行星际磁通量绳结构研究与激波渡越时间预报方法分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对日地物理过程、空间天气预报的相关概念进行了综述,然后重点介绍了行星际磁通量绳结构的观测研究结果。主要研究成果包括发展了一个磁通量绳轴向推断的新方法;证认了两个具有典型等离子体场向剩余流结构的磁云事件,提出了磁云结构中等离子体惯性效应的概念。此外,利用太阳瞬变事件的观测资料,对行星际激波传播模型(原SPM )在行星际激波波达时间(SAT)预报中的应用进行了研究,通过观测资料和预报结果的分类统计分析掌握了原SPM的SAT预报误差特性,提出了该模型在预报应用中的改进方向。
     (1)发展了一个磁通量绳轴向推断的新方法。利用行星际磁通量绳模型存在不同场线不变量的几何性质,我们提出了新的残差定义,用来测量通量绳轴向推断结果与真实轴向之间的偏差,并在此基础上发展了一个残差最小化(MR)方法,用于通过单飞船观测资料推断行星际通量绳结构的轴向。利用通量绳解析模型输出的数据,加上“趋势噪音”得到行星际磁通量绳的单飞船观测模拟数据,对残差最小化方法进行基准测式。结果显示:新方法可以应用于实际观测数据的分析;相应的轴向推断结果在数据采样路径离磁通量绳轴线最短距离不太大,噪音水平不太高的情况下可以接受。与传统磁通量绳轴向推断方法相比,新方法的轴向推断结果在精度上有所提高。新方法还成功地应用于由WIND飞船观测到的一个典型磁云事件的轴向分析,通过不同磁通量绳模型得到的结果对比发现:模型越精细,结果越好。表明在磁云轴向推断中,适当地采用复杂度较高的模型有利于改善轴向推断结果的精度。
     (2)证认了两个具有典型场向剩余流结构的磁云事件。利用WIND飞船的观测资料,我们通过MR分析得到磁云结构的轴向,通过deHo?man-Teller(HT)分析得到两个磁云事件HT速度,最后建立了磁云的自然坐标系。在此坐标系中详细地分析了磁云共行参照系下,等离子体剩余流与磁场之间的关系,结果发现两个磁云结构中的等离子体剩余流与磁场之间均保持反向平行的关系。基于磁云磁场的螺旋结构特征,我们提出:这两个磁云事件中发现的场向剩余流结构可能是磁云结构内的一种大尺度磁流体拟序涡结构。随后对两个磁云事件的动力学、热力学特性质进行分析,发现:(a)在低速背景太阳风中运动的磁云结构具有膨胀磁云的特征,而在高速背景太阳风中运动的磁云结构则不具有典型膨胀磁云的特征;(b)两个磁云结构中,质子的热力学行为近乎为等温过程;(c)两个磁云结构在1 AU附近表现出随背景太阳风对流运动的特征;(d)在磁云共行参照系中,两个磁云事件中等离子体场向剩余流的动压与磁压之比均超过热压与磁压之比,表明等离子体场向剩余流的动力学效应在磁场结构演化过程中的作用要比等离子体热压更重要。这一研究工作也显示出等离子体剩余流的惯性效应在磁通量绳结构的生成、演化与传播等物理问题的研究中有潜在价值。
     (3)采用分类统计分析方法研究了原激波传播模型的行星际激波波达时间预报的性能。基于点源爆炸波理论的激波传播模型(SPM)已经在行星际激波波达时间(SAT) (也称作渡越时间:Shock Transit Time)预报中得到应用。和其它半经验半物理预报模型一样,激波传播模型在应用中存在哪些问题,需要作什么样的改进?围绕着这些问题,我们利用原SPM模型的内蕴渡越时间上极限性质对其SAT预报性能进行了分类统计分析。统计结果显示:(I)激波能量的估计误差并不是SAT预报误差的唯一来源,因此我们不能指望仅通过提高激波能量估算精度就能大幅度提高SAT预报的质量;(II) SPM模型在SAT预报应用中存在系统性误差,特别是对强激波在低速背景太阳风中传播以及能量相对较低的激波在高速背景太阳风中传播时,系统性误差明显。随后针对原SPM模型的这些误差特性,我们从模型的数学基础、行星际激波的磁场位形、激波的非对称性传播、激波驱动机制等不同的角度对预报误差特性进行了解释,同时指出了原SPM模型在SAT预报应用中改进方向。基于统计分析的结,果我们对原SPM模型进行简单地修订,剔除了分类结果中SAT预报误差的趋势性,并应用修订后的SPM模型进行预报试验,结果显预报精度有明显的改善。这说明SPM模型仍有改进空间,值得进一步发展。
In this dissertation, attentions are paid to the observational study on In-terplanetary Flux Ropes (IFRs) after review of the solar-terrestrial physics andthe associated concepts for space weather forecasting. A new Minimum Residue(MR) method is proposed for the axial orientation inferring of the IFRs. Twomagnetic cloud (MC) events with the field-aligned residual ?ows are identifiedand the inertial e?ects due to the plasma inside the magnetic clouds are alsohighlighted in this dissertation. Additionally, theories about the blast-wave-propagation from a point source in a moving, steady-state, medium with variabledensity are applied to the Shock Arrival Time (SAT) forecasting with the ShockPropagation Model (SPM). A statistical analysis on the forecasting capability ispresented in this dissertation. Ways of further development of the original SPMare discussed and we highlight the potential value of the non-similarity-theory-based SPM in application to the SAT forecasting.
     There are many 2 D models that can be used to describe the structure ofthe IFRs, such as the force-free model, the non-force-free model, and the inertialmodel. For each model, one or multiple field line invariants exist. We introducea new definition of the quantity, residue, based on all field line invariants of aspecified ?ux rope model to measure the de?ection between the assumed axisand the true ?ux rope axis. Then, a new MR method is proposed to infer theaxial orientation of IFR with the observational data from a single spacecraft.For an arbitrarily assumed ?ux rope axis, the natural coordinate system can beconstructed, then a magnetic ?ux function, A, and each invariant of the specified?ux rope model can also be concurrently calculated under this coordinate system.The direction corresponding to the minimum residue is expected to be the realaxial orientation. In previous study, the residue was first defined with A and asingle invariant Pt of a static equilibrium ?ux rope model. Here, the new MRmethod is tested with simulated magnetic cloud (MC) data sets constructed fromthe analytical model outputs of two di?erent ?ux rope models with“trend noise” added. It shows that the new MR method is applicable in real case analysis andthe inferring results are acceptable for cases with small closest approach distanceand proper noise level. Compared with results from traditional methods, accu-racy of the inferred axial orientation is improved by the new method. The newMR method is also applied to a typical in-situ event observed by WIND space-craft. The comparison of the inferring results from di?erent models indicate thatapplication of a more accurate ?ux rope model is useful for inferring techniques.
     Two MC events observed by WIND spacecraft are identified that there aregood examples of field-aligned residual ?ow inside those MC structures. Forboth events, the co-moving frames are determined through the deHo?man-Teller(HT) analysis and the axial orientations are inferred by the newly developedminimal residue (MR) method. The nature coordinate system for both eventsare constructed with velocity of the HT frame and the inferred MC axis, the fieldand ?ow remaining in the HT frame are analyzed at this coordinate system. As aresult, we find that the residual ?ows in the co-moving HT frame of the two MCevents are almost anti-parallel to the helical magnetic field. We speculate thatthe field-aligned residual ?ows are large scale coherent hydrodynamic vortices co-moving with the MCs at the supersonic speed near 1 AU. Data analyses show thatthe event in slow ambient solar wind is expanding at 1 AU and another one in fastsolar wind does not show apparent expansion. Proton behaviors for both eventsare quasi-isothermal. Accelerated HT analysis shows that both events have nosuitable HT frame with constant accelerations, which suggests that both eventsmay be moving at the constant speed near 1 AU under the assumptions of theHT analysis. For both events, the ratio of the dynamic pressure to the magneticpressure is larger than that of the thermal pressure to magnetic pressure, whichsuggests that the dynamic e?ects due to the plasma ?ows remaining in the co-moving HT frame are more important than the thermal e?ects in the study ofMC evolution and propagation.
     Methods to improve the predictions of SAT of the original SPM are inves-tigated in the last portion of this dissertation. According to the classical blastwave theory adopted in the SPM, the shock propagating speed is determinedby the total energy of the original explosion together with the background solar wind speed. Noting that there exists an intrinsic limit to the transit times com-puted by the SPM predictions for a specified ambient solar wind, we present astatistical analysis on the forecasting capability of the SPM using this intrinsicproperty. Two facts about SPM are found: (1) the error in shock energy estima-tion is not the only cause of the prediction errors and we should not expect thatthe accuracy of SPM to be improved drastically by an exact shock energy in-put; (2) there are systematic di?erences in prediction results both for the strongshocks propagating into a slow ambient solar wind and for the weak shocks intoa fast medium. Statistical analyses indicate the physical details of shock prop-agation and thus clearly point out directions of the future improvement of theSPM. A simple modification is presented here, which shows that there is roomfor improvement of SPM and thus that the original SPM is worthy of furtherdevelopment.
引文
涂传诒,等(1988),日地空间物理学,科学出版社
    林元章(2000),太阳物理导论,科学出版社
    章振大(2000),日冕物理,科学出版社
    甘为群,王德焴 (2002),太阳高能物理,科学出版社
    焦维新(2003),空间天气学,气象出版社
    刘振兴,等(2004),太空物理学,哈尔滨工业大学出版社
    王水(2000),日冕物质抛射,天文学进展, 18, 192–208.
    丁明德,太阳耀斑研究进展与展望,天文学进展, 19, 141-145.
    魏奉思(1987),关于耀斑-激波非对称传播的统计研究,中国科学A辑, 2, 186–193.
    魏奉思,朱志文(1999),空间天气,科学杂志,第5期, 30–33.
    魏奉思(2000),空间天气学的基本问题,中国基础科学,第7期, 9–13.
    方成(2006),走进我们生活的新学科—空间天气学,自然杂志, 28卷第4期,194–198.
    汪毓明(2003),行星际磁云及其相关事件的综合研究,中国科学技术大学博士论文,合肥.
    左平兵,李汇军,赵新华(2007),十大空间天气灾害性事件,中国空间天气协会宣传材料.
    Achwanden M. J. (2003), Physics of t he Solar Corona, Praxis UK: Springer.
    Brekke, A. (1997), Physics of the Upper Polar Atmosphere, Wiley-Praxis Seriesin Atmospheric Physics, Jonh Wiley and Sons, New York, and Praxis Publica-tion.
    Burlaga, L. F. (1995), Interplanetary magnetohydrodynamics, Oxford UniversityPress, New York.
    Courant, R. and K. O. Friedrichs (1948), Supersonic ?ow and shock waves, Wiley(Interscience), New York.
    Hundhausen, A. J. (1972), Coronal expansion and solar wind, Springer, NewYork.
    Sedov, L. I. (1959), Similarity and Dimensional Methods in Mechanics, Trans-lation from the 4th Russian ed., 1957, Academic Press, New York.
    Abbett, W. P., et al. (2004), The photospheric boundary of Sun-to-Earth coupledmodels, J. Atmos. Sol.-Terrs. Phys., 66, 1,257–1,270.
    Alves, M. V., E. Echer, and W. D. Gonzalez (2006), Geoe?ectiveness of corotatinginteraction regions as measured by Dst index, J. Geophys. Res., 111, A07S05,doi:10.1029/2005JA011379.
    Arge, C N., and V. J. Pizzo (1999), Historical verification of the Wang-Sheeleymodel: Further improvements in basic technique, in The solar wind nine con-ference, AIP Conference Proceedings, 471, 569–572, Abstracts.
    Arge, C. N., and V. J. Pizzo (2000), Improvement in the prediction of solar windconditions using near-real time solar magnetic field updates, J. Geophys. Res.,105(A5), 10,465–10,479.
    Arge, C. N., D. Odstrcil, V. J. Pizzo, and L. R. Mayer (2003), Improved methodfor specifying solar wind speed near the Sun, in SOLAR WIND TEN: Proceed-ings of the Tenth International Solar Wind Conference, AIP Conf. Proc., 679,190–193, doi:10.1063/1.1618574
    Baker, D. N. (2005), Introduction to Space Weather, Lect. Notes Phys., 656,3–20.
    Balogh, A., J. A. Gonzalez-Esparza and R. J. Forsyth (1995), Interplanetaryshock waves: Ulysses observations in and out of the Ecliptic plane, Space Sci.Rev., 72, 171–180.
    Bame, S. J., J. R. Asbridge, W. C. Feldman, E. E. Fenimore, and J. T. Gosling(1979), Solar wind heavy ions from ?are-heated coronal plasma, Sol. Phys.,62, 179.
    Book, D. L. (1994), The Sedov self-similar point blast solutions in nonuniformmedia, Shock Waves, 4, 1–10.
    Borovsky, J. E., and M. H. Denton (2006), Di?erences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 111, A07S08,doi:10.1029/2005JA011447.
    Borrini, G., J. T. Gosling, S. J. Bame, and W. C. Feldman (1982), Helium abun-dance enhancements in the solar wind, J. Geophys. Res., 87, 7,370.
    Bothmer, V., and R. Schwenn (1994), Eruptive prominences as sources of mag-netic clouds in the solar wind, Space Sci. Rev., 70, 215–220.
    Bothmer, V., and R. Schwenn (1998), The structure and origin of magnetic cloudsin the solar wind, Ann. Geophys., 16, 1–24.
    Bothmer, V., P. Cargill, A. Dmitriev, E. Romashets, I. Veselovsky, A. Zhukov(2003), How to forecast geomagnetic storms reliably—the characteristics ofstorms in the rising phase of phase of sloar cycle 23, Geophys. Res. Abs., 5,02018, abstract.
    Burlaga, L., E. Sittler, F. Mariani, and R. Schwenn (1981), Magnetic Loop Be-hind an Interplanetary Shock: Voyager, Helios, and IMP 8 Observations, J.Geophys. Res., 86, (A8), 6,673–6,684.
    Burlaga, L. F. (1988), Magnetic clouds and force-free fields with constant alpha,J. Geophys. Res., 93, 7,217–7,224.
    Burlaga, L. F., R. P. Lepping, J. A. Jones (1990), Global configuration of amagnetic cloud, in Physics of magnetic ?ux ropes, Geophys. Monogr. Ser., 58,edited by C. T., Russel, E. R., Priest, and L. C., Lee, AGU Washington DC,373–377.
    Burlaga, L., et al. (1998), A magnetic cloud containing prominence material -January 1997, J. Geophys. Res.103, 277–285.
    Cane, H. V., D. V. Reames, and T. T. von Rosenvinge (1988), The role of inter-planetary shocks in the longitude distribution of solar energetic particles, J.Geophys. Res., 93, 9,555–9,567.
    Cane, H. V., I. G. Richardson, T. T. von Rosenvinge, and G. Wibberenz (1994),Cosmic ray decreases and shock structure: A multispacecraft study, J. Geo-phys. Res., 99, 21,429.
    Cane, H. V., T. T. von Rosenvinge, C. M. S. Cohen, and R. A. Mewaldt (2003),Two components in major solar particle events, Geophys. Res. Lett., 30(12),8,017, doi:10.1029/2002GL016580.
    Canfield, R. C., H. S. Hudson, and D. E. McKenzie (1999), Sigmoidal morphologyand eruptive solar activity, Geophys. Res. Lett., 26, 627–630.
    Chae, J. (2000), The magnetic helicity sign of filament chirality, ApJ, 540, 115–118.
    Chao, J. K., and B. Goldstein (1972), Modification of the Rankine-Hugoniotrelations for shocks in space, J. Geophys. Res., 77, 5,455–5,466.
    Chao, J. K. L. H. Lyu, B. H. Wu, A. J. Lazarus, T. S. Chang, R. P Lepping (1993),Observations of an intermediate shock in interplanetary space, J. Geophys.Res., 98, A10, 17,443–17,450, doi:10.1029/93JA01609
    Chao, J. K., X. X. Zhang, and P. Song (1995), Derivation of temperatureanisotropy from shock jump relations: Theory and observations, Geophys. Res.Lett., 22, 2,409–2,412.
    Chen, J., and D. A. Garren (1993), Interplanetary Magnetic Clouds: Topologyand Driving Mechanism, Geophys. Res. Lett., 20, 21, 2319–2322.
    Cho, K.-S., et al. (2003), A statistical comparison of interplanetaryshock and CME propagation models, J. Geophys. Res., 108(A12), 1,445,doi:10.1029/2003JA010029
    Cid, C., M. A. Hidalgo, T. Nieves-Chinchilla, J. Sequeiros, and A. F. Vin?as (2002),Plasma and Magnetic Field Inside Magnetic Clouds: a Global Study, Sol.Phys., 207, 187–198.
    Crooker, N. U., J. T. Gosling, E. J. Smith, and C. T. Russell (1990), A bubblelikecoronal mass ejection ?ux rope in the solar wind, in Physics of Magnetic ?uxRopes, edited by C. T. Russell, E. R. Priest, and L. C. Lee, p.365–372, AGUGeophysical Monograph 58, Washington, D.C. :American Geophysical Union.
    Dasso, S., A. M. Gulisano, C. H. Mandrini, and P. D′emoulin (2005a), Model-independent large-scale magnetohydrodynamic quantities in magnetic clouds,Advances in Space Research, 35, 2,172–2,177, doi:10.1016/j.asr.2005.03.054
    Dasso, S., C. H. Mandrini, P. D′emoulin, M. L. Luoni, and A. M. Gulisano (2005b),Large scale MHD properties of interplanetary magnetic clouds, Advances inSpace Research, 35, 711–724, doi:10.1016/j.asr.2005.02.096
    deHo?mann, F., and E.Teller (1950), Magneto-hydrodynamic shocks, Phys. Rev.,80(4), 692–703.
    Dere, K. P., G. E. Brueckner, R. A. Howard, D. J. Michels, and J. P. Delabou-diniere (1999), LASCO and EIT observations of helical structure in coronalmass ejections, ApJ., 516, 465.
    Dryer, M. (1974), Interplanetary shock waves generated by solar ?ares, SpaceSci. Rev., 15, 403–468.
    Dryer, M. (1998), Multi-dimensional MHD simulations of solar-generated dis-turbances: space weather forecasting of geomagnetic storms, AIAA J., 36,365–370.
    Dryer, M. (2002), Application of the classical initial-boundary value problem tothe Sun-to-Earth’s space weather disturbances: some results and statistics, inSolspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euro-conference, ESA SP-477, 9–17.
    Elphic, R. C., and C. T. Russell (1983), Magnetic ?ux ropes in the Venus iono-sphere - Observations and models, J. Geophys. Res.88, 58–72.
    Elphic, R. C., C. T. Russell, J. A. Slavin, and L. H. Brace (1980), Observationsof the dayside ionopause and ionosphere of Venus, J. Geophys. Res.85, 7,679–7,696.
    Falconer, D. A. (2001), A prospective method for predicting coronal mass ejec-tions from vector magnetograms, J. Geophys. Res., 106(A11), 25,185–25,190.
    Farrugia, C. J., M. W. Dunlop, F. Geurts, A. Balogh, D. J. Southwood, D. A.Bryant, M. Neugebauer, and A. Etemadi (1990), An Interplanetary PlanarMagnetic Structure Oriented at a Large (~80 deg) Angle to the Parker Spiral,Geophys. Res. Lett., 17, 8, 1025–1028.
    Farrugia, C. J., V. A. Osherovich, and L. F. Burlaga(1992), Model of a rotatingmagnetic cloud, in Study of the Solar-Terrestrial System, Proceedings of the26th ESLAB Symposium, ESA SP-346, 231–236.
    Farrugia, C. J., L. F., Burlaga, V. A., Osherovich (1995), Magnetic ?ux ropeversus the spheromak as models for the interplanetary magnetic clouds, J.Geophys. Res., 100, A7, 12,293–12,306, doi:0148-0227/95/95JA-002.
    Fenimore, E. E. (1980), Solar wind ?ows associated with hot heavy ions, Astro-phys. J., 235, 245.
    Feng, H. Q., D. J. Wu, and J. K. Chao (2006), Identification of configuration andboundaries of interplanetary magnetic clouds, J. Geophys. Res.111, A07S90,doi:10.1029/2005JA011509
    Feng, H. Q., C. C. Lin, J. K. Chao, D. J. Wu, L. H. Lyu, and L. C. Lee (2008),Observations of a switch-o? shock in interplanetary space, J. Geophys. Res.,113, A05216, doi:10.1029/2007JA012864.
    Feng, H. Q., et al. (2008), Interplanetary small- and intermediate-sizedmagnetic ?ux ropes during 1995–2005, J. Geophys. Res., 113, A12105,doi:10.1029/2008JA013103.
    Feng, X. S. and F. S. Wei (1999), An operable solution approach tointerplanetary hydrodynamic shock waves, Solar Phys., 184, 385–402,doi:10.1023/A:1005142123943.
    Feng, X. S. and X. H. Zhao (2006), A new prediction method for the arrival timeof interplanetary shocks, Solar Phys., 238, 167–168, doi:10.1007/s11207-006-0185-3.
    Feynman, J. and S. B. Gabriel (2000), On space weather consequences and pre-dictions, J. Geophys. Res., 105(A5), 10,543–10,564.
    Forbes, T. G. (2000), A review on the genesis of coronal mass ejections, J. Geo-phys. Res., 105(A10), 23,153–23,165.
    Forbes, T. G., et al. (2006), CME theory and models, Space Sci. Rev., 123(1–3),251–302, doi:10.1007/s11214-006-9019-8.
    Fry, C. D., W. Sun, C. S. Deehr, M. Dryer, Z. Smith, S.-I. Akasofu, M. Tokumaru,and M. Kojima (2001), Improvements to the HAF solar wind model for spaceweather predictions, J. Geophys. Res., 106(A10), 20,985–21,001.
    Fry, C.D., M. Dryer, W. Sun, Z., Smith, C. S. Deehr and S.-I Akasofu, (2003),Forecasting solar wind structures and shock arrival times using an ensemble ofmodels, J. Geophys. Res., 108(A2), 1070, doi: 10.1029/2002JA009474.
    Fry, C. D., T. R. Detman, M. Dryer, Z. Smith, W. Sun, C. S. Deehr, S.-I. Aka-sofu, C.-C. Wu, S. McKenna-Lawlor (2007), Real-time solar wind forecasting:Capabilities and challenges, J. Atm. Sol.-Terres. Phys., 69, 109–115.
    Gallagher, P. T., Y.-J. Moon, and H. Wang (2002), Active-Region Monitoringand Flare Forecasting–I. Data Processing and First Results, Sol. Phys., 209,171–183.
    Gander, W. and W. Gautschi (2000), Adaptive Quadrature - Revisited, BIT,Vol. 40, 84–101.
    Glover, A., N. D. R. Ranns, L. K. Harra, and J. L. Culhane (2000), The onsetand association of CMEs with sigmoidal active regions, Geophys. Res. Lett.,27(14), 2,161–2,164.
    Gloag, M., and A. Balogh (2005), Shock parameter calculations at weak inter-planetary shock waves, Annales Geophysicae, 23,545–552.
    Goldstein, H. (1983), On the field configuration in magnetic clouds, in SolarWind Five, edited by M. Neugebauer, 731–733.
    Gonzalez, W. D., and B. T. Tsurutani (1987), Criteria of interplanetary param-eters causing intense magnetic storms (Dst < -100 nT), Planetary and SpaceScience, 35, 9, 1101–1109, doi:10.1016/0032-0633(87)90015-8.
    Gonzalez, W. D., J. Joselyn, Y. Kamide, H. Kroehl, G. Rostoker, B. Tsurutani,and V. M. Vasyliunas (1994), What is a geomagnetic storm?, J. Geophys. Res.,99, 5,771.
    Gopalswamy, N. and M. R. Kundu (1992), Estimation of the mass of a coronalmass ejection from radio observations, Astrophys. J. Lett., 390, 37–39.
    Gopalswamy, N. L., Y. Hanaoka, T. Kosugi, J. T. Steinberg, S. Plunkett, R. A.Howard, B. J. Thompson, J. Gurman, G. Ho, N. Nitta, H. S. Hudson (1998), Onthe relationship between coronal mass ejections and magnetic clouds, Geophys.Res. Lett., 25, 14, 2,485–2,488.
    Gopalswamy, N. L., R. P. Lepping, M. L. Kaiser, D. Berdichevsky, and O. C.St. Cyr (2000), Interplanetary acceleration of coronal mass ejections, Geophys.Res. Lett., 27, 145–148, doi:10.1029/1999GL003639.
    Gopalswamy, N. et al. (2001), Predicting the 1AU arrival times of coronal massejections. J. Geophys. Res., 106(A12), 20,917–20,938.
    Gopalswamy, N. (2004),A Global Picture of CMEs in the Inner Heliosphere inASSL Vol. 3l7: The Sun and the Heliosphere as an Integrated System, editedby G. Poletto and S. T. Suess, Kluwer, Boston.
    Gopalswamy, N. (2007), Energetic Phenomena on the Sun, in Kodai School onSolar Physic, edited by S. S. Hasan and D. Banerjee.
    Gosling, J. T., V. Pizzo, and S. J. Bame (1973), Anomalously low proton tem-peratures in the solar wind following interplanetary shock waves: Evidence formagnetic bottles?, J. Geophys. Res., 78, 2001.
    Gosling, J. T., D. N. Baker, S. J. Bame, W. C. Feldman, R. D. Zwickl, and E. J.Smith (1987), Bidirectional solar wind electron heat ?ux events, J. Geophys.Res., 92, 8,519.
    Gosling, J. T. (1990), Coronal mass ejections and magnetic ?ux ropes in inter-planetary space, in Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser.,58, edited by C. T. Russell, E. R. Priest, and L. C. Lee, p.343, AGU, Wash-ington, D. C.
    Gosling, J. T. (1993), The solar ?are myth, J. Geophys. Res., 98, 18,937–18,949.
    Gosling, J. T.(1994), Coronal mass ejections in the solar wind at high solar lat-titudes: an overview, Proc of the Third SOHO Workshop—Solar DynamicPhenomena and Solar Wind Consequences, it ESA SP-373.
    Gosling, J. T. (1996), Corotating and transient solar wind ?ows in three dimen-sions, Annu. Rev. Astron. Astrophys., 34, 35–73.
    Gosling, J. T., Coronal mass ejections, edited by Crooker, N. U., et al., Geophys.Monogr. Ser., 99, AGU, 9–25.
    Hasegawa, H., et al. (2004), Reconstruction of two-dimensional magnetopausestructures from Cluster observations: verification of method, Ann. Geophys.,22, 1,251–1,266.
    Hasegawa, H., B. U. O¨. Sonnerup, B. Klecker, G. Paschmann, M. W. Dunlop,and H. R′eme (2005), Optimal reconstruction of magnetopause structures fromCluster data, Ann. Geophys., 23, 973–982.
    Hasegawa, H., B. U. O¨. Sonnerup, C. J. Owen, B. Klecker, G. Paschmann, A.Balogh, and H. R′eme (2006), The stucture of ?ux transfer events recoveredfrom Cluster data, Ann. Geophys., 24, 603–618.
    Hau, L.-N., and B. U. O¨. Sonnerup (1999), Two-dimensional coherent structuresin the magnetopause: Recovery of static equilibria from single-spacecraft data,J. Geophys. Res.104, 6,899–6,918, doi:10.1029/1999JA900002
    Hausman, B. A., F. C. Michel, J. R. Espley, and P. A. Cloutier (2004), On de-termining the nature and orientation of magnetic directional discontinuities:Problems with the minimum variance method, J. Geophys. Res.109, 11,102,doi:10.1029/2004JA010670
    Heinemann, M. (2002), Efects of solar wind inhomogeneities on transit times ofinterplanetary shock waves, J. Atmos. Sol.-Terres. Phys., 64, 315–325.
    Hidalgo, M. A., C. Cid, J. Medina, and A. F. Vin?as (2000), A new model for thetopology of magnetic clouds in the solar wind, Sol. Phys., 194, 165–174.
    Hidalgo, M. A., C. Cid, A. F. Vinas, and J. Sequeiros (2002), A non-force-freeapproach to the topology of magnetic clouds in the solar wind, J. Geophys.Res., 107(A1), 1,002, doi:10.1029/2001JA900100.
    Hidalgo, M. A., T. Nieves-Chinchilla, and C. Cid (2002), Elliptical cross-sectionmodel for the magnetic topology of magnetic clouds, Geophys. Res. Lett.29,1,637–1,640 doi:10.1029/2001GL013875
    Hidalgo, M. A. (2003), A study of the expansion and distortion of the cross sectionof magnetic clouds in the interplanetary medium, J. Geophys. Res.108, 1,320,doi:10.1029/2002JA009818
    Hirshberg, J., S. J. Bame, and D. E. Robbins (1972), Solar ?ares and solar heliumenrichments: July 1965–July 1967, Sol. Phys., 23, 467.
    Hochedez, J.-F., A. Zhukov, E. Robbrecht, R. Van der Linden, D. Berghmans,P. Vanlommel, A. Theissen, and F. Clette (2005), Solar weather monitor-ing,Annales Geophysicae, 23, 3,149–3,161.
    Hu, Q., and B. U. O¨. Sonnerup (2001), Reconstruction of magnetic ?ux ropes inthe solar wind, Geophys. Res. Lett.28, 467–470, doi:10.1029/2000GL012232
    Hu, Q., and B. U. O¨. Sonnerup (2002), Reconstruction of magnetic clouds inthe solar wind: Orientations and configurations, J. Geophys. Res.107, 1,142,doi:10.1029/2001JA000293
    Hu, Q., C. W. Smith, N. F. Ness, and R. M. Skoug (2003), Double ?ux-ropemagnetic cloud in the solar wind at 1 AU, Geophys. Res. Lett., 30(7), 1,385,doi:10.1029/2002GL016653.
    Hundhausen, A. J. (1997), in Corcna Mass Ejections, AGU Geophysical Mono-graph 99, edited by N. Crooker, J. A. Joselyn, & J. Feynrnan.Huttunen, K. E., J. R. Schwenn, V. Bothmer, and H. E. J. Koskinen (2005),Properties and geoe?ectiveness of magnetic clouds in the rising, maximumand early declining phases of solar cycle 23, Ann. Geophys., 23, 625–641.
    Huttunen, K. E., J. G. Luhmann, Y. Li, B. Lynch, Y. Liu, P. Schroeder, S. D.Bale, C. O. Lee, R. P. Lin, A. Vourlidas, C. Farrugia, A. B. Galvin, M. H.Acuna, R. A. Howard, M. Kaiser, R. A. Mewaldt, J. Sauvaud, M. Wiedenbeck(2007), Multipoint Analysis by STEREO and WIND of the Magnetic Cloudon May 21-23, 2007, American Geophysical Union, Fall Meeting 2007, abstract#SH42A-03.
    Hudson, H. S. and Cliver (2001), Observing coronal mass ejections without coro-nagraphs, J. Geophys. Res., 25,199–25,214.
    Jian, L. C. T. Russell, J. G. Luhmann, and R. M. Skoug (2006), Properties ofstream interactions at one AU during 1995–2004, Solar Phys., 239, 337–392,10.1007/s11207-006-0132-3
    Jing, J., et al. (2004), On the relation between filament eruptions, ?ares, andcoronal mass ejections, ApJ, 614, 1,054–1,062.
    Kaufmann, P., et al. (2003), Launch of solar coronal mass ejectionsand submillimeter pulse bursts, J. Geophys. Res., 108(A7), 1,280,doi:10.1029/2002JA009729
    Krucker, S. and R. P. Lin (2000), Two Classes of Solar Proton Events Derivedfrom Onset Time Analysis, Astrophys. J. Lett., 542, 61–64, doi:10.1086/312922Korobeinikov, V. P. (1969), On the gas ?ow due to solar ?are, Sol. Phys., 7,463–469.
    Illing, R. M. E.,A. J. Hundhausen (1985), Observation of a coronal transientfrom 1.2 to 6 solar radii, 90, 275–282, doi:10.1029/JA090iA01p00275.
    Ipavich, F. M., A. B. Galvin, G. Gloeckler, D. Hovestadt, S. J. Bame, B. Klecker,M. Scholer, L. A. Fisk, and C. Y. Fan (1986), Solar wind Fe and CNO mea-surements in high-speed ?ows, J. Geophys. Res., 91, 4,133.
    Khrabrov, A. V., and B. U. O¨. Sonnerup (1998), Magnetic variance analysis forsmall-amplitude waves and ?ux transfer events on a current sheet, J. Geophys.Res.103, 11,907–11,918, doi:10.1029/98JA00615
    Khrabrov, A. V., and B. U. O¨Sonnerup (1998), DeHo?mann-Teller analysis, inAnalysis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P.W. Daly, chap. 9, 221–248, Int. Space Sci. Inst., Bern, Switzerland.
    Klein, L. W., and L. F. Burlaga (1982), Interplanetary Magnetic Clouds At 1AU, J. Geophys. Res., 87, A2, 613–624.
    Kojima, M., K. Fujiki, T. Ohmi, M. Tokumaru, A. Yokobe, and K. Hakamada(1999), Low-speed solar wind from the vicinity of solar active regions, J. Geo-phys. Res., 104(A8), 16,993–17,003.
    Kojima, M., A. R. Breen, K. Fujiki, K. Hayashi, T. Ohmi, and M. Tokumaru(2004), Fast solar wind after the rapid acceleration, J. Geophys. Res., 109,A04103, doi:10.1029/2003JA010247.
    Lee,J. et al. (2000), Magnetic Trapping and Electron Injection in Two Contrast-ing Solar Microwave Bursts, ApJ, 531, 1,109–1,120, doi: 10.1086/308511.
    Lepping, R. P., L. F. Burlaga, and J. A. Jones (1990), Magnetic field structure ofinterplanetary magnetic clouds at 1 AU, J. Geophys. Res.95, 11,957–11,965.
    Lepping, R. P., et al. (1997), The Wind magnetic cloud and events of October18-20, 1995: Interplanetary properties and as triggers for geomagnetic activity,J. Geophys. Res.102, 14,049–14,064, doi:10.1029/97JA00272
    Lepping, R. P., D. B. Berdichevsky, and T. J. Ferguson (2003), Estimated errorsin magnetic cloud model fit parameters with force-free cylindrically symmetricassumptions, J. Geophys. Res.108, 1,356–1,375, doi:10.1029/2002JA009657
    Lepping, R. P., D. B. Berdichevsky, and T. J. Ferguson (2004), Correctionto“Estimated errors in magnetic cloud model fit parameters with force-free cylindrically symmetric assumptions”, J. Geophys. Res.109, A07101,doi:10.1029/2004JA010517
    Lepping, R. P., D. B. Berdichevsky, C.-C. Wu, A. Szabo, T. Narock, F. Mariani,A. J. Lazarus, and A. J. Quivers (2006), A summary of WIND magnetic cloudsfor years 1995-2003: model-fitted parameters, associated errors and classifica-tions, Ann. Geophys., 24, 215–245.
    Lepping, R. P., T. Narock, and H. Chen (2007), Comparison of magnetic fieldobservations of an average magnetic cloud with a simple force free model: theimportance of field compression and expansion, Ann. Geophys., 25, 2,641–2,648.
    Lepri, S. T., T. H. Zurbuchen, L. A. Fisk, I. G. Richardson, H. V. Cane, andG. Gloeckler (2001), Iron charge distribution as an identifier of interplanetarycoronal mass ejections, J. Geophys. Res., 106, 29,231.
    Li, H. J., X. S. Feng, P. B. Zuo, and Y. Q. Xie (2009), Inferring interplanetary?ux rope orientation with the Minimum Residue (MR) method, J. Geophys.Res., 114, A03102, doi:10.1029/2008JA013331
    Li, H. J., X. S. Feng, P. B. Zuo, and Y. Q. Xie (2009), Observations of the field-aligned residual ?ows inside magnetic cloud structure, Sci. in China (E), inpress.
    Li, X. , D. N. Baker, M. Temerin, G. D. Reeves, R. Friedel, and C.Shen (2005), Energetic electrons, 50 keV– 6 MeV, at geosynchronous or-bit: their responses to solar wind variations, Space Weather , 3, S04001,doi:10.1029/2004SW000105.
    Lindsay, G. M., J. G. Luhmann, C. T. Russell, and J. T. Gosling (1999), Rela-tionships between coronal mass ejection speeds from coronagraph images andinterplanetary characteristics of associated interplanetary coronal mass ejec-tions, J. Geophys. Res., 104, 12,515–12,524.
    Liu, Y., J. D. Richardson, J. W. Belcher, C. Wang, Q. Hu, and J. C. Kasper(2006), Constraints on the global structure of magnetic clouds: Transversesize and curvature, J. Geophys. Res.111, 12, doi:10.1029/2006JA011890
    Liu Y., W. B. Manchester IV, J. D. Rechardson, J. G. Luhmann, R. P. Lin, S. D.Bale (2008), De?ection ?ows ahead of ICMEs as an indicator of curvature andgeoe?ectiveness. J. Geophys. Res. ,113, A12, doi:10.1029/2006JA011890
    Lin, C. C., J. K. Chao, L. C. Lee, L. H. Lyu, and D. J. Wu (2006), A new shockfitting procedure for the MHD Rankine–Hugoniot relations for the case of smallHe2+ slippage, J. Geophys. Res., 111, A09104, doi:10.1029/2005JA011449.
    Low, B. C. (1993), Magnetohydrodynamic processes in the solar corona: Flares,coronal mass ejections, and magnetic helicity, Phys. Plasmas, 1, 1,684–1690.
    Low, B. C., and D. F. Smith (1993), The free energies of partially open coronalmagnetic fields,ApJ, 410, 412–425.
    Low, B. C. (1996), Solar activity and the corona, Sol. Phys.,167 , 217–265.
    Low, B. C. (1999), Coronal masse jections,f lares and prominences, in Solar WindNine, edited by S. R. Habbal et al., 109–114, AIP, Woodbury, N. Y.
    Luhmann, J. G., S. C. Solomon, J. A. Linker, J. G. Lyon, Z. Mikic, D. Odstrcil,W. Wang, and M. Wiltberger (2004), Coupled model simulation of a Sun-to-Earth space weather event, J. Atmos. Sol.-Terres. Phys., 66, 1,243–1,256.
    Lundquist, S. (1950), Magnetostatic fields. Arkiv foer Fysik 2, 361.
    Lyu, L. H., and J. R. Kan (1986), Shock jump conditions modified by pressureanisotropy and heat fux for earth’s bowshock, J. Geophys. Res., 91, 6,771–6,775.
    Magara, T., S. Mineshige, T. Yokoyama, and K. Shibata (1996), Numerical sim-ulation of magnetic reconnection in eruptive ?ares, ApJ, 466, 1,054-1,066.
    Mancuso S. and J. C. Raymond (2004), Coronal transients and metric type IIradio bursts I. E?ects of geometry, A&A, 413, 363–371, doi:10.1051/0004-6361:20031510
    Marsden, R. G., T. R. Sanderson, C. Tranquille, K.-P. Wenzel, and E. J. Smith(1987), ISEE 3 observations of low-energy proton bidirectional events and theirrelation to isolated interplanetary magnetic structures, J. Geophys. Res., 92,11,009.
    Marubashi, K. (1997), Interplanetary magnetic ?ux ropes and solar filaments, inCoronal mass ejections, edited by N. U. Crooker et al.,Geophys. Monogr. Ser.,99, AGU, 147–156.
    Marubashi, K. (2000), Physics of interplanetaryMagnetic ?ux ropes: toward pre-diction of geomagnetic storms, Adv. Space Res., 26, 55–66.
    McAllister, A. H., S. F. Martin, N. U. Crooker, R. P. Lepping, and R. J. Fitzenre-iter (2001), A test of real-time prediction of magnetic cloud topology and geo-magnetic storm occurrence from solar signatures, J. Geophys. Res., 106(A12),29,185–29,194.
    McIntosh, P. S. (1990), The classification of sunspot groups, Sol. Phys., 125,251–267.
    McKenna-Lawlor, S. M. P., M. Dryer, M. D. Kartalev, Z. Smith, C. D. Fry,W. Sun, C. S. Deehr, K. Kecskemety, and K. Kudela (2006), Near real-timepredictions of the arrival at Earth of ?are-related shocks during Solar Cycle23, J. Geophys. Res., 111, A11103, doi:10.1029/2005JA011162.
    Mitchell, D. G., E. C. Roelof, and S. J. Bame (1983), Solar wind iron abundancevariations at speeds ?600 km s?1, 1972–1976, J. Geophys. Res., 88, 9,059.
    Moldwin, M. B., and W. J. Hughes (1990), A 2 1/2-dimensional magnetic fieldmodel of plasmoids, in Physics of Magnetic Flux Ropes, Geophys. Monogr.Ser., vol. 58, edited by C. T., Russel, E. R., Priest, and L. C., Lee, AGUWashington DC, 663–668.
    Moldwin, M. B., et al. (2000), Small-scale magnetic ?ux ropes in the solar wind,Geophys. Res. Lett., 27(1), 57–60.
    Moran, T., N. Gopalswamy, I. E. Dammasch, and K. Wilhelm (2001), A multi-wavelength study of solar coronal-hole regions showing radio enhancements,Astron. Astr., 378, 1,037–1,045.
    Morrison, P. (1956), Solar origin of cosmic ray time variations, Phys. Rev., 101,1,397.
    Montgomery, M. D., J. R. Asbridge, S. J. Bame, and W. C. Feldman (1974), Solarwind electron temperature depressions following some interplanetary shockwaves: Evidence for magnetic merging ?, J. Geophys. Res., 79, 3,103.
    Mouradian, Z., I. Soru-Escaut, and S. Pojoga (1995), On the two classes offilament-prominence disappearance and their relation to coronal mass ejec-tions, Sol. Phys., 158, 269–281.
    Mozzhilkin, V. V. (1969), Motion of a shock wave through gas of variable density,770–774, Consultants Bureau of Plenum Publishing Corporation, New York.
    Mozzhilkin, V. V. (1970), Propagation of shock waves in a medium with expo-nentially varying density, 940–946, Consultants Bureau of Plenum PublishingCorporation, New York.
    Mulligan, T., and C. T. Russell (2001), Multispacecraft modeling of the ?uxrope structure of interplanetary coronal mass ejections: Cylindrically sym-metric versus nonsymmetric topologies, J. Geophys. Res.106, 10,581–10,596,doi:10.1029/2000JA900170
    Murata, S. (2006), New exact solution of the blast wave problem in gas dynamics,Chaos Solitions & Fractals, 28, 327–330.
    Neugebauer, M., D. R. Clay, and J. T. Gosling (1993), The Origins of PlanarMagnetic Structures in the Solar Wind, J. Geophys. Res., 98(A6), 9,383–9,389.
    Neugebauer, M., and R. Goldstein (1997), Particle and field signatures of coronalmass ejections in the solar wind, in Coronal Mass Ejections, Geophys. Monogr.Ser., vol. 99, edited by N. Crooker, J. A. Joselyn, and J. Feynman, p. 245,AGU, Washington, D. C.
    Nieves-Chinchilla, T., M. A. Hidalgo, and J. Sequeiros (2005), Magnetic CloudsObserved at 1 Au During the Period 2000-2003, Sol. Phys., 232, 105–126,doi:10.1007/s11207-575 005-1593-5
    Nu′n?ez, M., R. Fidalgo, M. Baena, and Morales (2005), The in?uence of activeregion information in the prediction of solar ?ares: an empirical model usingdata mining, Ann. Geophys., 23, 3,129–3,138.
    Oberoi, D. and Kasper (2004), LOFAR: The potential for solar and space weatherstudies, Planet. Space Sci., 52, 1,415–1,421.
    Osherovich, V. A., C. J. Farrugia, L. F. Burlaga, R. P. Lepping, J. Fainberg,and R. G. Stone (1993), Polytropic Relationship in Interplanetary MagneticClouds, J. Geophys. Res., 98, A9, 15,331–15,342.
    Osherovich, V., and L. F. Burlaga (1997), Magnetic clouds, in Coronal MassEjections, Geophys. Monogr. Ser., vol. 99, edited by N. Crooker, J. A. Joselyn,and J. Feynman, p. 157, AGU, Washington, D. C.
    Palmer, I. D., F. R. Allum, and S. Singer (1978), Bidirectional anisotropies insolar cosmic ray events: Evidence for magnetic bottles, J. Geophys. Res., 83,75.
    Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic fields,ApJ, 128, 664–676.
    Parker, E. N. (1960), Sudden expansion of the corona following a large solar ?areand the attendant magnetic field and cosmic-ray e?ects, Astrophys. J., 133,1,014–1,033.
    Priest, R. (1990), The equilibrium of magnetic ?ux ropes, in Physics of magnetic?ux ropes, Geophys. Monogr. Ser., 58, edited by C. T., Russel, E. R., Priest,and L. C., Lee, AGU Washington DC, 1–22.
    Pu, Z. Y., et al. (2005), Multiple Flux Rope Events at the High-Latitude Mag-netopause: Cluster/Rapid Observation on 26 January, 2001, Surveys in Geo-physics, 26, 193–214, doi:10.1007/s10712-005-1878-0
    Pulkkinen, T. I., N. Partamies, K. E. J. Huttunen, G. D. Reeves, and H.E. J. Koskinen (2007), Di?erences in geomagnetic storms driven by mag-netic clouds and ICME sheath regions, Geophys. Res. Lett., 34, L02105,doi:10.1029/2006GL027775.
    Ramesh, R., C. Kathiravan, and C. V. Sastry (2003), Metric radio observationsof the evolution of a“Halo”coronal mass ejection close to the Sun, Astrophys.J. Lett., 591, 163–166.
    Richardson, I. G., H. V. Cane, and T. T. von Rosenvinge (1991), Prompt arrivalof solar energetic particles from far eastern events: The role of large-scaleinterplanetary magnetic field structure, J. Geophys. Res., 96, 7,853.
    Richardson, I. G., and H. V. Cane (1993), Signatures of shock drivers in the solarwind and their dependence on the solar source location, J. Geophys. Res., 98,15,295.
    Richardson, I. G., and H. V. Cane (1995), Regions of abnormally low protontemperature in the solar wind (1965–1991) and their association with ejecta,J. Geophys. Res., 100, 23,397.
    Richardson, I. G., and H. V. Cane (1996), Particle ?ows observed in ejecta duringsolar event onsets and their implication for the magnetic field topology, J.Geophys. Res., 101, 27,521.
    Richardson, I. G., V. M. Dvornikov, V. E. Sdobnov, and H. V. Cane (2000),Bidirectional particle ?ows at cosmic ray and lower (~1 MeV) energies andtheir association with interplanetary coronal mass ejections/ejecta, J. Geophys.Res., 105, 12,597.
    Richardson, I. G., E. W. Cliver, and H. V. Cane (2000), Sources of geomagneticactivity over the solar cycle: Relative importance of coronal mass ejections,high-speed streams, and slow solar wind, J. Geophys. Res., 105(A8),18,203–18,213.
    Richardson, I. G., H. V. Cane, and E. W. Cliver (2002), Sources of geomagneticactivity during nearly three solar cycle (1972-2000), J. Geophys. Res., 107(A8),1,187, doi:10.1029/2001JA000504
    Riddle, A. C. (1970), 80 MHz observations of a moving type IV solar burst, SolarPhys., 13, 448–457.
    Riley, P., and N. U. Crooker (2004), Kinematic treatment of coronal treatmentof coronal mass ejection in the solar wind, ApJ., 600, 1,035–1,042.
    Riley, P., et al. (2004), Fitting ?ux ropes to a global MHD solution: a compar-ison of techniques, Journal of Atmospheric and Solar-Terrestrial Physics, 66,1,321–1,331, doi:10.1016/j.jastp.2004.03.019
    Russell, C. T., E. R. Priest, and L.-C. Lee (1990), Physics of magnetic ?ux ropes,Washington, D.C. : American Geophysical Union.
    Russell, C. T., and T. Mulligan (2002), The true dimensions of interplanetarycoronal mass ejections, Adv. Space Res., 29(3), 301–306.
    Rust, D. M. (2002), Magnetic helicity, coronal mass ejections and the solar cycle,in Solspa 2001, ESA SP-477, Proceedings of the Second Solar Cycle and SpaceWeather Euroconference, 39–41.
    Ruzmaikin, A., S. Martin, and Q. Hu (2003), Signs of magnetic helicity in inter-planetary coronal mass ejections and associated prominences: Case study, J.Geophys. Res.108, 1,096, doi:10.1029/2002JA009588
    Sakurai, A. (1965), Blast wave theory, in Basic development in ?uid dynamics,edit byMaurice Holt,1,309–375, Academic Press, New York.
    Schatten, K. H. (1971), Current sheet magnetic model for the solar corona, Cos-mic Electrodynamics, 2, 232–245.
    Schwenn, R., A. Dal Lago, W. D. Gonzalez, E. Huttunen, C. O. St.Cyr, and S.P. Plunkett (2001), A tool for improved space weather predictions: the CMEexpansion speed, AGU Fall Meeting, A739+,Abstracts.
    Schwenn, R., E. Huttunen, A. dal Lago(2002), Improving space weather predic-tions - what is missing?, 34th COSPAR Scientific Assembly, Houston, TX,USA., abstract.
    Schwenn, R., A. DalLago, E. Huttunen, and W. D. Gonzalez (2005), The as-sociation of coronal mass ejections with their ejects near the Earth, AnnalesGeophys., 23, 1,033–1,059.
    Schwenn, R. (2006), The solar wind sources and their variations over the solarcycle, Space Sci. Rev., 124, 51–76, doi: 10.1007/s11214-006-9099-5.
    Schwenn, R. (2006), Space Weather: The Solar Perspective, Living Rev. SolarPhys. 3,“http://www.livingreviews.org/lrsp-2006-2”(accessed on August 9,2006).
    Sheeley, N. R.,R. A. Howard, M. J. Koomen, D. J. Michels, R. Schwenn, K. H.Mu¨hlha¨user, and H. Rosenbauer (1985), Coronal mass ejections and interplan-etary shocks, J. Geophys. Res., 90, 163.
    Sheeley, N. R., J. H. Walters,Y.-M. Wang, and R. A. Howard (1999), Continuoustracking of coronal out?ows: Two kinds of coronal mass ejections, J. Geophys.Res., 104, (A11), 24,739–24,767.
    Shi, Q. Q., C. Shen, Z. Y. Pu, M. W. Dunlop, Q.-G. Zong, H. Zhang, C. J. Xiao, Z.X. Liu, and A. Balogh (2005), Dimensional analysis of observed structures us-ing multipoint magnetic field measurements: Application to Cluster, Geophys.Res. Lett.32, 12,105, doi:10.1029/2005GL022454
    Sibeck, D. G., G. L. Siscoe, J. A. Slavin, E. J. Smith, S. J. Bame, and F. L. Scarf(1984), Magnetotail ?ux ropes, Geophys. Res. Lett., 11, 1,090–1,093.
    Simnett, G. M., and R. A. Harrison (1985), The onset of ceronal mass ejections,Sol. Phys., 99, 291–311.
    Siscoe, G. L., and N. U. Crooker (2006), Initial conditions in?uences on CMEexpansion and propagation, Solar Phys., 239, 293–316, doi: 10.1007/s11207-006-0302-3.
    Siscoe G., and R. Schwenn (2006), CME disturbance forecasting, Space Sci. Rev.,123, 453–470, doi:10.1007/s11214-006-9024-y
    Smith Z., and M. Dryer (1990), MHD study of temporal and spatial evolution ofsimulated interplanetary shocks in the ecliptic plane within 1AU, Solar Phys.,129, 387–405.
    Smith Z., and M. Dryer (1995), The interplanetary shock propagation model:a model for predicting solar-?are-caused geomagnetic storms, based on the2 1/2D, MHD numerical simulation results from the interplanetary globalmodel. NOAA technical memorandum ERL SEL-89. e Reviews, 123, 453–470,doi:10.1007/s11214-006-9024-y.
    Sonnerup, B. U. O¨., and L. J. Cahill, Jr. (1968), Explorer 12 Observations of theMagnetopause Current Layer, J. Geophys. Res.73, 1,757.
    Sonnerup, B. U. O., I. Papamastorakis, G. Paschmann, and H. Luehr (1987),Magnetopause properties from AMPTE/IRM observations of the convectionelectric field - Method development, J. Geophys. Res.92, 12,137–12,159.
    Sonnerup, B. U. O¨., and M. Scheible (1998), Minimum and maximum vari-ance analysis, in Analysis Methods for Multi-Spacecraft Data, edited by G.,Paschmann, and P. D., Daly, ESA Publications Division, Keplerlaan 1, 2200AG Noordwijk, Netherlands, 185–220.
    Sonnerup, B. U. O¨., S. Haaland, G. Paschmann, M. W. Dunlop, H. R`eme, andA. Balogh (2006a), Orientation and motion of a plasma discontinuity fromsingle-spacecraft measurements: Generic residue analysis of Cluster data, J.Geophys. Res.111, 5,203, doi:10.1029/2005JA011538
    Sonnerup, B. U. O¨., H. Hasegawa, W.-L. Teh, and L.-N. Hau (2006b),Grad-Shafranov reconstruction: An overview, J. Geophys. Res.111, 9,204,doi:10.1029/2006JA011717
    Sonnerup, B. U. O¨., and W.-L. Teh (2008), Reconstruction of two-dimensionalcoherent MHD structures in a space plasma: The theory, J. Geophys. Res.,113, A05202, doi:10.1029/2007JA012718.
    Sterling, A. C. and R. L. Moore (2004), External and internal reconnection intwo filament-carrying magnetic cavity solar eruptions, ApJ, 613, 1,221–1,232,doi:10.1086/423297.
    Taylor, J. B. (1986), Relaxation and magnetic reconnection in plasmas, Rev. Mod.Phys., 58(3), 741–763.
    Teh, W.-L., and B. U. O¨. Sonnerup (2008), First results from ideal 2-D MHDreconstruction: magnetopause reconnection event seen by Cluster, Ann. Geo-phys., 26, 2,673–2,684.
    Temerin, M. and X. Li 2002, A new model for the prediction of Dst on the basis ofthe solar wind, J. Geophys. Res., 107(A12), 1,472, doi:10.1029/2001JA007532
    Tsurutani, B. T. (2000), Solar/interplanetary plasma phenomena causing geo-magnetic activity at Earth, in Proceedings of International School of Physics”Enrico Fermi”Course CXLII, edited by B. Coppi, A. Ferrari, and E. Sindoni,p. 273, IOS Press, Amsterdam.
    Tsurutani, B. T., et al. (2006), Corotating solar wind streams and recur-rent geomagnetic activity: A review, J. Geophys. Res., 111, A07S01,doi:10.1029/2005JA011273.
    Tsurutani, B. T., W. D. Gonzalez, X.-Y. Zhou, R. P. Lepping, and V. Bothmer(2004), Properties of slow magnetic clouds, J. Atmosph. Solar-Terrestrial Phys.66, 147–151, doi:10.1016/j.jastp.2003.09.007.
    Tu, C. Y., Z. Cheng, E. Marsch, D. X. Li, L. Zhao, J. X. Wang, and K. Wilhelm(2005), Solar wind origin in coronal funnels, Science, 308, 519–523.
    Veronig, A. M., M. Temmer, and A. Hanslmeier(2004), The solar soft X-raybackground ?ux and its relation to ?are occurrence, Sol. Phys., 219, 125–133.
    Vishwakarma, J. P., and A. K. Yadav (2003), Self-similar analytical solutions forblast waves in inhomogeneous atmospheres with frozen-in-magnetic field, TheEuropean Physical Journal B, 34, 247–253.
    Wang, Y. M., and N. R. Sheely (1990), Solar wind speed and the coronal ?uxexpansion, ApJ, 355, 726–732.
    Wang, Y. M., and N. R. Sheely (1991), Why fast solar wind originates from slowlyexpanding coronal ?ux tubes, ApJ, 372, 45–48.
    Wang, Y. M., P. Z. Ye, S. Wang, G. P. Zhou, and J. X. Wang (2002), A sta-tistical study on the geoe?ectiveness of Earth-directed coronal mass ejec-tions from March 1997 to December 2000, J. Geophys. Res., 107(A11), 1,340,doi:10.1029/2002JA009244
    Wang, Y. M., S. Wang, and P. Z. Ye (2002), Multiple magnetic clouds in inter-planetary space, Sol. Phys., 211, 333–344.
    Wang, Y. M., P. Z. Ye, and S. Wang (2003), Multiple magnetic clouds:Several examples during March-April 2001, J. Geophys. Res.108, 1,370,doi:10.1029/2003JA009850
    Wei, F. S. (1982), The blast wave propagating in a moving medium variabledensity, Chinese J. Space Sci., 2(1), 63–72.
    Wei, F. S., G. Yang, and G. Zhang (1983), Three-dimensional propagation prop-erties of ?are-associated interplanetary shock waves from interplanetary scin-tillation observations, in Proceedings of Kunming Workshop on Solar Physicsand Interplanetary, Travelling Phenomena II (eds. de Jager, C., Chen Biao)(in Chinese), Beijing: Science Press, 1,043–1,051.
    Wei, F. S., and H. C. Cai (1990), Preliminary application of fuzzy clustering in the?are-geomagnetic disturbance analysis, Chinese J. Space Sci., 10(1), 35–41.
    Wei, F. S., and M. Dryer (1991), Propagation of solar ?are-associated inter-planetary shock waves in the heliospheric meridional plane, Solar Phys., 132,373–394.
    Wei, F. S., Y. Xu, and X. S. Feng (2002), Prediction tests by using ISF methodfor the geomagnetic disturbances, Sci. China (E), 45, 525–530.
    Wei, F. S., H. C. Cai , and X. S. Feng (2003), A prediction method of geomagneticdisturbances based on IPS observations dynamics fuzzy methematics, Adv.Space Res., 31(4), 1,069–1,073.
    Wei, F., R. Liu, Q. Fan, and X. Feng (2003a), Identification of the magnetic cloudboundary layers, J. Geophys. Res.108, 1,263, doi:10.1029/2002JA009511
    Wei, F., R. Liu, X. Feng, D. Zhong, and F. Yang (2003b), Magnetic structuresinside boundary layers of magnetic clouds, Geophys. Res. Lett.30, 2,283–2,287,doi:10.1029/2003GL018116
    Wei, F. S., X. S. Feng, Y. Xu, and Q. L. Fan (2005), Prediction tests by using ISFmethod for the geo-magneticd isturbances, Adv. Space Res., 36, 2,363–2,367,doi:10.1016/j.asr.2004.04.019.
    Wei, F., X. Feng, F. Yang, and D. Zhong (2006), A new non-pressure-balancedstructure in interplanetary space: Boundary layers of magnetic clouds, J. Geo-phys. Res.111, A03102, doi:10.1029/2005JA011272
    Weimer, D. R., D. M. Ober, N. C. Maynard, W. J. Burke, M. R. Collier, D. J.McComas, N. F. Ness, and C. W. Smith (2002) Variable time delays in thepropagation of the interplanetary magnetic field, J. Geophys. Res., 107(A8),doi:10.1029/2001JA009102
    Whang, Y. C., J. Zhou, R. P. Lepping, and K. W. Ogilvie (1996), Interplanetaryslow shocks observed from WIND, Geophys. Res. Lett., 23, 1,239.
    Whang, Y. C., D. Fairfield, E. J. Smith, R. P. Lepping, S. Kokubun, and Y. Saito(1997), Observations of double discontinuities in the magnetotail, Geophys.Res. Lett., 24, 3,153.
    Wheatland, M. S. (2004), A Bayesian Approach to Solar Flare Prediction, ApJ,609, 1,134–1,139.
    Wilson R. M., and E. Hildner (1984), Are interplanetary magnetic clouds mani-festations of coronal transients at 1 AU?, Solar Phys., 91, 169–180.
    Wu, S. T., A. H. Wang, Y. Liu; J. T. Hoeksema (2006), Data-driven mag-netohydrodynamic model for active region evolution, ApJ, 652(1), 800–811,doi:10.1086/507864
    Wu, C. C., S. T. Wu, and M. Dryer (2004), Evolution of fast and slow shockinteractions in the inner heliosphere, Sol. Phys., 223, 259–282.
    Wu, C. C., M. Dryer, and S. T. Wu (2005a), Slow shock interactions in theheliosphere using an adaptive grid MHD model, Ann. Geophys., 23, 1,013–1,023.
    Wu, C. C., C. D. Fry, D. Berdichevsky, M. Dryer, Z. Smith, and T. Detman(2005b), Predicting the arrival time of shock passages at Earth, Solar Phys.,227, 371–386.
    Wu, S. T., A. H. Wang, C. D. Fry, X. S. Feng, C. C. Wu, and M. Dryer (2008),Challenges of modeling solar disturbances’arrival times at the Earth, doi:10.1007/s11431-008-0266-7
    Xiao, C. J., Z. Y. Pu, Z. W. Ma, S. Y. Fu, Z. Y. Huang, and Q. G. Zong (2004), In-ferring of ?ux rope orientation with the minimum variance analysis technique,J. Geophys. Res.109, 11,218, doi:10.1029/2004JA010594
    Xie, Y. Q., F. S. Wei, X. S. Feng, and D. K. Zhong (2006), Prediction test for thetwo extremely strong solar storms in October 2003, Solar Phys., 234, 363–377,doi: 10.1007/s11207-006-0091-8.
    Xie, Y.Q., F.S. Wei, C.Q. Xiang, and X.S. Feng (2006), The e?ect of heliosphericcurrent sheet on interplanetary shocks, Solar Phys., 238(2), 377–390.
    Yurchyshyn, V. B., H. Wang, P. R. Goode, and Y. Deng (2001), Orientation ofthe magnetic fields in interplanetary ?ux ropes and solar filaments, Astrophys.J., 563, 381–388.
    Yurchyshyn, V., S. Yashiro,V. Abramenko, H. Wang, and N. Gopalswamy (2005),Statistical distributions of speeds of coronal mass ejections, ApJ, 619, 599–603.
    Zhang, J., and J. Wang, N. Nitta (2001), A filament-associated halo coronal massejection, ChJAA, 1, 85–99.
    Zhang, J., K. P. Dere, R. A. Howard, and V. Bothmer (2003) Identification ofSolar Sources of Major Geomagnetic Storms between 1996 and 2000, ApJ ,582, 520–533.
    Zhang, J., et al. (2007), Solar and interplanetary sources of major geomagneticstorms (Dst≤100 nT) during 1996–2005, J. Geophys. Res., 112, A10102,doi:10.1029/2007JA012321.
    Zhang, M. and B. C. Low(2001), Magnetic ?ux emergence into the solar corona.I. Its role for the reversal of global coronal magnetic fields, ApJ, 561, 406–419.
    Zhang, M. and B. C. Low(2002), Magnetic ?ux emergence into the solar corona.II. Global magnetic fields with current sheets, ApJ, 576, 1,005–1,017.
    Zhang, M. and B. C. Low(2003), Magnetic ?ux emergence into the solar corona.II. The role of the magnetic helicity conservation, ApJ, 584,479–496.
    Zhang, M. and B. C. Low(2005), The Hydromagnetic nature of solar coronalmass ejections, Annu. Rev. Astron. Astrophys. , 43, 103–140, doi: 10.1146/an-nurev.astro.43.072103.150602
    Zhang, Y., and F. M. Ma(2008), A numerical method for initial value problemof elliptic equation, J. Jilin Univ. (Sci. Ed.), 46(5), 809–815.
    Zhao, L. (2006), Solar wind origion in corona funnels: An introduction of theArticle published in Science Vol. 308, 2005, Acta Scientiarum UniverstatisPekensis, 42, 26–28.
    Zhao, X. P. and J. T., Hoeksema (1995), Predicting the heliospheric magnetic fieldusing the current sheet–source surface model, Adv. Space Res., 16, 181–184.
    Zhou, X.-Z., Q.-G. Zong, J. Wang, Z. Y. Pu, X. G. Zhang, S. Q. Q., and J. B. Cao(2006), Multiple triangulation analysis: application to determine the velocityof 2-D structures, Ann. Geophys., 24, 3,173–3,177.
    Zhukov, A. N. (2005), Solar sources of geoe?ective CMEs: a SOHO/EIT view, inCoronal and Stellar Mass Ejections, edited by: Dere, K. P., Wang, J., and Yan,Y., Proceedings IAU Symposium 226, Cambridge University Press, 437–447
    Zirker, J. B. (1977), Coronal holes and high-speed wind streams, Rev. Geophys.& Space Phys.,15, (abstract).
    Zong, Q.-G., et al. (1997), Geotail observations of energetic ion species and mag-netic field in plasmoid-like structures in the course of an isolated substormevent, J. Geophys. Res.102, 11,409–11,428, doi:10.1029/97JA00076
    Zwickl, R. D., J. R. Asbridge, S. J. Bame, W. C. Feldman, J. T. Gosling, andE. J. Smith (1983), Plasma properties of driver gas following interplanetaryshocks observed by ISEE-3, in Solar Wind Five, edited by M. Neugebauer,NASA Conf. Publ., 2280, 711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700