航海模拟器中拖轮拖带作业数学模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航海模拟器在驾驶员培训、航道设计等诸多领域发挥着越来越重要的作用。随着船舶向着大型化发展,拖轮协助大型船舶操纵已经成为了十分重要的手段。2007年挪威船级社对航海模拟器的认证标准提出了A级和B级船桥模拟器都应至少包括一个拖轮模拟器单元,故将拖轮协助大型船舶操纵的数学模型加入到航海模拟器中,实现拖轮拖带作业运动的仿真是非常必要的。本文将拖轮作为一个单独本船,通过缆绳拖带被拖船,把拖轮拖带作业的操纵数学模型加入到航海模拟器中来。为此,本文做了以下三个方面的工作:
     (1)建立了拖轮拖带作业的运动数学模型,使用龙格-库塔四阶(RK4)算法对模型进行解算。被拖船的数学模型是针对丹麦水池试验标准船模Mariner轮采用整体型建模理论建立的,拖轮的数学模型是采用分离建模理论建立的。同时还对所建立Mariner轮的数学模型进行了旋回试验和Z形试验,试验结果与实船试验结果基本吻合,表明所建模型满足精度要求。
     (2)建立了拖缆张力的计算模型。拖缆张力的计算分两种情况:一是拖缆应变小于25%时,满足虎克定律,利用悬链线方程推导出拖缆水平张力与无应力长度之间的一一对应关系,然后通过迭代法计算出拖缆的张力。二是拖缆应变大于25%时,不满足虎克定律,忽略拖缆自重,通过拖缆应变曲线图拟合的多项式来计算拖缆张力。本文以直径为96mm的尼龙单丝复合缆为例进行了实例验证,结果表明所建拖缆计算模型是正确和有效的。
     (3)搭建拖轮拖带作业的测试平台。本文基于Visual C++6.0语言环境开发了测试平台,对建立拖轮拖带作业的模型进行实时仿真测试。测试分为两个阶段:第一阶段拖轮与被拖船自航;第二阶段拖轮速度明显快于被拖船,当两船间距大于拖缆张力模型开始解算的水平距离时,拖缆张力模型开始解算,实现拖轮拖带被拖船运动的仿真测试,结果表明所建拖带作业模型是正确的。
Marine simulator plays an increasingly significant role in merchant marine officer training and channel design and some other fields. Since modern vessel is becoming larger, tug assistance operation during maneuvering is rather important. So it is neces-sary to incorporate apply mathematic model of tug assistance during maneuvering into marine simulator. In the thesis, tugboat is an individual own-ship. It is connected through line with a towed ship to carryout towing operation. In this way, mathematic model of towing operation can be used in marine simulator. The main contribution of this thesis are as follows.
     Firstly, mathematic model of towing operation is established, which is solved with 4th-order Runge-Kutta algorithm. Mathematic model of towed vessel is in the frame work of Abkowitz Model, based on Mariner vessel. Tugboat mathematic model is built with MMG theory. Turning circle test and Zig-zag test are conducted. The test results meet Ship Maneuverability Standards of International Maritime Organization and model accuracy is satisfactory.
     Secondly, mathematic model of towing line tension is built. The mathematic model for calculating towing line tension contains two cases. In the first case that towing line elongation is less than 25%, which obeys Hooke's Law, iterative algorithmis used to obtain line tension. In the second case, towing line elongation is more than 25%, which does not meet Hooke's Law. Under this hypothesis, that line tension is calculated by using the regressive polynomial obtained through line stress-strain curve. The correct-ness and practicability of the model are verified by computation example.
     Thirdly, test platform is established for towing operation. The test contains two cases. In the first case, tugboat and towed vessel move independently. In the second case, towing operation simulation is in process. With Visual C++6.0 programming simulation for mathematic model is tested, which proves that the towing operation model is reasonable.
引文
[1]李万超.船舶操纵模拟器中拖轮子系统的研究:(硕士学位论文).大连:大连海事大学,2004.
    [2]IMO. SHIP/PORT INTERFACE Availability of tug assistance, IMO 4 ALBERT EMBANKE-MENT, LONDON,2003.
    [3]任俊生,杨盐生,刘秀文.高速水翼船操纵模拟器中运动数学模型的研究.系统仿真学报,2005,17(2):316-318.
    [4]任俊生,杨盐生.静水中高速水翼双体船运动建模和仿真.大连海事大学学报,2002,28(2):18-21.
    [5]杨盐生,方祥麟.港内拖轮协助操船仿真数学模型的研究.中国航海,1997,2:19-24.
    [6]张鹏.拖轮协助船舶操纵建模与仿真:(硕士学位论文).大连海事大学,2008.
    [7]Varyani K S, Barltrop N, Doyle R. Simulation of the dynamics of a tug towing a disabled tanker in emergency salvage operation. Proceedings of MARSIM,2006, S3:1-10.
    [8]Kijima K, Varyani K S. Wind Effect on Course Stability of Two Towed Vessels. Jour-nal of the Society of Naval Architects of Japan,1985,158:137-148.
    [9]Chu C H, Chou S K, Chung F Y et al. Development of a PC-based ship handling simulation prototype system.9th Asian Conference on Marine Simulator and Simulation Research,2009.
    [10]Yoon H K, Kim S Y, Joong G Lee. Simulation of tug and barge coupled motion in waves.9th Asian Conference on Marine Simulator and Simulation Research,2009.
    [11]Kishimoto T, Kijima K. On the towing system for disabled ships. Journal of the Society of Naval Architects of Japan,2000,188:191-199.
    [12]Yukawa K, Hoshino K, Hara S et al. On the towing of wrecked tank's fore part at rough Sea, 2002,191:87-96.
    [13]石爱国,侯建军,万林等.拖轮协助大型舰船靠泊操纵建模及仿真.系统仿真学报,2006,18(2):104-107.
    [14]石爱国,侯建军,蔡烽等.舰船风中运动仿真模型研究.中国航海学会海洋船舶驾驶专业委员会天气海洋与航海安全论文集,2000.
    [15]Sorensen P K. Tug simulation training-request for realism and accuracy. International Con-ference on Marine Simulation and Ship Manoeuvrability,2006.
    [16]Agdrup K, Anders S O, Dirk J. Development of a mathematical model of a Voith Schneider tug and experience from its application in an offshore simulation study. International Conference on Marine Simulation and Ship Manoeuvrability,2006.
    [17]http://www.force.dk/en/Header/Download/Product..../2701-2-en.htm
    [18]http://www.MITAGS.ORG
    [19]http://www.efforts-project.org
    [20]http://www.fmsc.org
    [21]http://www.MarineSafety.com
    [22]Hilten J V, Johan I, Wulder H. The use of a simulator for the development and training of op-timized use of harbour tugs. Proceedings of MARSIM.2006, S1:1-10.
    [23]http://www.marin.nl
    [24]Captain Hensen H. Tug Use in Port. A Practical Guide. The Nautical Institute, London,2003.
    [25]金一丞,尹勇.STCW公约与航海模拟器的发展.大学海事大学学报,2002,28(3):51-55.
    [26]张秀凤,尹勇,金一丞.规则波中船舶运动六自由度数学模型.交通运输工程学报,2007,7(3):40-43.
    [27]孙霄峰,尹勇,张秀凤.可调螺距螺旋桨船舶的操纵运动数学模型.大连海事大学学报,2007,33(4):73-76.
    [28]徐言民,荣祥斌,刘明俊.失控船拖带系统建模与航迹带模拟研究.中国航海,2008,2:126-129.
    [29]贾欣乐,杨盐生.船舶运动数学模型一机理建模与辨识建模.大连:大连海事大学出版社,1999.
    [30]SNAME. Nomenclature for Treating the Motion of a Submerged Body Through Fluid. SNAME Technical and Research Bulletin,1952:1-5.
    [31]Norrbin N H. Theory and observation on the use of a mathematical model for ship manoeu-vring in deep and confined waters. Publication No.68 of SSPA.1970.
    [32]施内克鲁特.船舶水动力学(第一版).上海:上海交通大学出版社,1997.
    [33]周昭明,盛子寅,冯悟时.多用途货船的操纵性预报计算.船舶工程,1983,6:21-29.
    [34]http://www.alrope.com/company.asp
    [35]http://237734.51 sole.com/CompanyProduct.htm
    [36]向溢,谭家华.码头系泊缆绳张力的蒙特卡洛算法.上海交通大学学报,2001,35(4):548-551.
    [37]向溢,谭家华.码头系泊船舶缆绳张力的混沌解法.武汉理工大学报,2001,25(1):49-51.
    [38]Ren J S, Yin Y, Zhang X F. Maneuvering and motion simulation of waterjet-propelled ship. Proceedings of MARSIM.2006, M20:1-5.
    [39]高孝日.平旋推进拖船的运动建模与仿真:(硕士学位论文).大连:大连海事大学,2008.
    [40]侯建军,石爱国,尹建川等.锚泊状态下锚链作用力的计算方法.大连海事大学学报,2005,4.
    [41]靳明君,张志国.悬链线柔索索长的计算.铁道标准设计,2004(5):9-11.
    [42]孙霄峰,尹勇,张秀凤.船舶操纵模拟器中的系缆张力模型.中国航海,2007,3:14.
    [43]Sun X F, Yin Y, Zhang X F. Research on key technologies of fishing vessels simulator. The Sixth International Conference on System Simulation and Scientific Computing. Beijing:Interna-tional Academic Publishers World Publishing Corporation,2005:36-40.
    [44]VLCC Seminar (Zhou Y Translate). VLCC Manoeuvring Outline. Beijing:China Communic-ations Press,1982.
    [45]于洋,刘锦程,王左等.船舶系缆张力分析.大连海事大学学报,2001,27(3).
    [46]刘有钟.海船系缆船艺.北京:人民交通出版社,1992.
    [47]陆志材.船舶操纵.大连:大连海事大学出版社,2001.
    [48]沈定安,马向能.船队风浪中操纵可控区的计算.船舶力学,2008,12(4):582-587.
    [49]沈定安,马向能.波浪中船舶操纵性预报.船舶力学,2000,4(4):15-27.
    [50]洪碧光.船舶操纵.大连:大连海事大学出版社,2008.
    [51]吴秀恒.船舶操纵性与耐波性(第二版).北京:人民交通出版社,1999.
    [52]古文贤.船舶操纵性.大连:大连海事大学出版社,1995.
    [53]张显库,金一丞.控制系统建模与数字仿真.大连:大连海事大学出版社,2004.
    [54]徐言民,荣祥斌,刘明俊.失控船拖带系统建模与航迹带模拟研究.中国航海,2008,31(2):126-129.
    [55]梁新莉.POD推进方式大型船舶舶的运动建模与仿真:(硕士学位论文).大连:大连海事大学,2008.
    [56]梁康乐,邓德衡,黄国樑.拖航系统操纵运动仿真.中国航海,2007,2:10-13.
    [57]王哲.港内拖轮协助操船工况下本船极限航速的研究:(硕士学位论文).大连:大连海事大学,2003.
    [58]马向能,沈定安,何春荣.大型集装箱船受风工况下操纵性计算预报.船舶力学,2001,5(4):17-28.
    [59]Fang M C, Ju J H. The dynamic simulations of the ship towing system in random waves. Ma-rine Technology,2009,46(2):107-115.
    [60]IMO. Resolution A.751(18). Interim Standards for Ship Maneuvering,4 November 1993.
    [61]杨志华.港口拖轮总体配置的仿真研究及应用:(硕士学位论文).武汉:武汉理工大学,2003.
    [62]李庆扬,王能超,易大义.数值分析.武汉:华中科技大学出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700