拖轮模拟器中船间水动力作用数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拖船协助在船舶靠离码头过程中发挥着重要的作用。拖船作业过程中,拖船与被拖船之间会产生水动力相互作用,船间水动力作用对拖船作业会产生直接影响,甚至会造成船舶操纵困难而产生危险。研究船间水动力作用对拖船操纵安全和拖船作业效率的提高有着重要意义。在拖轮模拟器中加入船间水动力作用模块是必要的。
     针对拖船的滑流效应和船间效应,本文进行了如下三个方面的工作:
     1.基于最小二乘法建立拖船螺旋桨滑流效应的数学模型。文中用F检验法对所建立的模型进行显著性检验,检验结果表明所建立的模型是合理的;然后又对建立的模型用Matlab进行了仿真,仿真结果与柯恩达效应和流体的驻点压力对滑流效应的解释是一致的。
     2.基于势流理论建立拖船所受船间效应的数学模型。首先在拖船与被拖船首尾线上布置一些源(汇)来取代船体对来流的扰动,源(汇)的强度根据拖船与被拖船的船体水下几何形状确定,由分布的源(汇)即可求得速度势,接着根据速度势求得船体对周围流体的诱导速度,再利用伯努利方程求得拖船船体附近流体的压强,最后用辛普生积分求出拖船受到的横向力和转首力矩。计算结果与试验结果对比表明所建立的模型是合理的。
     3.用Visual C++6.0搭建仿真平台,对船间水动力作用数学模型在测试平台上进行仿真测试。文中做了三组仿真:一是对拖船拖带被拖船前进运动仿真;二是对拖船拖带被拖船转向运动仿真;三是对拖船受到的船间效应作用进行仿真。前两组是对拖船的滑流效应进行的测试,第三组是对拖船受到的船间效应进行的测试。仿真结果表明所建立的模型是合理的。
Tugboat assistance plays a significant role in ship berthing or unberthing. Tug-ship interactions which occur in tugboat operations will directly act on tugboat. Due to tug-ship interaction, tugboat likely becomes maneuveringly difficult and dangerous. So research on the tug-ship interaction is of great importance. It is also necessary to integrate the tug-ship interactions into the towage model in tug simulator.
     The main contributions of the thesis focus on the tugboat's slipstream effect and ship-ship interaction, and are summarized as follows.
     1. The mathematical model for tug's slipstream effect is estbabished based on least-square algorithm. F test is done for the mathmetical model, which demonstrates that the mathematical model is reasonable. The Matlab simulation results about the mathematical model can embody the effect of the tug's slipstream.
     2. Ship-ship interaction on the tugboat is built based on potential-flow theory. Firstly, the source or sink is arranged on the tugboat and towed-ship to replace the ship hull disturbance to the incoming flow. The strength of the source or sink is arranged according to the geometry of the ship body. Secondly, the induced velocity of the tugboat and towed-ship are obtained on the basis of the arranged source or sink. Thirdly, the pressure around the tugboat body surface is caculated in accordance with the induced velocity by use of the Bernoulli equation. At last, the lateral force and yawing moment acting on the tug is caculated by Simpson integration.
     3. The simulation platform is established using the Visual C++6.0for testing. Three simulations are carried out in the thesis, namely, tugboat towing towed-ship forward motion, tugboat towing towed-ship yawing, and ship-ship interaction between tugboat and towed-ship. The former two tests are related to tug slipstream effect. The third test is about ship-ship interaction effect. The tests demonstrate the effectivness of the tug-ship interaction model.
引文
[1]拖船协助大型船舶操纵http://www.docin.com/p-370464179.html
    [2]梁康乐.拖航系统操纵性研究:(硕士学位论文).上海:上海交通大学,2007.
    [3]张永成.浅析拖轮协助大船靠离泊过程中海损事故的成因及预防.中国航海学会2007年度学术交流会,北京,2007.
    [4]Dand I W.Tug wash effects in confined waters,Seventh international tug convention, Landon, 1982. Landon:Thomas. Reed Publications Ltd Pr.,1982:163-174.
    [5]Hilten J V, Ir J,Wulder H. The use of a simulator for the development and training of optimized use of harbour tugs. Proceedings of MARSIM,2006, S1:1-10.
    [6]http://www.forcetechnology.com/,Interactive Tug Simulator and Tug Training
    [7]Varyani K S. Guide to new generic equations for interaction forces/moments between moored-passing ship and between encounter-overtaking-overtaken ships.
    [8]Wulder J H et al. Application of interactive tug simulation.Proceedings of MARSIM, Orlando Florida,2000.
    [9]Tugs.http://intra/d8/a 184/jko/DEN-Mark1/ch-32.html
    [10]Krishnankutty P, Varyani K S. Force on the mooring lines of a ship due to the hydrodynamic interaction effects of a passing ship. International Shipbuilding Progress,2004,51(1):33-57.
    [11]Varyani K S, Krishnankutty P. Modification of ship hydrodynamic interaction forces and moment by underwater ship geometry. Ocean Engineering,2006, (33):1090-1104.
    [12]Varyani K.S, Vantorre M. Development of new generic equation for interaction effects on a moored container ship due to passing bulk carrier. International journal of maritime engineering, 2005.
    [13]Chen G R, Fang M C. Hydrodynamic interactions between two ships advancing in waves. Ocean Engineering,2001, (28):1053-1078.
    [14]Mc T K, Cumming D, Hsiung C C et al. Seakeeping of two ships in close proximity. Ocean Engineering,2003, (30):1051-1063.
    [15]Gronarz D A. Ship-ship interaction:Overtaking and encountering of inland vessels on shallow water.
    [16]Dand I W. Some aspects of tug-ship interaction. Fourth international tug convention, New Orleans,1976. London:Thomas. Reed Publications Ltd Pr.,1976:61-80.
    [17]杨盐生,方祥麟.港内拖轮协助操船仿真数学模型的研究.大连海事大学学报,1997,23(2):19-24.
    [18]郭万庶.航海模拟器中拖轮拖带作业数学模型的研究:(硕士学位论文).大连:大连海事大学,2010.
    [19]蒲子芳.航海模拟器中拖轮顶推作业数学模型的研究:(硕士学位论文).大连:大连海事大学,2011.
    [20]梁康乐,邓得衡,黄国樑.拖航系统操纵运动仿真.中国航海,2007,2:10-13.
    [21]Wu J k, Lee T S, Shu C. Numerical study of wave interaction generated by two ships moving parallel in shallow water. Computer Methods in applied mechanics and engineering, 2001,190:2099-2110.
    [22]张谢东,刘祖源,吴秀恒.船舶超越时相互作用力理论计算.武汉交通科技大学学报,1997,21(3):236-241.
    [23]高志亮.基于NURBS高阶面元法的运动物体浅水水动力计算:(硕士学位论文).上海:上海交通大学,2008.
    [24]洪碧光.船舶操纵.大连:大连海事大学出版社,2008.
    [25]张亮,李云波.流体力学.哈尔滨:哈尔滨工程大学出版社,2001.
    [26]科恩达效应http://baike.baidu.com/view/1359506.htm
    [27]贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模.大连:大连海事大学出版社,1999.
    [28]方亮.船舶舵/翼舵-鳍/翼鳍智能鲁棒控制研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2008.
    [29]刘胜.现代控制理论工程.北京:科学出版社,2010.
    [30]曾繁慧.数值分析.徐州:中国矿业大学出版社,2009.
    [31]王丽霞.概率论与数理统计.大连:大连理工大学出版社,2010.
    [32]董增福.矩阵分析教程.哈尔滨:哈尔滨工业大学出版社,2003.
    [33]穆尔著.高会生,刘童娜,李聪聪译MATLAB实用教程.北京:电子工业出版社,2010.
    [34]王献孚,熊鳌魁.高等流体力学.武汉:华中科技大学出版社,2003.
    [35]夏国泽.船舶流体力学.武汉:华中科技大学出版社,1997.
    [361景思睿,张鸣远.流体力学.西安:西安交通大学出版社,2002.
    [37]Kokarakis J E, Taylor R K. Hydrodynamic interaction analysis in marine accidents,2007.
    [38]Varyani K S, KrishNankutty P, Vantore M. Prediction of load on mooring ropes of a container ship due to forces induced by a passing bulk carrier. Proceedings of MARSIM, Kanazawa,2003.
    [39]马兴磊.浅水中细长船体辐射水动力计算:(硕十学位论文).上海:上海交通大学,2008.
    [40]赵耀中.船舶有航速辐射水动力计算研究:(硕十学位论文).上海:上海交通大学,2007.
    [41]张晓兔.基于B样条的三维船体水动力数值计算研究:(博士学位论文).武汉:武汉理工大学,2002.
    [42]Varyani K S, Thavalingam A, Krishnankutty P. New generic mathematical model to predict hydrodynamic interaction effects for overtaking maneuvers in simulators. Marine Science and technology,2004,9:24-31.
    [43]Chen J P, Zhu D X. Numerical simulations of wave-induced ship motions in regular oblique waves by a time domain panel method. International conference on hydrodynamics,Shanghai,2010.
    [44]Lee C K, Kijima K. On the safe navigation considering the interaction forces between ships in confined water. Proceedings of MARSIM, Kanazawa,2003.
    [45]Yasukawa H. Simulation of ship collision caused by hydrodynamic interaction beween ships. Proceedings of MARSIM, Kanazawa,2003.
    [46]刘日明.基于B样条面元法的浮体二阶水动力计算:(博士学位论文).哈尔滨工程大学出版社,2009.
    [47]谢楠,郜焕秋.船间水动力相互作用的数值计算.船舶力学,1999,2(2):7-15.
    [48]陆冬青,芮震峰,石爱国等.波浪中并靠两船运动计算.船舶工程,2005,27(5):46-50
    [49]林小平.潜艇水动力计算及型线生成研究:(硕士学位论文).武汉理工大学,2005.
    [50]戴愚志,余建星,唐广寅等.NURBS高阶面元法在多体水动力分析中应用.海洋工程,2007,25(1):21-26
    [51]尚涛,石瑞伟,安宁等.工程计算可视化与MATLAB实现.武汉:武汉大学出版社,2002.
    [52]张晓兔,滕斌,信书.船体曲面几何表达及水动力性能计算的NURBS方法.海洋工程,2004,22(2):7-12.
    [53]戴遗山,段文洋.船舶在波浪中运动的势流理论.北京:国防工业出版社,2008.
    [54]Ren J S, Yin Y, Zhang X F. Maneuvering and motion simulation of waterjet-propelled ship. Proceedings of MARSIM,2006,M20:1-5.
    [55]孙鑫,余安萍.VC++深入详解.北京:北京电子工业出版社,2006.
    [56]侯俊杰.深入浅出MFC.武汉:华中科技大学出版社,2001.
    [57]李庆扬,王能超,易大义.数值分析.武汉:华中科技大学出版社,1986.
    [58]张显库,金一丞.控制系统建模与数字仿真.大连:大连海事大学出版社,2004.
    [59]邹志利.水波理论及其应用.北京:科学出版社,2003.
    [60]吴秀恒.船舶操纵性.北京:国防工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700