Lett, 2005, 94: 188101.
    [30] Steven H Strogatz. Exploring complex networks. Nature, 2001, 410(8): 268-276.
    [31]殷剑宏,吴开亚.图论及其算法.合肥,中国科学技术大学出版社, 2004.
    [32] Erdos P, Rényi A. On the evolution of random graphs, Publ Math Inst Hung Acad Sci, 1960, 5: 17-61.
    [33] Li Xiang, Chen G R. A local-world evolving network model. Physica A, 2003, 328: 274-286.
    [34] Saramaki J, Kaski K. Scale-free networks generated by random walkers. Physica A, 2004, 341: 80-86.
    [35] Barabasi A L, Oltvai Z N. Network Bilology: Understanding the cell’s functional organization. Nature Reviews-Genetics, 2004, 5: 101-114.
    [36] Comellas F, Ozon J, Peters J G, Deterministic small-world communication networks, Inf. Process. Lett. 2000, 76: 83-90.
    [37] Comellas F, Sampels M. Deterministic small-world networks. Physica A, 2002, 309: 231-235.
    [38] Barabasi A-L, Ravasz E, Vicsek T. Deterministic scale-free networks. Physica A, 2001, 299: 559-564.
    [39] Andrade J S, Herrmann H J, Andrade R F S, et al. Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs. Physical Review Letters, 2005, 94: 018702.
    [40] Albert R, Albert I, Nakarado G L. Structural vulnerability of the North American power grid. Physical Review E, 2004, 69(2): 025103/1-025103/4.
    [41]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析.电力系统自动化, 2004, 28(15):21-24.
    [42]陈洁,许田,何大韧.中国电力网的复杂网络共性.科技导报, 2004, 22(4): 11-14.
    [43]倪向萍,阮前途,梅生伟,等.基于复杂网络理论的无功分区算法及其在上海电网中的应用.电网技术, 2007, 31(9): 6-12.
    [44]丁明,韩平平,基于小世界拓扑模型的大型电网脆弱性评估算法.电力系统自动化, 2006, 30(8): 7-10, 40.
    [45]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估.中国电机工程学报, 2005, 25(25): 118-122.
    [46]雷晓蒙.国外几起电网事故.电力安全技术, 2001, 3(6): 33-34.
    [47]蓝毓俊. 2003年世界上几起大停电事件的经验、教训和启示.供用电, 2005, 22(1): 14-17.
    [48] Newman M E J, Strogatz S H, W atts D J. Random graphs with arbitrary degree distributions and their applications, Physical Review E Statistical, Nonlinear and Soft Matter Physics, 2001.
    [49] Chen J, Thorp J S, Dobson I. Cascading dynamics and mitigation assessment inpower system disturbances via a hidden failure model. Electrical Power and Energy Systems, 2005, 27(4): 318-326.
    [50]李炜.演化中的标度行为和雪崩动力学.博士学位论文,华中师范大学, 2001.
    [51] P Bak, C Tang, and K Wiesenfeld, Self-Organized Criticality: an Explanation of the 1/f Noise, Phys Rev Lett , 1987, 59: 381–384.
    [52] P Bak, C Tang, and K Wiesenfeld, Self-Organized Criticality, Phys Rev A , 1988, 38: 364–374.
    [53] Carreas B A, Newman D E, Dobson I, et al. Evidence for self-organized criticality in electric power system blackouts// Proceedings of the 34th Hawaii International Conference on System Sciences, Jan 3-6, 2001, Maui, HI, USA Los Alamitos, CA, IEEE Computer Society, 2001: 4038-4045.
    [54]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象.电网技术, 2005, 29(15): 1-5.
    [55]于群,郭剑波.我国电力系统停电事故自组织临界性的研究.电网技术, 2006, 30(6): 1-5.
    [56]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析.电力系统自动化, 2006, 30(13): 1-5.
    [57] Dobson I, Chen J, Thorp J S, et al. Examining criticality of blackouts in power system models with cascading events. Proceedings of the 35th Hawaii International Conference on System Sciences. Maui, Hawaii, 2002: 63-72.
    [58] Dobson I, Carreras B A, Newman D E.A probabilistic loading dependent model of cascading failure and possible implications for blackouts.Hawaii International Conference on System Science, Hawaii, 2003: 1-8.
    [59] Lu Z X, Meng Z W, Zhou S X. Cascading failure analysis of bulk power system using small-world network model.2004 International Conference on Probabilistic Methods Applied to Power Systems, Ames, USA , 2004: 635-640.
    [60] Dorogovtsev S N, Mendes J F F. Scaling properties of scale-free evolving networks: continuous approach. Physical Review E, 2001, 63(5): 056125/1-056125/19.
    [61]柏文洁,汪秉宏,周涛.从复杂网络的观点看大停电事故.复杂系统与复杂性科学, 2005, 2(3): 29-37.
    [62]曹欣,张毅威,郭琼.电网连锁反应故障研究新进展.中国电力, 2005, 38(7): 1-5.
    [63]鲁宗相.电网复杂性及大停电事故的可靠性研究.电力系统自动化, 2005, 29(12): 93-97.
    [64] D. Kirton. Risk Assessment. In: IEE Colloquium on Implications of Recent European Legislation on the Designer, Specifies and User of Safety Related Equipment and Systems. 1995: 5/1-5/9.
    [65] Wan H, McCally J , Vittal V. Increasing Thermal Rating by Risk Analysis. IEEE Power Engineering Society 1999 Summer Meeting. Alberta(Canada), 1999: 815-828.
    [66] Wan H, McCalley J, VittalV. Risk-Based Voltage Assessment. In: IEEE Power Engineering Society 1999 Summer Meeting. Alberta(Canada): 1999. 179-184.
    [67] R. Billinton, P R S Kuruganty. A Probabilistic Index for Transient Stability. IEEE Trans. On Power Apparatus and Systems, 1980, Pas-99(1): 195-206.
    [68] J. McCalley, A. Found. , V. Vittal, et al. A Risk-based Security Index for Determining Operating Limits in Stability-limited Electric Power Syserm. On Power Sysemts, 1997, 12(3): 1210-1219.
    [69] EI-Sharkawi M A. Vulnerability assessment and control of power system. IEEE/PES Asia Pacific Transmission and Distribution Conference and Exhibition, 2002, 1: 656-660.
    [70]郭雷,许晓鸣.复杂网络.上海,上海科技教育出版社, 2006.
    [71]汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京,清华大学出版社, 2006.
    [72] Cormen T H, Leiserson C E, Rivest R L, et al.Introduction to algorithms (second edition). Massachusetts, USA: The MIT Press, 2005.
    [73]王耀喻,张伯明,孙宏斌,等.一种基于专家知识的电力系统电压/无功分级分布式优化控制分区方法.中国电机工程学报, 1998, 18(3): 221-224.
    [74]栾兆文,刘玉田,樊涛.电压静态稳定的等效电距离法.电力系统及其自动化学报, 1999, 11(3): 41-45.
    [75] Holme Petter, Sung Min Park, Beun Jun Kim, Christofer Edling. Korean university life in a network perspective: Dynamics of a large affiliation network. Physica A, 2007, 373: 821-830.
    [76] B Derrida and H Flyvbjerg, Statistical properties of randomly broken objects and of multivalley structures in disordered systems, J Phys A, 1987, 20: 5273.
    [77] M Barthelemy, B Gondran, and E Guichard, Spatial structure of the internet traffic, Physica A, 2003, 319: 633-642.
    [78] Aleksandrow J, Matheshwari A, Sack J R. Approximation algorithms for geometricshortest path problems. Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing 2000. Portland, 2000: 286.
    [79] Elkin M. Computing almost shortest paths. Annual ACM Symposium on Principles of Distributed Computing. Newport, 2001: 53.
    [80]余冬梅,张秋余,马少林,等. Dijkstra算法的优化.计算机工程, 2004, 30(22): 145-146.
    [81]王景存,张晓彤,陈彬,等.一种基于Dijkstra算法的启发式最优路径搜索算法.北京科技大学学报, 2007, 29(3): 346-350.
    [82] Garcia-Luna-Aceves J J, Murthy S. A Path-Finding Algorithm for Loop-Free Routing. IEEE/ACM Transactions on Networking, 1997, 5(1): 148-160.
    [83] Chow C H. On Multicase Path Finding Algorithm. Proc IEEE INFOCOM’91. NY: IEEE Communication Society, 1991, 1274-1283.
    [84]陈华容,张崇富. Bellman-Ford算法的改进研究.电子科技大学学报, 2006, 35(2): 211-213.
    [85]李汉兵,喻建平,黄建雄,等.基于时延限制的Bellman-Ford算法.西安电子科技大学学报(自然科学版), 2000, 27(3): 330-334.
    [86]段凡丁.关于最短路径的SPFA快速算法.西南交通大学学报, 1994, 29(2): 207-212.
    [87]程晓荣,刘斌,陆旭,等. F-D算法求解最短路径.华北电力大学学报, 2003, 30(6): 75-77.
    [88]胡华,石世光. Floyd算法分析与演示系统设计.电脑学习, 2007, (6): 63-64.
    [89]李洪波,王茂波. Floyd最短路径算法的动态优化.计算机工程与应用, 2006, (34), 60-63.
    [90]彭波,张阿卜. Johnson算法的极大极小代数证明.厦门大学学报(自然科学版), 1999, 38(1): 26-30.
    [91] http: //cdg. columbia. edu/cdg/datasets.
    [92] Mottor A E, Lai Yingcheng. Cascade based attacks on complex networks. Physical Review E, 2002, 66(6): 065102/1-065102/4.
    [93]丁理杰,刘美君,曹一家,韩祯祥.基于隐性故障模型和风险理论的关键线路辨识,电力系统自动化, 2007, 31(6): 1-5.
    [94]林济铿,罗萍萍,曹绍杰.对故障敏感的负荷节点和关键节点的辨识,电力系统自动化, 2004, 28(13): 39-44.
    [95]张来友,卢勇,卢志强.基于负荷扰动的电网薄弱节点识别方法,四川电力技术, 2007, 30(4): 51-54.
    [96]刘艳,顾雪平.基于节点重要度评价的骨架网络重构.中国电机工程学报, 2007, 27(10): 20-27.
    [97]王树禾.图论及其算法.北京,中国科学技术大学出版社, 1990.
    [98]郭永基.电力系统可靠性分析.北京,清华大学出版社, 2003.
    [99]郭永基.电力系统可靠性原理和应用(上、下册).北京:清华大学出版社, 1983.
    [100]陈文高.配电系统可靠性实用基础.北京,中国电力出版社, 1998.
    [101]杨莳百,戴景宸,孙启宏.电力系统可靠性分析基础及应用.北京,水利电力出版社, 1986.
    [102]杨莳百.发电系统可靠性分析原理和方法.北京,水利电力出版社, 1985.
    [103]冯永青,吴文传,张伯明,等.基于可信性理论的电力系统运行风险评估(一),电力系统自动化, 2006, 30(1): 17-23.
    [104]冯永青,吴文传,张伯明,等.基于可信性理论的电力系统运行风险评估(二),电力系统自动化, 2006, 30(2): 11-15.
    [105]冯永青,吴文传,张伯明,等.基于可信性理论的电力系统运行风险评估(三),电力系统自动化, 2006, 30(3): 11-16.
    [106] McCalley J, Vittal V, Abi-Samra N. An Overview of Risk Based Security Assessment. In: IEEE Power Engineering Society 1999 Summer Meeting. Alberta(Canada), 1999: 173-178.
    [107]李蓉蓉,张晔,江全元.复杂电力系统连锁故障的风险评估.电网技术, 2006, 30(10): 18-23.
    [108]陈为化,江全元,曹一家,韩祯祥.电力系统电压崩溃的风险评估.电网技术, 2005, 29(19): 6-11.
    [109]陈为化,江全元,曹一家,韩祯祥.基于风险理论的复杂电力系统脆弱性评估.电网技术, 2005, 29(4): 12-17.
    [110]陈为化,江全元,曹一家,韩祯祥.基于模型组合与风险理论的HVDC系统脆弱性评估.电力系统自动化, 2005, 29(21): 19-24.
    [111]李丽,温秀峰.电力系统风险评估综述,科学之友(B版), 2008 , 02: 19-21.
    [112]金龙哲,宋存义.安全科学原理.北京,北京化学工业出版社, 2004, 3-6.
    [113]罗云,樊运晓,马晚苯.风险分析与安全评价.北京,化学工业出版社, 2004.
    [114]中华人民共和国国家经济贸易委员会.电力系统安全稳定导则(DL/755-2001). 北京,中国电力出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700