低轨卫星星座网络IP路由技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有星间链路的低轨卫星星座通信系统能够形成真正意义上的全球覆盖,对地面设施依赖小,不受地理环境的影响,是全球移动通信系统不可替代的重要组成部分,引起了世界各国的广泛关注。由于低轨卫星星座通信系统具有高度动态的拓扑结构,地面网络路由协议不适用于星座网络,如何设计有效的IP路由协议是低轨卫星星座通信系统所面临的技术挑战之一。
     本文研究低轨卫星星座网络中的支持IP业务的星上路由技术,主要研究内容包括:
     (1)建立低轨卫星星座网络路由问题的网络模型,分析了星座路由的特点和困难,提出以卫星网络的空间段作为自治系统,采用专用路由协议和隧道技术,从而将路由解耦为移动性管理与星间路由两个独立过程。
     (2)通过分析低轨卫星星座网络的拓扑结构特征和遍历仿真验证,在三种典型的低轨卫星星座(Iridium、Globalstar、LEO48)网络中,最短路径必定是最小跳数路径,而且最小跳数路径集合中的各条路径传播延时差别不大,可以用最小跳数路径代替最短路径从而降低计算复杂度和设计分布式算法。
     (3)研究了低轨卫星星座网络中的静态路由算法。对快照序列算法进行了详细分析,提出一种基于反向探测的路由(Reverse Detection Based Routing,RDBR)算法。对RDBR算法与快照序列算法的路由性能和信令开销进行了对比仿真分析,验证了RDBR算法的性能。
     (4)研究了低轨卫星星座网络中的动态路由算法,提出一种基于反向探测的自适应动态路由(Reverse Detection Based Adaptive Routing,RDBAR)算法。仿真结果表明RDBAR算法以有限的信令开销取得的路由性能显著优于静态的快照序列算法,即使在网络负载较重的情况下也能较好的适应链路的异常中断。最后,给出了基于区分服务模型和RDBAR路由协议为实时业务提供业务服务质量(Quality of Service,QoS)保障的路由机制并通过仿真进行了验证。
The Low Earth Orbit (LEO) satellite constellation networks will be an integral part of the next generation telecommunications infrastructures. By inter-satellite links (ISLs), LEO satellite constellation networks are immune to the geographical factors and independent of the ground infrastructures. This merit shapes the LEO satellite constellation network into a real global communication system with continuous and seamless global coverage, and attracts research interests around the world. Due to the highly dynamic topology of the LEO constellations, the routing algorithms for terrestrial networks are not suitable for LEO satellite constellation networks. Designing effective IP routing algorithms for LEO satellite constellation networks is an extremely challenging task.
     This dissertation focuses on the On-Board-Routing (OBR) technology supporting IP traffic in LEO constellation networks. Explicitly, the following topics are discussed in detail.
     (1) After setting up the network model, the features and difficulties of the OBR problem in LEO constellation networks are analyzed. It is pointed out that the space segment of the satellite network can be considered as an autonomous system. Using private routing protocols and tunneling technology, the routing process can be decomposed into two independent procedures: the mobility management and the inter-satellite routing.
     (2) With the analysis of the dynamic topology properties of LEO satellite constellation networks, we verified through traversal simulations the following: a) the least delay path (LDP) belongs to the least hop path (LHP) set in typical LEO constellations, such as Iridium, Globalstar and LEO48, b) the delay variation in the LHP set is within the acceptable range. Therefore, LHP criterion can be adopted as a substitution of LDP criterion, which helps reduce the computational complexity and can be implemented in the distributed way.
     (3) The static routing algorithms in LEO satellite constellation networks are studied. After the detailed analysis of the Snap Shot Sequence (SSS) algorithm, a novel routing algorithm, named as the Reverse Detection Based Routing (RDBR), is proposed. Comparing with the SSS algorithm, the performance of RDBR is verified by the routing performance and signaling cost in simulation.
     (4) The dynamic routing algorithms in LEO satellite constellation networks are studied and a novel routing algorithm, named as the Reverse Detection Based Adaptive Routing (RDBAR), is proposed. The simulation results show that with the acceptable low overhead signaling, the RDBAR algorithm can achieve better performance compared with the static SSS algorithm. Moreover, the RDBAR algorithm can work adaptively to the abnormal disruption of ISL even under heavy network load. Finally, the OBR scheme providing Quality of Service (QoS) for real-time services is given based on the DiffServ model and RDBAR protocol, and the performance is verified by simulations.
引文
[1]中华人民共和国工业和信息化部. 2005年通信业发展统计公报[EB/OL]. (2006-02-09) [2010-03-20]. http://dzs.miit.gov.cn/n11293472/n11293832/n11294132/n11302737/11822745.html.
    [2]中华人民共和国工业和信息化部. 2009年全国电信业统计公报[EB/OL]. (2010-02-03) [2010-03-20]. http://www.miit.gov.cn/n11293472/n11293832/n11294132/n12858447/13011909.html.
    [3]叶建平.刘道彬:海事卫星传出震后汶川第一个声音[EB/OL]. (2008-06-05) [2010-03-21]. http://news.xinhuanet.com/newscenter/2008-06/05/content_8317765.htm.
    [4]黄沙.通信业反思汶川地震证明卫星通信重要性[EB/OL]. (2008-05-22) [2010-03-21]. http://it.sohu.com/20080522/n257023125.shtml.
    [5] Euroconsult. Mobile Satellite Communications Markets Survey, Prospects to 2018 [R]. Euroconsult, 2009.
    [6]周云晖.卫星网络QoS路由协议及其优化理论研究[博士学位论文].清华大学, 2007年4月.
    [7]吕海寰,蔡剑明,甘仲民等.卫星通信系统[M].人民邮电出版社, 1996.
    [8]李赞,张乃通.卫星移动通信系统星间链路设计[J].光通信技术, 2000, 24(3):231-235.
    [9]王晓海.国外空间激光通信系统技术最新进展[J].现代电信科技, 2006年第3期, 41-45.
    [10]石东海.基于NEMO的军事卫星星座通信网络体系结构与关键技术研究[博士学位论文].国防科学技术大学, 2006年10月.
    [11]王桂华.军用通信卫星星座设计与仿真研究[硕士学位论文].国防科学技术大学, 2006年5月.
    [12]刘刚.非静止轨道卫星通信系统组网关键技术研究[博士学位论文].电子科技大学, 2003年12月.
    [13] Lüders R D. Satellite networks for continuous zonal coverage [J]. American Rocket Society Journal, February 1961, 31:179-184.
    [14] Lloyd W. Internetworking with satellite constellations [D]. University of Surrey, 2001.
    [15]吴廷勇.非静止轨道卫星星座设计和星际链路研究[博士学位论文].电子科技大学, 2008年1月.
    [16] Keller H, Salzwedel H, Schorcht G, et al. Geometric aspects of polar and near polar circular orbits for the use of intersatellite links for global communication [C]// IEEE Vehicular Technology Conference, Ottawa, Can: IEEE Press, 1998, 1:199-203.
    [17] Fossa C E, Raines R A, Gunsch G H, et al. An overview of the IRIDIUM low Earth orbit (LEO) satellite system [C]// National Aerospace and Electronics Conference, Dayton, OH, USA: IEEE Press, 1998:152-159.
    [18] Walker J G. Some Circular Orbit Patterns Providing Continuous Whole Earth Coverage [J]. Journal of the British Interplanetary Society, 1971, 24:369-384.
    [19] Ballard A H. Rosette Constellations of Earth Satellites [J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(5):656-673.
    [20]冯少栋,徐志平,张昭,等.低轨道星座卫星通信系统发展现状及展望[J].中国航天, 2009,第8期:30-33.
    [21] Patterson D P. Teledesic: A Global Broadband Network [C]// IEEE Aerospace Applications Conference Proceedings, Snowmass at Aspen, CO, USA: IEEE Press, 1998: 547-552.
    [22] Iridium Communications Inc. Iridium Reports Fourth Quarter and Full Year 2009 Results [EB/OL]. (2010-03-16) [2010-03-28]. http://investor.iridium.com/releasedetail.cfm? ReleaseID=452220.
    [23] Iridium Communications Inc. Iridium NEXT Brochure [EB/OL]. (2010-03) [2010-03-28]. http://www.iridium.com/Assets/Documents/library/brochures/iridium/IRDM_NEXT_Bro_Mar2010.pdf.
    [24] Globalstar Inc. GLOBALSTAR ANNOUNCES FULL YEAR AND FOURTH QUARTER RESULTS FOR 2009 [EB/OL]. (2010-03-11) [2010-03-28]. http://www.globalstar.com/ en/news/pressreleases/press_display.php?pressId=600.
    [25] Globalstar Inc. Satellite Coverage [EB/OL]. (2009-06) [2010-03-28]. http://www. globalstar.com/en/satellite/.
    [26]邹锐.全球星系统( Globalstar)技术介绍[J].电子科技导报, 1999, 1999年第7期:7-12.
    [27]李广侠,郦苏丹,冯少栋.切换保留信道与新呼叫排队相结合的LEO星座通信系统信道分配方案研究[J].通信学报, 2006, 27(9):135-140.
    [28] Kota S L. Broadband satellite networks: trends and challenges [C]// Wireless Communications and Networking Conference, New Orleans, LA, United states: IEEE Press, 2005:1472- 1478.
    [29] Zahariadis T B, Vaxevanakis K G, Tsantilas C P, et al. Global Roaming in next-generation networks [J]. IEEE Communications Magazine, 2002, 40(2):145-151.
    [30]王京林.基于IP的卫星星座网络中路由与移动性管理技术研究[博士学位论文].清华大学, 2009年11月.
    [31] Pulak K C, Mohammed A. Handover Scheme in Satellite Networks: State-of-the-Art and Future Research Directions [J]. IEEE Communications Surveys & Tutorials, 2006, 8(4):2-14.
    [32] Papapetrou E, Pavlidou F-N, QoS Handover Management in LEO/MEO Satellite Systems [J]. Wireless Personal Communication, 2003, 24(2):189–204.
    [33]孙利民,卢泽新,吴志美. LEO卫星网络的路由技术[J].计算机学报, 2004, 27(5): 659-667.
    [34] Kor?ak ?, Alag?z F. Virtual Topology Dynamics and Handover Mechanisms in Earth-fixed Satellite System [J]. Computer Networks, 2009, 53(9):1497-1511.
    [35] Wang CJ. Delivery Time Analysis of a Low Earth Orbit Satellite Network for Seamless PCS [J]. IEEE Journal on Selected Areas in Communications, 1995, 13(2):389-396.
    [36] Henderson T R, Katz R H. On distributed, geographic-based packet routing for LEO satellite networks [C]// IEEE Global Telecommu-nications Conference, San Francisco, CA, USA: IEEE Press, 2000:1119-1123.
    [37] Wang Junfeng, Li Lei, Zhou Mingtian. Topological dynamics characterization for LEO satellite networks [J]. Computer Networks, 2007, 51(1):43-53.
    [38]范红艳.基于OPNET的路由协议性能分析[硕士学位论文].北京邮电大学, 2008年3月.
    [39] Wang Junfeng, Xu Fanjiang, Sun Fuchun. Benchmarking of routing protocols for layered satellite networks [C]// IMACS Multiconference on "Computational Engineering in Systems Applications" (CESA), Beijing, China: Inst. of Elec. and Elec. Eng. Computer Society Press, 2006:1087-1094.
    [40] Ekici E, Akyildiz I F, Bender M D. A distributed routing algorithm for datagram traffic in LEO Satellite networks [J]. IEEE/ACM Transactions on Networking, 2001, 9(2):137-147.
    [41] Wood L, Clerget A, Andrikopoulos I, et al. IP routing issues in satellite constellation networks [J]. International Journal of Satellite Communications, 2001, 19(1):69-92.
    [42] Taleb T, Kato N, Nemoto Y. Recent trends in IP/NGEO satellite communication systems: Transport, routing, and mobility management concerns [J]. IEEE Wireless Communications, 2005, 12(5):63-69.
    [43] Alagoz F, Korcak O, Jamalipour A. Exploring the routing strategies in next-generation satellite networks [J]. IEEE Wireless Communi-cations, 2007, 14(3):79-88.
    [44] Werner M, Delucchi C, Maral G, et al. ATM virtual path routing for LEO/MEO satellite networks with intersatellite links [C]// Proceedings of the 1996 5th International Conference on Satellite Systems for Mobile Communications and Navigation, London, UK: IEE Press, 1996:143-146.
    [45] Werner M, Delucchi C, Vogel H-J, et al. ATM-based routing in LEO/MEO satellite networks with intersatellite links [J]. IEEE Journal on Selected Areas in Communications, 1997, 15(1):69-82.
    [46] Gounder V V, Prakash R, Abu-Amara H. Routing in LEO-based satellite networks [C]// 1999 IEEE Emerging Technologies Sym-posium, Richardson, TX, USA: IEEE Press, 1999:22.1-6.
    [47] Chang H S, Kim B W, Lee C G, et al. Topological design and routing for low-earth orbit satellite networks [C]// GLOBECOM'95, Singapore, Singapore: IEEE Press, 1995:529-535.
    [48] Chang H S, Kim B W, Lee C G, et al. Performance comparison of optimal routing and dynamic routing in low-earth orbit satellite networks [C]// Proc. VTC’96, Atlanta, GA, USA: IEEE Press, 1996:1240-1243.
    [49] Chang H S, Kim B W, Lee C G, et al. FSA-based link assignment and routing in low-earth orbit satellite networks [J]. IEEE Transactions on Vehicular Technology, 1998, 47(3):1037-1048.
    [50] Uzunalioglu H. Probabilistic Routing Protocol for Low Earth Orbit satellite networks [C]// Proceedings of the 1998 IEEE International Conference on Communications, Atlanta, GA, USA: IEEE Press, 1998:89-93.
    [51] Uzunalioglu H, Akyildiz I F, Bender M D. Routing algorithm for connection-oriented Low Earth Orbit (LEO) satellite networks with dynamic connectivity [J]. Wireless Networks, 2000, 6(3):181-190.
    [52] Uzunalioglu H, Akyildiz I F, Yesha Y, et al. Footprint handover rerouting protocol for low Earth orbit satellite networks [J]. Wireless Networks, 1999, 5(5):327-337.
    [53] Werner M. A Dynamic Routing Concept for ATM-Based Satellite Personal Communication Networks [J]. IEEE Journal on Selected Areas in Communications, 1997, 15(8):1636-1648.
    [54] Werner M, Berndl G, Edmaier B. Performance of optimized routing in LEO intersatellite link networks [C]// Proceedings of the 1997 47th IEEE Vehicular Technology Conference, Phoenix, AZ, USA: IEEE Press, 1997:246-250.
    [55]卢锡城,白建军,彭伟,等.一种基于分时的LEO卫星网络无环路由算法[J].通信学报, 2005, 26(5):9-16.
    [56]姚晔.具有星际链路的低轨卫星通信系统的路由策略研究[C]//2005星座卫星通信论坛,南京:解放军理工大学通信工程学院出版, 2005:146-152.
    [57]王京林,晏坚,曹志刚. LEO卫星网络中快照序列路由算法优化[J].宇航学报, 2009, 30(5):2003-2007.
    [58] Donner A, Berioli M, Werner M. MPLS-Based Satellite Constellation Networks [J]. IEEE Journal on Selected Areas in Communications, 2004, 22(3):438-448.
    [59] Durresi A, Dash D, Anderson B L, et al. Routing of Real-time Traffic in a Transformational Communications Architecture [C]// IEEE Aerospace Conference Proceedings, Big Sky, MT, United states: IEEE Press, 2004:1086-1103.
    [60] Hashimoto Y, Sarikaya B. Design of IP-based Routing in a LEO Satellite Network [C] // Proceedings of third international workshop on satellite-based information services (WOSBIS’98), 1998:81-88.
    [61]王凯东,易克初,田斌.低轨道(LEO)宽带卫星网络最短路由优化算法[J].中国科学E辑信息科学, 2005, 35(8):850-874.
    [62]宋学贵,刘凯,张军,等.一种适于LEO卫星网络的动态源路由算法[J].北京航空航天大学学报, 2006, 32(12):1422-1426.
    [63]万鹏,曹志刚,王京林. LEO星座网络动态源路由算法[J].宇航学报, 2007, 28(5):1295-1303.
    [64] WAN Peng, YAN Jian, CAO Zhi-gang, et al. Dynamic Source Routing algorithm in low-earth orbit Satellite Constellation [C]// ICCT '06, Guilin, China: IEEE Press, 2006.
    [65] Tsai K, Ma R P. Darting: a cost-effective routing alternative for large space-based dynamic-topology networks [C]// Proceedings of the 1995 Military Communications Conference, San Diego, CA, USA: IEEE Press, 1995:682-686.
    [66] Raines R A, Janoso R F, Gallagher D M, et al. Simulation of two routing protocols operating in a Low Earth Orbit satellite network environment [C] // Proceedings of the 1997 MILCOM Conference, Monterey, CA, USA: IEEE Press, 1997:429-433.
    [67]李喆,李冬妮,王光兴. LEO/MEO卫星网络中运用自组网思想的动态路由算法[J].通信学报, 2005, 26 (5):50-56.
    [68] Bai Jianjun, Lu Xicheng, Lu Zexin, et al. Compact explicit multi-path routing for LEO satellite networks [C]// 2005 Workshop on High Performance Switching and Routing, Hong Kong, China: IEEE Computer Society Press, 2005:386-390.
    [69] Kor?ak O, Alag?z F, Jamalipour A. Priority-Based Adaptive Shortest Path Routing for IP over Satellite Networks [J]. International Journal of Communication Systems, 2007, 20(3):313-333.
    [70] Karapantazis S, Papapetrou E, Pavlidou F-N. On-demand routing in LEO satellite systems [C]// ICC’07, Glasgow, Scotland, United Kingdom: IEEE Press, 2007:26-31.
    [71] Papapetrou E, Karapantazis S, Pavlidou F-N. Distributed on-demand routing for LEO satellite systems [J]. Computer Networks, 2007, 51(15): 4356-4376.
    [72] Taleb T, Jamalipour A, Kato N, et al. IP Traffic Load Distribution in NGEO Broadband Satellite Networks [C]// ISCIS 2005, Istanbul, Turkey, 2005:113-123.
    [73] Taleb T, Mashimo D, Jamalipour A, et al. ELB: An Explicit Load Balancing Routing Protocol for Multi-Hop NGEO Satellite Constellations [C]// IEEE GLOBECOM 2006, San Francisco, CA, United States: IEEE Press, 2007.
    [74] Jukan A, Hoang N N, Van As H R. An approach to QoS-based routing for LEO satellite networks [C]// ICCT 2000, Beijing, China: IEEE Press, 2000:922-929.
    [75] Jukan A, Nguyen N H, Franzl G. QoS-based routing methods for multi-hop LEO satellite networks [C]// ICON 2000, Singapore: IEEE Press, 2000:399-405.
    [76] Mohorcic M, Svigelj A, Kandus G. Traffic class dependent routing in ISL networks [J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4):1160-1172.
    [77] Svigelj A, Mohorcic M, Kandus G, et al. Routing in ISL networks considering empirical IP traffic [J]. IEEE Journal on Selected Areas in Communications, 2004, 22(2):261-272.
    [78] Kandus G, Svigelj A, Mohorcic M. The impact of different scheduling policies on traffic class dependent routing in intersatellite link networks [J]. International Journal of Satellite Communications and Networking, 2004, 22(5):533-546.
    [79] Svigelj A, Mohorcic M, Kandus G. Oscillation suppression for traffic class dependent routing in ISL network [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):187-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700