镉污染土壤原位修复剂及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农药和化肥施用量的不断增加,工矿废弃污染物排放的日益加剧,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染,导致农作物产量和质量的下降,并通过食物链危害人类的健康。目前,我国Cd污染农田目前已超过1.3×104 hm2,涉及11个省市的25个地区,因此对土壤Cd污染治理已成为当务之急。本文以富含巯基的新鲜植物残体、变性粘土、矿渣、工业废渣(纳米级)、有机物料(巯基化)等为基质对21种重金属钝化制剂进行了研究筛选,利用室内模拟培养和植物盆栽试验研究重金属钝化剂的效果和作用机制,并比较了不同生产工艺赤泥对土壤Cd的钝化效果。利用元素的拮抗原理,研究ZnSO4叶面喷施和拌种处理对土壤中Cd的单一及复合阻抗钝化效果。通过钝化剂作用下土壤性质的变化、土壤中各形态Cd转化以及对溶液Cd离子中Cd离子吸附解吸特性的研究,进一步探讨了钝化剂的作用机制。本论文得到的主要结论如下:
     以土壤中可交换态Cd含量为指标,研究了羟基磷灰石(HA)、磷矿粉(PRX和PRH)、沸石、赤泥、新鲜植物残体、玉米秸秆粉末以及相应的处理共21种钝化剂的作用效果,结果表明:与空白相比,纳米化赤泥、羟基磷灰石、纳米化酸洗赤泥可使土中可交换态Cd减少比例达35%~55%,赤泥、酸洗赤泥、沸石可达15%~25%。富含巯基植物残体在土壤中可有效的与Cd离子螯合,降低可交换态Cd的含量。新鲜蒜苗、油菜、大葱植物残体效果相近,可达20%~25%。PRX、PRH、大葱粉末、相对较差。秸秆和巯基化秸秆钝化效果在8周以上时间段表现较好。
     通过温室盆栽试验研究了钝化剂作用的生物效应,结果表明:与空白相比,赤泥、沸石、玉米秸秆和鲜蒜苗残体的加入对黄瓜生物量也有明显提高。赤泥类物质可使黄瓜植株内Cd的含量降低20.4%~60.2%,赤泥的纳米化处理明显提高了赤泥的钝化效果。沸石分别使植株内Cd的含量减少11.7%~48.0%,新鲜蒜苗残体钝化效果达到20.1%~59.4%。添加玉米秸秆可使黄瓜植株内Cd的含量减少20.3%~36.0%,巯基化秸秆使植株内Cd的含量减低20%~50%。随着各种钝化剂施入量的不断增加,黄瓜对Cd的富集系数呈明显减少的趋势。
     通过钝化剂对土壤性质与土壤中各形态Cd含量的变化分析研究,结果表明:与空白相比,钝化剂的添加都显著减小了土壤可交换态Cd的含量;赤泥类钝化剂主要作用机制为升高pH值,增大易还原锰结合态、EDTA可提取态、碳酸盐结合态和Fe、Al氧化态Cd含量;沸石的添加主要是增大土壤CEC值和EDTA可提取态、碳酸盐结合态以及残渣态Cd含量;添加玉米秸秆、巯基化玉米秸秆和新鲜蒜苗残体后的栽培土壤中,有机质含量和CEC值增大, EDTA可提取态、有机结合态和残渣态Cd的含量增大是其钝化作用的主要机制。
     通过第二季盆栽试验,比较了钝化剂效果的时间效应,其结果表明:第二季盆栽黄瓜植株的干重均高于第一季盆栽试验,添加钝化剂对植株干重的增大作用明显。在第二季盆栽中,各钝化剂作用下黄瓜植株中Cd的含量与空白相比显著减小。赤泥类物质的钝化效果好于第一季栽培,不同添加量秸秆类物质钝化效果的时间效应存在差异,沸石钝化效果的时间效应不明显,新鲜蒜苗残体表现为第二季好于第一季,且添加量变化对其影响较小。
     利用元素间拮抗作用原理,研究了ZnSO4阻抗剂对土壤Cd的钝化效应,结果表明:与空白相比,叶面喷施ZnSO4溶液阻抗剂可使植株中Cd的含量减小20.7%~32.5%;ZnSO4溶液拌种处理的钝化效果为20.3%~37.2%。在钝化、阻抗复合试验中,叶面喷施也对Cd吸收表现出了一定的抑制效果,但作用率小于土壤钝化剂施加,为10%左右。ZnSO4叶面喷施,增大了植物对Zn的吸收,而ZnSO4溶液拌种处理,植株中的Zn含量并未明显增大。
     利用盆栽试验,比较了不同生产工艺产生赤泥的钝化效果,其结果表明:各种施用量处理下,拜耳法工艺产生的赤泥其钝化效果要明显好于烧结法赤泥;其主要原因为拜耳法赤泥颗粒粒径小、表面积大以及氧化铁、铝含量高。
     通过钝化剂对溶液中Cd离子的吸附解吸试验表明:赤泥、沸石对Cd离子具有很大的吸附容量和较强的吸附亲和力;只有不到25%的吸附镉为水溶态和可交换态,而绝大部分吸附的镉(50%以上)为与赤泥结合稳定的、不易为生物利用的形态。纳米粉碎能显著提高赤泥对镉的吸附能力,并提高吸附产物的稳定性,焙烧处理也提高了沸石对镉的吸附容量。玉米秸秆粉末、巯基化处理秸秆粉末以及新鲜蒜苗残体都显示出对Cd2+较高的吸附容量,都高于土壤对镉的吸附容量,其中蒜苗残体最大,巯基秸秆次之。与土壤相比,沸石、焙烧沸石和新鲜蒜苗残体吸附的镉中,被解吸为水溶态和可交换态吸收态组分比例显著减小,但其对Cd的吸附固定结合效果均小于赤泥类物质。赤泥类物质、沸石、秸秆和蒜苗残体对Cd的吸附符合Langmuir和Freundlich模式方程,Langmuir方程拟合相关性好于Freundlich方程。赤泥对Cd的吸附等温线受背景K+离子浓度变化明显,表明吸附可能存在外层和专性两种作用。
     利用吸附动力学试验,研究了不同钝化剂对Cd离子吸附随时间变化的规律,其结果表明:不同钝化剂、不同的初始溶液浓度下对Cd离子的吸附过程基本上可分为两个阶段,即快速反应阶段和慢速反应阶段。赤泥类物质吸附速率较大,达到平衡时间较短,纳米化处理明显提高了赤泥的吸附速率,缩短平衡时间;沸石吸附Cd2+达到平衡时间较长,可能与其内部通道作用有关。对钝化剂吸附Cd离子的动力学曲线拟合较好的为准二级动力学方程和指数Ⅱ型方程,拟合参数基本上反映了不同的钝化剂的吸附动力学特征;从抛物线型拟合方程可以看出吸附作用可能存在两个扩散过程。
     通过以上研究可以看出,赤泥类物质,特别是纳米化处理赤泥对土壤中Cd有很好的钝化效果,但对土壤pH升高作用较大;新鲜蒜苗残体、沸石和玉米秸秆的钝化效果较好,这些物质的施加也可以对土壤起到增肥、保水等改良作用;巯基化处理增强了玉米秸秆的钝化效果,表明了巯基物质对Cd螯合作用的增加,但其处理成本较高且在初期施用对植物生物量略有降低。因此,在Cd污染土壤原位修复剂的推广应用上,应针对不同区域的土壤类型,结合当地资源综合评估,进行科学选择。
     本文系统的比较了21种不同种类钝化剂的作用效果,在富含巯基的植物残体、纳米化赤泥和巯基化玉米秸秆制剂的钝化效果的研究,与阻抗剂ZnSO4叶面喷施单一阻抗及与添加剂复合效果的研究上有所创新,为Cd污染土壤钝化剂的推广应用提供了科学指导。
With the increase of agricultural pesticide , chemical fertilizer consumption and industrial and mining waste, contaminations containing heavy metals have entered into the soil through various sources which cause serious pollution, decreased agricultural product quality and yield, and produce adverse effects on human health through the biological chain, Over 1.3×104 hm2 farmlands in China have been contaminated with Cd, involving 25 regions of 11 provinces, so treatment of the pollution is very important and urgent. Some sulphydryl (-SH) containing plant offal, modification of clays、mineral slag、industry residue(nanoparticles)、organic material(sulfhydrylation)as amendments were applied in this research, the effects and influencing factors of heavy metal amendments were studied by laboratory incubation and pot culture experiment. According to the antagonism between different metal ions in absorption by plant, the effect of seed soaking and foliage spray were studied in pot experiments. The adsorption and desorption of solution Cd to different amendments was studied by the experiment of thermodynamic and kinetic aproaches. The results were given as follows:
     The hydroxyapatite (HA), phosphate rock powder (PRH and PRX), zeolite, red mud, plant offal, and their modified products were applied to the Cd-contaminated soils to assess the efficiency of these materials in immobilization of soil Cd. After incubation for different times, the concentration of exchangeable Cd was determined. The results showed that the concentration of exchangeable Cd in soils was decreased using red mud nanoparticles and HA by 35%~55%, using red mud, acid-treated red mud, and zeolite by 15%~25%, and using the sulphydryl (-SH) containing materials including garlic leaf, scallion, rape offal by 20%~25%. The immobilization by PRX, PRH, scallion powder, maize straw and sulfhydrylated maize straw were less effective compared with the above materials. The immobilizing effects of HA, ammonium saturated zeolite, red mud nanoparticles, and acid-treated red mud were stable at different incubation times, while the immobilizing effects of red mud, scallion offal, maize straw and its sulfhydrylation dispose increased along with the incubation times, especially for maize straw and its sulfhydrylated materials after eight weeks or longer incubation time. The results in the present study might be of practical importance in screening of amendments for remediation of soils contaminated with cadmium.
     The biomasses of cucumber aboveground increased by adding red mud into soils, but it decreased gradually along with the increase of the amount of application, it increased effectively with concentration of zeolite and maize straw increasing, the application of sulfhydrylated maize straw showed little effect on biomasses of cucumber. The application of garlic leaf offal also increased biomasses but no distinct change was appeared as the concentration of amendment increasing. The application of red mud decreased the concentration of Cd in cucumber plant by 20.4%~60.2%, and red mud nanoparticles increased the immobilizing effects significantly, saturated zeolite by 11.7%~48.0%, garlic leaf offal by 20.1%~59.4%, maize straw by 20.3%~36.0%, and sulfhydrylated maize straw by about 20%, but the concentration of Cd can be decreased by nearly 50% in 5 mg kg-1 Cd contaminated soils. With the application of different amendments, the enrichment factor of Cd in cucumber appears to decrease
     The pH values of soil increased by the application of red mud, while decreased by maize straw, sulfhydrylated maize straw and garlic leaf offal. The correlation between Cd concentration in cucumber and pH values was not significant. With the application of red mud, the cation exchange capacity decreased, while the cation exchange capacity increased with the zeolite, maize straw and garlic leaf offal applied. The correlation between Cd concentration in cucumber and CEC values was not significant. The application of maize straw, sulfhydrylated maize straw and garlic leaf offal increased organic matter in soils. The negative correlation between organic matter in soil and Cd concentration in plant was significant. The concentration of EDTA and EXC-Cd was the highest, then were FeOx-Cd, and ERMn, CA and OM-Cd were much lower, WS-Cd was the lowest. The EXC and OM-Cd decreased, but ERMn, EDTA, CA-Cd increased under the application of red mud. With zeolite application, the content of EDTA, CA and RES-Cd increased, while WS, EXC, ERMn and OM-Cd decreased. The concentration of EXC, ERMn, CA and FeOx-Cd in soils decreased continuously, while EDTA, WS, OM and RES-Cd increased with the application of maize straw, sulfhydrylated maize straw and garlic leaf offal. The variation of different forms of Cd, pH values, OM and CEC composed the immobilization mechanism of different amendments。
     During the second crop experiment,the biomasses of cucumber was higher than that in first pot culture experiment. With the application of amendments,Cd concentration in plant was much lower than CK. The effects of immobilizing on red mud in the second crop experiment were better than in the first time. The immobilization effect of maize straw was different in two pot experiments, while zeolite was stable. The garlic leaf offal was better than the first time, and showed no distinct change on effects of different concentration of amendment. The Cd concentration in cucumber plants was significantly decreased under antagonistic effect of foliar application of 300 mg kg-1 ZnSO4. In the complex immobilization experiment, foliage can also decreased uptake of Cd by the plants, but was not so effective as application of amendments. The uptake of Zn by the plants increased significantly under antagonistic effect of foliar spray application, Zn content in plants was not increased obviously under seeds marinated by ZnSO4. The immobilizing effects of red mud by bayer process is much better than by sintering process under different concentration of application, because of the smaller particle size, larger surface area, higher content of Fe2O3 and Al2O3。
     The adsorption capacity of red mud and zeolite to Cd was very large. The proportion of water soluble or exchangeable Cd was less than 25% in absorbed by red mud, and most absorbed Cd (more than 50%) was stable and nonbioavailable. Red mud nanoparticles and roasting zeolite increased adsorption capacity. The maize straw, sulfhydrylated maize straw powder and garlic leaf offal showed high adsorption capacity of Cd2+ higher than soils, garlic leaf offal appeared more efficient than the sulfhydrylated and maize straw, but the combination stability was lower than soils. In contrast with soil, the proportion of water soluble and exchangeable Cd in absorbed by zeolite, roasting zeolite and garlic leaf offal decreased obviously, but was less effective than red mud. The Cd2+ adsorbing capacity of red mud, zeolite, maize straw, and garlic leaf offal accord with Freundlich and Langmuir adsorption equation model, the parameter of the result showed adsorption character of different amendments. The adsorption isotherms of red mud were affected by the concentration of background ions obviously, and there may be two styles: external layer and special adsorption.
     The processes of Cd2+ adsorption can be divided into two stages, fast and slow reactions. Adsorptive rate of red mud was higher and the equilibrium time was shorter, red mud nanoparticles increased adsorptive rate obviously and shorten the equilibrium time. However the equilibrium time of zeolite was longer, it may be associated with inner tunnel structure。The pH value of solution under the application of red mud was much higher than zeolite. The adsorptions of red mud were well described by pseudo-second-order kinetics and model, zeolite, fluvo-aquic soil can be simulated better by pseudo-second-order kinetics model, indexⅡand Elovich equation. Fitting parameters of pseudo-second-order kinetics model and indexⅡmodel indicated kinetic different characteristics of amendments, the curve of parabola model indicated that the absorption may have two diffusion processes. Future research should focus on the immobilizing mechanisms at molecular level by advanced analysis technique, such as X-ray absorbance fine structure spectroscopy and Fourier transformed infrared spectroscopy.
引文
[1]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3): 21-27.
    [2]廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社,1993.299-302.
    [3] Chen H M,Z heng C R ,Tu C ,et al. Chemical methods and phy toremediation of Soil contaminated with heavy metals[J].Chemosphere,2000,41(1-2):2 29-234.
    [4] Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils [J].Trendsin Biotechnology, 1995, 13(9):393-397.
    [5] Kham A G, Knek C, Chaudhry T M, et al. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated and remediation[J].C hemosphere, 2000,41(1-2):197-207.
    [6] Karenlampi S, Schat H, Vangronsveld J, et al. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils[J].Environmental Pollution,2000,107(2):225-231.
    [7] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal contaminated soils and groundwater: an evaluation [J]. Engineering Geology, 2001, 60(1-4):193-207.10
    [8] Raskin I, Smith R D, Salt D E. Phytoremediation of metals: using plants to remove pollutants from the environment [J]. Current Opinion in Biotechnology, 1997, 8(2):221-226.
    [9]杨立全.甘蓝抗重金属污染的研究[J].山西农业科学, 2002, 30(4): 60-62.
    [10]肖鹏飞,李法云,付宝荣,等.土壤重金属污染及其植物修复.辽宁大学学报自然科学版, 2004, 3: 279-283.
    [11]李其林,刘德光,魏朝富,等.重庆市蔬菜区重金属污染现状.土壤通报, 2005, 3(2):104-107.
    [12]许学宏,纪从亮.江苏蔬菜产地土壤重金属污染现状调查与评价.农村生态环境, 2005, 21(1): 35-37.
    [13]郭明新,林玉环.利用微生态系统研究底泥重金属的生物有效性[J].环境科学学报, 1998, 18(3): 325-330.
    [14] Nordberg G F. Application of the critical effect and critical concentration concept tohuman risk assessment of cadmium. In: C F Nordberg, R F M Heber,L Alessio,et al, Cadmium in the human environment; toxicity and carcinogenicity. 1992, (118):1-12.
    [15] Friberg L, Elinder C G, Kjelstom, et al. Cadmium and health: a toxicological and epidemiologi -cal appraisal. Bpca R F lorida: CRC Press, 1992( 1):1-307.
    [16]刘杰.锡的毒性和毒理学研究进展.中华劳动卫生职业病杂志, 1998, 16(1): 2-4.
    [17]唐宜,李雄信.镉对男性生殖系统的影响.重庆医科大学学报,1989, 14 (4): 343-34.
    [18]秦世学.土壤镉污染对作物的影响及作物对土壤锡的影响.环境科学丛刊, 1984a, 4(10): 8-15.
    [19]孙赛初,王焕校,李启任.水生维管束植物受Cd污染后的生理变化及受害机制初探.植物生理学报, 1985, 11(2): 113-121.
    [20]傅伟,王天铎.净光合速率与气孔导度相互关系的电学类比分析和模拟研究.植物学报, 1994, 36(7) :511-517.
    [21] Xian X .The effect of pH on the chemical speciation of Cd ,Zn ,Pb on polluted soils and its availability to plant. Water Air Soil Pollut, 1989, 45:265-273.
    [22]郝秀珍,周东美,王五军,等.泥碳和化学肥料处理对黑麦草在铜尾矿砂上生长影响的研究.土壤学报, 2004, 41(4): 545-548.
    [23] Sally B, Chancy R, Judith H,et a1.In situ treatment to reduce the Phyto and bio- availability of lead, zinc and cadmium[J].Environ Qua1, 2004,33: 522-531.
    [24] Urszula K, Rufus L C. Amelioration of nickel phytotoxicity in muck and mineral soils [J]. Environ Qua1, 2001, 30: 1949-1960.
    [25] Cheng S F, Zeng Y H .In-situ immobilization of cadmium and lead by different amendments in two contaminated soils. Water, Air and Soil Pollution, 2002,140: 73-81.
    [26]夏星辉,陈静生.土壤重金属污染治理方法研究进展闭.环境科学, 1997, 18 (3): 72-76.
    [27]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报, 2002, 13(6): 757-762.
    [28] Gemeinhardt C, Müller S, Weigand H, et al. Chemical immobilization of arsenic in contaminated soils using iron(II) sulphate-advantages and pitfalls. Water, Air, and Soil Pollution: Focus, 2006, 6: 281-297
    [29] Guo G-L (郭观林), Zhou Q-X (周启星), Li X-Y (李秀颖). Advances in research onin situ chemo-immobilization of heavy metals in contaminated soils. Chinese Journal of Applied Ecology (应用生态学报), 2005, 16(10): 1990-1996 (in Chinese)
    [30] Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal contaminated soils and groundwater: an evaluation. Engineering Geology, 2001, 60: 193-207
    [31] Diels L, van der Lelir N, Bastiaens L. New developments in treatment of heavy metal contaminated soils. Reviews in Environmental Science and Bio/Technology, 2002, 1: 75-82
    [32] Madrid F, Romero AS, Madrid L, et al. Reduction of availability of trace metals in urban soils using inorganic amendments. Environmental Geochemistry and Health, 2006, 28: 365-373
    [33] Van der Lelie D, Schwitzguebel JP, Glass DJ, et al. Assessing phytoremediation’s progress in the United Stated and Europe. Environmental Science and Technology, 2001, 35: 447A-452A
    [34] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review. Waste Management, 2008, 28: 215-225
    [35] Guo GL, Zhou QX, Ma LQ. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environmental Monitoring and Assessment, 2006, 116: 513-528
    [36] Garau G, Castaldi P, Santona L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, cultural heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 2007, 142: 47-57
    [37] Van Herwijnen R, Hutchings TR, Al-Tabbaa A, et al. Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 270, 150: 347-354
    [38] Liu RQ, Zhao DY. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere, 2007, 68: 1867-1876
    [39] Singh BR, Myhr K. Cadmium uptake by barley from different Cd sources at two pH levels. Geoderma, 1998, 84: 185-194
    [40] Hamon RE, McLaughlin MJ, Cozen G. Mechanisms of Attenuation of Metal Availability in In Situ Remediation Treatments. Environmental Science and Technology, 2002, 36: 3991-3996
    [41] Brown S, Christensen B, Lombi E, et al. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. EnvironmentalPollution, 2005, 138: 34-45
    [42] Ford RC, Saprks DL. The nature of Zn precipitates formed in the presence of pyrophyllite. Environmental Science and Technology, 2000, 34: 2479-2483
    [43] Matusik J, Bajda T, Manecki M. Immobilization of aqueous cadmium by addition of phosphates. Journal of Hazardous Materials, 2007, 152: 1332-1339
    [44] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review. Waste Management, 2008, 28: 215-225
    [45] Luo L, Zhang SZ, Shan XQ, et al. Arsenate sorption on two Chinese red soils evaluated using macroscopic measurements and EXAFS spectroscopy. Environmental Toxicology and Chemistry, 2006, 25: 3118-3124
    [46] Garcia-Sanchez A, Alvarez-Ayuso E, Rodriguez-Martin F. Sorption of As(V) by some oxyhydroxides and clay minerals. Application to its immobilisation in two polluted mining soils. Clay Minerals, 2002, 37(1): 187-194
    [47] Karlsson T, Elgh-Dalgren K, Bj?rn E, et al. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil. Geochimica et Cosmochimica Acta, 2007, 71: 604-614
    [48] Madrid F, Romero AS, Madrid L, et al. Reduction of availability of trace metals in urban soils using inorganic amendments. Environmental Geochemistry and Health, 2006, 28: 365-373
    [49] Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 2005, 60: 365-371
    [50] Lombi E, Zhao FJ, Zhang G, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution, 2002, 118: 435-443
    [51] Illera V, Garrido F, Serrano S, et al. Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime- rich industrial by-products. European Journal of Soil Science, 2004, 55: 135-145
    [52] Cao RX, Ma LQ, Chen M, et al. Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution, 2003, 122: 19-28
    [53] Arias M, Barral MT, Mejuto JC. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere, 2002, 48 (10): 1081-1088
    [54] Karlsson T, Elgh-Dalgren K, Bj?rn E, et al. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil. Geochimica et Cosmochimica Acta, 2007, 71: 604-614
    [55] Wang F-Y (王发园), Lin X-G (林先贵). Hotpots in arbuscular mycorrhiza-assisted phytoremediation of heavy metal-contaminated soils. Ecology and Environment (生态环境). 2006, 15(5): 1086-1090 (in Chinese)
    [56] Leupin OX, Hug SJ. Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research, 2005, 39: 1729-1740
    [57] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review. Waste Management, 2008, 28: 215-225
    [58] Xu YH, Zhao DY. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 2007, 41: 2101-2108
    [59] Van Roy S, Vanbroekhoven K, Dejonghe W, et al. Immobilization of heavy metals in the saturated zone by sorption and in situ bioprecipitation processes. Hydrometallurgy, 2006, 83: 195-203
    [60] Vanbroekhoven K, Van Roy S, Gielen C, et al. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone. Environmental Pollution, 2007, 148: 759-769
    [61] Hamon RE, McLaughlin MJ, Cozen G. Mechanisms of Attenuation of Metal Availability in In Situ Remediation Treatments. Environmental Science and Technology, 2002, 36: 3991-3996
    [62] Zhu YG, Christie P, Laidlaw AS. Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere, 2001, 42: 193-199
    [63] Guo G-L (郭观林), Zhou Q-X (周启星), Li X-Y (李秀颖). Advances in research on in situ chemo-immobilization of heavy metals in contaminated soils. Chinese Journal of Applied Ecology (应用生态学报), 2005, 16(10): 1990-1996 (in Chinese)
    [64] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review. Waste Management, 2008, 28: 215-225
    [65] Guo GL, Zhou QX, Ma LQ. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environmental Monitoring and Assessment, 2006, 116: 513-528
    [66] Zhu YG, Chen SB, Yang JC. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environmental International, 2004, 30: 351-356
    [67] Chen SB, Zhu YG, Ma YB. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials B, 2006,134: 74-79
    [68] Brown S, Chaney RL, Hallfrish JG, et al. In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc and cadmium. Journal of Environmental Quality, 2004, 33: 522-531
    [69] Jiao Y, Grant CA, Bailey LD. Effects of phosphorus and zinc fertiliser on cadmium uptake and distribution in flax and durum wheat. Journal of the Science of Food and Agriculture, 2004, 84: 777-785
    [70] Luo L, Zhang SZ, Shan XQ, et al. Arsenate sorption on two Chinese red soils evaluated using macroscopic measurements and EXAFS spectroscopy. Environmental Toxicology and Chemistry, 2006, 25: 3118-3124
    [71] Garcia-Sanchez A, Alvarez-Ayuso E, Rodriguez-Martin F. Sorption of As(V) by some oxyhydroxides and clay minerals. Application to its immobilisation in two polluted mining soils. Clay Minerals, 2002, 37(1): 187-194
    [72] Lombi E, Zhao FJ, Zhang G, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution, 2002, 118: 435-443
    [73] Lombi E, Zhao FJ, Wieshammer G, et al. In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution, 2002, 118: 445-452
    [74] Santona L, Castaldi P, Melis P. Evaluation of the interaction mechanisms between red muds and heavy metals. Journal of Hazardous Materials B, 2006, 136: 324-329
    [75] Liu Y, Lin C, Wu Y. Characterization of red mud derived from a combined Bayer Process and bauxite calcinations method. Journal of Hazardous Materials, 2007, 146: 255-261
    [76] Waychunas GA, Kim CS, Banfield JF. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. Journal of Nanoparticle Research, 2005, 7: 409-433
    [77] Chen SB, Zhu YG, Ma YB. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials B, 2006, 134: 74-79
    [78] Xu YH, Zhao DY. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 2007, 41: 2101-2108
    [79] Liu RQ, Zhao DY. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate. Water Research, 2007, 41: 2491-2502
    [80] O’Dell R, Silk W, Green P, et al. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.). Environmental Pollution,2006, 148: 115-124
    [81] McLaughlin MJ, Singh BR. Cadmium in soils and plants. Dordrecht: Kluwer Academic Publishers, 1999.
    [82] Brown S, Chaney RL, Hallfrisch JG, et al. Effects of Biosolids Processing on lead bioavailability in an urban soil. Journal of Environmental Quality, 2003, 32: 100-108
    [83] Hashimoto Y, Matsufuru H, Sato T. Attenuation of lead leaching in shooting range soils using poultry waste amendments in combination with indigenous plant species. Chemosphere, 2008, 73: 643-649
    [84] Zhang L-Y (张亚丽), Shen Q-R (沈其荣), Jiang Y (姜洋). Effects of organic manure on the amelioration of Cd-polluted soil. Acta Pedologica Sinica (土壤学报), 2001, 38(2): 212-218 (in Chinese)
    [85] Matusik J, Bajda T, Manecki M. Immobilization of aqueous cadmium by addition of phosphates. Journal of Hazardous Materials, 2007, 152: 1332-1339
    [86] Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 2005, 60: 365-371
    [87] Cao X, Ma LQ. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution, 2004, 132: 435-442
    [88] Van Herwijnen R, Hutchings TR, Al-Tabbaa A, et al. Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 270, 150: 347-354
    [89] Brown SL, Henry CL, Chaney RL, et al. Using municipal biosolids in combination with other residuals to restore metal-contaminated mining area’s. Plant and Soil, 2003, 249: 203-215
    [90] Van Roy S, Vanbroekhoven K, Dejonghe W, et al. Immobilization of heavy metals in the saturated zone by sorption and in situ bioprecipitation processes. Hydrometallurgy, 2006, 83: 195-203
    [91] Tiwari S, Kumari B, Singh SN. Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresource Technology, 2008, 99: 1305-1310
    [92] Vanbroekhoven K, Van Roy S, Gielen C, et al. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone. Environmental Pollution, 2007, 148: 759-769
    [93] Wang F-Y (王发园), Lin X-G (林先贵). Hotpots in arbuscular mycorrhiza-assisted phytoremediation of heavy metal-contaminated soils. Ecology and Environment (生态环境). 2006, 15(5): 1086-1090 (in Chinese)
    [94] Zhu YG, Christie P, Laidlaw AS. Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere, 2001, 42: 193-199
    [95] JanouskováM, PavlíkováD, Vosátka M. Potential contribution of arbuscular mycorrhiza to cadmium immobilization in soil. Chemosphere, 2006, 65: 1959-1965
    [96] Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 2005, 60: 365-371
    [97] Wang YM, Chen TC, Yeh KJ, et al. Stabilization of an elevated heavy metal contaminated site. Journal of Hazardous Materials B, 2001, 88: 63-74
    [98] Cao RX, Ma LQ, Chen M, et al. Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution, 2003, 122: 19-28
    [99] Ruttens A, Mench M, Colpaert JV, et al. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environmental Pollution, 2006, 144: 524-532
    [100] Basta NT, McGowen SL. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter contaminated soil. Environmental Pollution, 2004, 127 (1): 73-82
    [101] Geebelen W, Vangronsveld J, Adriano DC, et al. Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies. Water, Air, and Soil Pollution, 2002, 140: 261-277
    [102] Vangronsveld J, Ruttens A, Mench M, et al. In situ inactivation and phytoremediation of metal- and metalloid-contaminated soils: field experiments. In: Wise DL, Trantolo DJ, Cichon EJ, et al. Bioremediation of Contaminated Soils (2nd edition). New York: Marcel Dekker Inc, 2000, 859-884
    [103] Geebelen W, Adriano DC, van der Lelie D, et al. Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant and Soil, 2003, 249: 217-228
    [104] Raicevic S, Kaludjerovic-Radoicic T, Zouboulis AI. In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimentalverification. Journal of Hazardous Materials B, 2005, 117: 41-53
    [105] Van Roy S, Vanbroekhoven K, Dejonghe W, et al. Immobilization of heavy metals in the saturated zone by sorption and in situ bioprecipitation processes. Hydrometallurgy, 2006, 83: 195-203
    [106] Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 2005, 60: 365-371
    [107] Madrid F, Diaz-Barrientos E, Florido MC. Inorganic amendments to decrease metal availability in soils of recreational urban areas: limitations to their efficiency and possible drawbacks. Water, Air, and Soil Pollution, 2008, 192: 117-125
    [108] Zhang YS, Sun W, Chen QL, et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 2007, 143: 206-213
    [109] Lombi E, Zhao FJ, Zhang G, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution, 2002, 118: 435-443
    [110] Xu YH, Zhao DY. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 2007, 41: 2101-2108
    [111] Wu F-B (邬飞波), Zhang G-P (张国平). Phytochelatin and its function in heavy metal tolerance of higher plants. Chinese Journal of Applied Ecology (应用生态学报), 2003, 14(4): 632-636 (in Chinese)
    [112] Zhou J-W (周建伟). Study on adsorption mechanism of metal ions on sulfhydryl-peat. Chemical World (化工世界), 2002, 43(2): 59-61 (in Chinese)
    [113] Lagadic IL, Mitchell MK, Payne BD. Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay. Environmental Science Technology, 2001, 35: 984-990
    [114] Montinaro S, Concas A, Pisu M, et al. Remediation of heavy metals contaminated soils by ball milling. Chemosphere, 2007, 67: 631-639
    [115] Yuan C, Jiang G, Liang k, et al. Sequential extraction of some heavy metal in Haihe River sediments. People’s Republic of China.Bull Environ Contam Toxicol, 2004,73: 59-66.
    [116] Diels L, Lelie N, Bastiaens L. New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Bio/Technol, 2002,1: 75-82.
    [117] Vangronsveld J, Colpaert J, Van Tichelen K. Reclamation of a bare industrial areacontaminated by non-ferrous metals: Physicochemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut, 1995,4: 31-40.
    [118] Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environment, 2004, 30: 351-356.
    [119] Chen S B, Zhu Y G, Ma Y B. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. J Hazard Mater B, 2006, 134: 74-79.
    [120] Brown S L, Chaney R L, Hallfrish J G, et al. In situ soil treatments to reduce the bioavailability of lead, zinc and cadmium. J Environ Qual, 2004, 33: 522-531.
    [121] Jiao Y, Grant C A, Bailey L D. Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat. J Sci Food Agric, 2004, 84: 777-785.
    [122]陈宏,陈玉成,杨学春.石灰对土壤中Hg, Cd, Pb的植物可利用性的调控研究.农业环境科学学报, 2003,22(5): 549-552.
    [123]杜彩艳,祖艳群,李元.施用石灰对大白菜中Cd, Pb, Zn含量的影响.云南农业大学学报, 2005, 20(6): 810-812.
    [124]李瑞美,方玲,王果,等.重金属污染土壤的有机-中性化修复技术试验.福建农业学报, 2004,19(1): 50-53.
    [125]赵小虎,刘文清,张冲等.蔬菜种植前施用石灰对土壤中有效态重金属含量的影响.广东农业科学, 2007,(7): 47-49.
    [126] Lombi E, Zhao F J, Zhang G, Sun B, Fitz W, Zhang H,et al. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut, 2002, 118: 435-443.
    [127] Lombi E, Zhao F J, Wieshammer G, Zhang G, et al. In situ fixation of metals in soils using bauxite residue: biological effects. Environ Pollut, 2002, 118: 445-452.
    [128] Santona L, Castaldi P, Melis P. Evaluation of the interaction mechanisms between red mud and heavy metals. J Hazard Mater B, 2006, 136: 324-329.
    [129] Brown S, Chaney R L, Hallfrisch J G, et al. Effects of Biosolids Processing on lead bioavailability in an urban soil. J Environ Qual, 2003, 32: 100-108.
    [130] Ruttens A, Mench M, Colpaert J V, et al. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut, 2006,144: 524-532.
    [131] Hashimoto Y, Matsufuru H, Sato T. Attenuation of lead leaching in shooting range soils using poultry waste amendments in combination with indigenous plant species. Chemosphere, dio:10.1016/j.Chemosphere.2008.07.033.
    [132] Zhang L Y, Shen Q R, Jiang Y. Effects of organic manure on the amelioration of Cd-polluted soil. Acta Pedologica Sinica, 2001, 38(2): 212-218.
    [133] Singh B R, Myhr K. Cadmium uptake by barley from different Cd sources at two pH levels. Geoderma, 1998, 84: 185-194.
    [134]成占生,马文进.关于目前秸秆利用的研究与探讨[J].经济工作导刊, 2001, (1):33-34.
    [135]陈翠微,刘长江.农作物秸秆在生态农业中的综合应用[J].中国农业科技导报.2000, 2(5):45-48
    [136]沈善敏.土壤科学与农业持续发展[J].土壤学报, 1994,16(5):237-239.
    [137]马光庭.生态有机肥与农业可持续发展[J].生态环境, 2004, 12(3):191-193.
    [138]杨宇民,邵健.巯基甲壳质的制备及其对重金属离子的吸附研究.南通医学院学报, 1999,19(2): 168-182.
    [139]石新城.用粉煤灰、赤泥研制烧结空心砖.粉煤灰综合利用,1998,4,32-33.
    [140]颜祖兴.水泥赤泥混凝土开发应用研究.混凝土, 2000, 10:18-20.
    [141]张培新,阎加强.赤泥制作瓷质砖黑色颗粒料的研究,矿产综合利用, 2000, 3:41 -43.
    [142]付毅.固化赤泥制备高等级道路材料技术试验研究.有色金属, 2001, 53(2), 10-13.
    [143]李国昌,王萍,张秀英,等.赤泥对聚氯乙烯软膜透光率的影响.非金属矿, 2001, 24(4):28-30.
    [144]何波.关于回收赤泥中铁的研究现状.轻金属, 1996, 12:23-26.
    [145]张培新,林荣毅,阎加强.赤泥微晶玻璃的研究.有色金属, 2000, 52(4): 77 -79.
    [146]蔡德龙,钱发军,邓挺,等.硅肥对花生增产作用试验研究, 1995, 14(4):48– 51.
    [147]归风铁.天然沸石的改性及其对造纸废水的脱色研究.非金属矿. 2003, 26(1): 54-55.
    [148]李爱阳,褚宏伟.改性斜发沸石处理电镀废水中的重金属离子.材料保护, 2004, 37(6): 37-39.
    [149] Spark D. L. Methods of soil analysis. Part 3: chemical methods. Madison: SSSA and ASA. 1996.703-919.
    [150]王虹,崔桂霞.用氯化钡缓冲液法测定土壤阳离子交换量.土壤, 1989,21(1):49-51.
    [151] Lombi E, Zhao F J, Zhang G, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut, 2002, 118: 435-443.
    [152] Lombi E, Zhao F J, Wieshammer G, et al. In situ fixation of metals in soils using bauxite residue: biological effects. Environ Pollut, 2002, 118: 445-452.
    [153] Hrustioger S C. Phytochelatins and their roles in heavy metal detoxification [J]. Plant Physiology, 2000, 123: 25-32.
    [154]郑屏,盛旋.天然大蒜油及合成大蒜素的气相色谱-质谱分析.分析化学研究简报, 2005, 9(33): 1321-1323.
    [155]梁斌,杨锐.大蒜油的提取方法及其研究进展.固原师专学报(自然科学版), 2002, 23(3): 28-30.
    [156]姜瑛楠,冯保民,张海燕,等.大蒜植物络合素合酶基因转化对酵母重金属抗性的提高.植物生态学报, 2005,29(4): 659-664.
    [157]刘松忠,陈清,高莉敏,等.固相微萃取-气相色谱-质谱法分析中国葱中的挥发性成分.质谱学报, 2008,29(2): 88-92.
    [158]滕淳茜,孟赐福,吴崇书,等.油菜硫素营养和施硫效应的研究进展.浙江农业学报, 2004, 16(3): 172-176.
    [159]李锋,张春雷,李光明.油菜硫苷组分含量及抑菌活性研究.武汉植物学研究, 2006, 24(4): 351-353.
    [160]孙新,杨志敏,徐朗莱.缺硫条件下油菜对镉毒害的敏感性.南京农业大学学报, 2003,26(4): 56-59.
    [161]郑立臣,解宏图,张威,等.秸秆不同还田方式对土壤中溶解性有机碳的影响.生态环境, 2006,15(1): 80-83.
    [162]王果,李建超,杨佩玉,等.有机物料影响下土壤溶液中镉形态及其有效性研究.环境科学学报, 2000,20(5) : 621-626.
    [163] Lee S Z. Predicting Soil-Water Partition Coefficients for Cadmium. Environ & Technol, 1996, 30(12): 34l8-3424.
    [164] WANG Haitao, ZHU Kun, WEI Xiang, et al. Desomtion enhancement of diesel byhumic sodium and surfactants in loess soil. Journal of Safety and Environment, 2004,4(4): 52-55.
    [165]王旭东,关文经,陈多仁.纯有机物料腐解形成腐殖物质性质的动态变化.西北农林科技大学学报, 2001,29(5): 88-91.
    [166]陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报, 1998,4(3): 20l-2l0.
    [167] Zarcinas B A, Cartwright B, Spouncer, L R. Nitric acid digestion and multielement analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal, 1983, 18(1):131-146.
    [168]霍晓婷,王文亮.土壤有机质含量测定方法改进的研究.河南农业大学学报, 1998, 1:36-42.
    [169]解占军,王秀娟,牛世伟,等.沸石与改性沸石在土壤质量改良中的应用研究进展.杂粮作物, 2006, 26(2):142-144.
    [170]郝秀珍,周东美.沸石在土壤改良中的应用研究进展[J].土壤,2003, 2:48-52.
    [171]李华兴,李长洪,张新明,等.天然沸石对土壤保肥性能的影响研究[J];应用生态学报; 2001, 2: 237-240.
    [172]梁称福,陈法正.我国无公害蔬菜生产现状与发展对策[J].中国农业网, 2000, 5, 1.
    [173] A Tessier, P G C Compbell, M Bisson. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51, 7:844-850.
    [174] Gambrell R P. Trace and Toxic Metals in Wetland-A Review. Journal of Environ ment Quality, 1994, (23):883-819.
    [175] Sauman L. M.Fractionation Method for Soil Microelements.Soil Science, 1985, (140):11-22
    [176] A Fernández Alborés, B Pérez Cid, E Fernández Gómez, et al. Comparison between Sequential extraction Procedures and Single Extractions for Metal Partitioning in Sew -age Sludge Samples. Analyst, 2000, (125):1353-1357.
    [177] Ma Y B, Uren N C.Application of a new fractionation scheme for heavy metals in soils [J].Communication in Soil Science and Plant Analysis. 1997,26: 329l - 3303.
    [178] Baham J, Sposito G. Chemistry of water soluble, metal complexing ligands extr acted from an anerobically digested sewage sludge[J]. Environ Qual, 1983, 12 (1):96-100.
    [179] Zhou L X, Wong J W C. Effect of dissolved organic matter from sludge compost onsoil copper sorption [J]. Environ Qual, 2001, 30: 878-883.
    [180]陈同斌,陈志军.土壤中水溶性有机质及其对重金属化学与生物行为的影响.应用生态学报, 2002, 2(2):183-186.
    [181]于天仁.土壤化学原理.北京:北京科学技术出版社,1987,387.
    [182]莫尔维德特J J,林赛W J.农业中的微量元素北京:中国农业出版社, 1984 , 61-85.
    [183]张亚丽,其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报, 2001,3 8(2):212-218.
    [184] Phillips I R. The use of soil amendments to reduce nitrogen phosphorus and heavy metal availability[J]. J Soil Contam, 1998, 7 (2) : 191-212.
    [185] Ando H, Mihara C. The fate of ammonium nitrogen app lied to flooded rice as affected by zeolite addition [J]. Soil Sci, 1996, 42: 531-538.
    [186]关连珠,梁成华,金耀青,等.天然沸石保氮供氮能力及其机制的研究[J].土壤通报, 1990 (2) : 71-75.
    [187]姜淳,周恩湘,霍习良,等.沸石改土保肥及增产效果的研究[J].河北农业大学学报, 1993, 16 (4) :48-52.
    [188]王莉玮,陈玉成,董姗燕.表面活性剂与螯合剂对植物吸收Cd及Cu的影响.西南农业大学学报, 2004, 26(6):745-749.
    [189]樊小林,赵善伯,姚文平,等.西安浐河工厂区农田土壤和植物中微量元素的初步研究.土通通报, 1991,22(6):272-273.
    [190]汪雅谷,王玮.上海地区主要蔬菜中重金属元素含量背景水平.农业环境保护, 1994, 13( 1):34-39.
    [191]郑小林,唐纯良,许瑞明,等.湛江市郊区蔬菜的重金属含量检测与评价[J].农业环境与发展, 2004, 2: 34-23.
    [192]盂昭福,张增强,张一平,等.几种污泥中重金属生物有效性及其影响因素的研究[J].农业环境科学学报, 2004, 23(1):115-118.
    [193]王新,周启星.外源镉铅铜锌在土壤中形态分布特性及改性剂的影响.农业环境科学学报, 2003, 22(5):541-545.
    [194]王孝堂.土壤酸度对重金属形态分配的影响.土壤学报,1991,28(1):103-107.
    [195] Bolan N S, Naidu R, Syem J K, et a1.Surface charge and solute interactions in soils[J]. Advances in Agronomy, 1999. 67:88-141.
    [196] Naidu R, Kookana R S, Sumner M E, et a1.Cadmium sorption and transport in variable charge soils:A review[J].Journal of Environmental Quality, 1997, 26:602-617.
    [197] Wagner G J.Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron, 1993, l: 173-212.
    [198] Alloway B.Heavy Metals in Soil.London:Blackie Academic Professional. 1995, 368
    [199] Thomet U,Vogel E,Krahenbuhl U.The uptake of cadmium and zinc by mycelia and their accumulation in mycelia and fruiting bodies of edible mushrooms. Eur Food Res Technol, 1999, 20,9:317-324.
    [200] Herrren T, Feller U. Transport of cadmium via xylem and phloem in maturing wheat shoots: Comparison with the translocation of zinc, strontium and rubidium. Annals of Botany, 1997, 80:623-628
    [201] Chakravarty B, Srivastava S. Effeet of cadmium and zinc interaction on metal uptake and regeneration of tolerant plants in linseed. Agriculture Ecosystems and Environment, l997, 61:45-50
    [202] Hill C, Matrone G. Chemical parameters in the study of in vivo and in vitro interactions of transition elements. Fed Proc, 1970,29(4):1474-1481.
    [203]侯晨霞.一种碱石灰烧结法赤泥的X射线衍射特征探讨[J].轻金属, 2001, 6, 30-33.
    [204]曲永新,关文章,张永双,等.炼铝工业固体废料(赤泥)的物质组成与工程特性及其防治利用研究[J].工程地质报, 2000, 8(3), 276-275.
    [205]景英仁,景英勤,杨奇.赤泥的基本性质及其工程特性[J].轻金属, 2001, 4:20-23.
    [206]梁华.赤泥利用的近期研究动态[J].世界有色金属, 1999, 3:32-34.
    [207] Langmuir I.The constitution and fundamental properties of solids and liquids.J Am Chem Soc, 1916, 38:2221-2295.
    [208] Freundlich H M F.Uber die adsorption in lasungen.Z Phys Chem,1906, 57:385-470.
    [209] Low M J D .Kineties of chemisorption of gasas on solids. Chem Rev, 1960, 60: 26 5-312.
    [210] Apak R., Tutem E., Hugul M., Hizal J. 1998. Heavy metal cation retention by unconventional sorbents (red mud and fly ashes). Water Res. 32(2), 430-440.
    [211] Santona L., Castaldi P., Melis P. 2006. Evaluation of the interaction mechanisms between red muds and heavy metals. J. Hazard. Mater. B136: 324-329.
    [212]于乾.天然沸石焙烧的研究.中国非金属矿工业导刊, 2006, 3:44-49.
    [213] Spark D. L. 1996. Methods of soil analysis. Part 3: chemical methods. Madison: SSSA and ASA. pp 703-919.
    [214] Basta N.T., Gradwohl R. 2000. Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure. J. Soil Contam. 9, 149-164.
    [215] Bowma R S,O’Coner G A.Control of nickel and Sr sorption by free metal ion activity. Soil Sci Soc Am J, 1982, 46:933-936.
    [216] Arai Y., Sparks D.L., Davis J.A. 2005. Arsenate adsorption mechanisms at the allophane-water interface. Environ. Sci. Technol. 39: 2537-2544.
    [217] Apak R, Tutem E, Hugul M, et al. Heavy metal cation retention by unconventional sorbents (red mud and fly ashes). Water Res. 199832(2), 430-440.
    [218] Angove M.J., Johnson B.B., Wells J.D. 1997. Adsorption of cadmium (II) on kaolinite. Colloids Surfaces A: Physicochem. Eng. Aspects 126, 137-147.
    [219]李伟.铜、镉在磷酸根改性赤铁矿和针铁矿的吸附行为.中国科学院硕士学位论文, 2006..
    [220] Swallow K C,Hume D N,Moril M M F.Sorption of copper and lead by hydrous ferric oxide. Environ Sci Technol, 1980, 14(11):1326-1331.
    [221] Hu G S. Adsorption kinetics of Pb and Cu on variable charge soils and minerals: V, The effect of temperature and ionic strength.Pedoshere, 1994, 4:153-164.
    [222] Davics Colley R J, Nelson P O, Williamson K J. Copper and cadmium uptake by estuarine sedimentary phases. Environ Sci Technol, 1984, 18(7):491-499.
    [223]张正斌,姬泓巍,刘莲生.界面分级离子/配位子交换-静电交换的复合模型-离子强度对海水中微量金属-固体粒子相互作用的影响.中国科学(B缉),1992, 2:113-121.
    [224] Hayes K F,Leckie J O.Modeling ionic-strength effects on cation adsorption at hydrous oxide-solution interfaces. J Colloid Interface Sci, 1987,115(2):564-572.
    [225] McLaughlin M.J., Singh B.R. Cadmium in soils and plants. Kluwer Academic Publishers: Dordrecht, The Netherlands ,1999.
    [226] He X.T., Logan T.J., Traina S.J. 1995. Physical and chemical characteristics of selected U.S. municipal solid waste composts. J. Environ. Qual. 24, 543-552.
    [227] Murray J W. The surface chemistry of hydrous manganese dioxide. J Colloid Interface Sci, 1974, 46(3):357-371.
    [228] Randall S R,Sherman D M,Raganarsdottir K V.An extended X-ray Adsorption FineStructure Spectroscopy investigation of cadmium sorption on cryptomelane. Chemical Geology, 1998, 151(1-4):95-106.
    [229] Aksu Z.Determination of the equilibrium kinetic and thermodynamic parameters of the batch biosorption of lead(II)ions onto Chlorella vulgaris.Process Biochem, 2002, 38 (1):89-99.
    [230] Sparks D L.Potassium dynamics in soil.In:Steward B A,ed.Advances in Soil Science.New York:Springer-Verlage New York.Inc,1987,61-63.
    [231] Lorenc, Grabowska E, Gryglewicz G..Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons.J Colloid Interface Sci, 2005, 284(2):416-423.
    [232] O’Day P.A, Parks G.A., Brown Jr. G.E. 1994. Molecular structure and binding site of cobalt (II) surface complexes on kaolinite from X-ray absorption spectros -copy. Clays Clay Minerals 42: 337-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700