三维气固两相平板间射流中相间耦合作用的直接数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于气固两相湍流中颗粒与流体相互作用以及其中颗粒之间的碰撞问题,多年来一直是国内外关于气固两相流动的研究热点和难点问题。气固两相平面射流作为一种典型的自由剪切流动,在自然界与实际的工程应用中广泛存在。但是迄今为止,对三维气固两相平板间湍流射流中相间耦合的研究还很少,其中采用直接数值模拟(DNS)进行的研究更是几乎没有。
     在这样的背景下,本学位论文采用DNS方法集中对不可压缩的三维气固两相平板间湍流射流中相间作用规律进行了研究。其中对流场不引入任何湍流模型,采用DNS方法直接求解完整的三维非定常的Navier-Stokes方程组,对颗粒的跟踪分别采用基于单向和双向耦合的拉格朗日方法,颗粒之间的碰撞采用确定性的硬球模型,颗粒与流体之间的动量耦合采用点力描述。
     首先在单向耦合情况下,单独考察了不同Stokes的颗粒间碰撞及其对颗粒扩散特性的影响。模拟发现不同Stokes数的颗粒碰撞与其扩散特点及流场拟序涡结构的演化有着密切的关系,尽管整个流场的颗粒平均浓度较低,但是在颗粒局部聚集的较高浓度区域都可以观察到颗粒碰撞的发生。同时发现,颗粒的局部聚集效应是较小惯性颗粒发生碰撞的主导因素,而较大惯性颗粒的碰撞现象则主要受湍流输运作用的影响。此外,颗粒碰撞使得颗粒在流场中的分布更加均匀,扩散程度也有所增加。对于流场中颗粒尺寸按照Rosin-Rammler函数分布时的研究发现,不同粒径颗粒混合的情形下,流场中颗粒发生碰撞的次数明显变多了碰撞对颗粒扩散统计结果的影响也明显了。
     接着采用双向耦合的方法,对流场中颗粒与流体之间的相互作用进行了详细的研究。计算时,为了得到更为真实准确的结果,没有采用计算颗粒的概念,而是对不同载荷下流场中的实际颗粒数目进行了跟踪。模拟结果表明不同Stokes数的颗粒都改变了流场拟序涡结构的发展演化,对于同一种Stokes数的颗粒而言,颗粒固相载荷越大,对流场涡结构的影响越明显。颗粒使得流场流向平均速度剖面变高变窄了,降低了流场的横向平均速度和脉动速度。相同载荷的情况下,Stokes数为0.5和1的两种颗粒对流场平均速度的改变程度要更明显。同时发现,颗粒使射流中心线上的流向平均速度衰减变慢了,且在相同载荷的情况下,Stokes数为0.5的较小颗粒影响更明显。所有颗粒都增加了流场横向两侧的湍流强度,减小了流场湍动能和雷诺应力。此外,还发现双向耦合效应对颗粒运动及扩散的影响也不容忽视,双向耦合效应使不同Stokes数颗粒的扩散特点都发生了变化,并且改变了颗粒在流场中的扩散程度、运动速度、浓度以及能量分布情况。
     最后,考虑四向耦合效应对较低载荷情况下的三维气固两相射流中的相间耦合作用作了进一步的探讨。通过对颗粒间的碰撞进行了定量统计,发现碰撞主要集中分布在流场的中心区域、颗粒碰撞次数与颗粒在流场中的浓度、运动速度和颗粒粒径都有关系,其中stokes数为100的颗粒在流场中碰撞发生的次数最多。同时发现颗粒碰撞对流场统计特性产生了不同程度的影响,各种Stokes数的颗粒碰撞作用都加快了气相中心速度的衰减、增强了流场的总湍流强度。但是在较低固相载荷的情形下,四向耦合不会从根本上改变流场的性质。此外,对四向耦合情况下颗粒在流场中的运动速度及浓度分布进行了统计,发现不同Stokes数的颗粒在流场中的速度及浓度分布与其在流场中的运动扩散特点有密切的关系。同时也初步探讨了颗粒碰撞对其在射流中心线上运动特性的影响,发现碰撞改变了颗粒沿横向的运动速度和方向。
With regard to the fluid-particle interaction and particle-particle collision in gas-solid turbulence, it has been the focus and difficulty of investigation of gas-solid two-phase flow at home and abroad for several decades. Gas-solid two-phase plane jet, which is one of the typical free-shear flows, exists widely in the nature and engineering applications. But, up to now, few researches are devoted to the inter-phase coupling interaction in three-dimensional gas-solid two-phase plane turbulent jet, especially for numerical researches using direct numerical simulation.
     Under the above background, the present thesis uses direct numerical simulation to investigate incompressible three-dimensional gas-solid two-phase plane turbulent jet, focusing on the inter-phase interactions. The fluid motion is without any turbulence model, whereas the full three-dimensional unsteady Navier-Stokes equations are directly solved. The particle motion is traced in Lagrangian frame based on the one way and two-way coupling method respectively, and particle-particle collision is simulated by using the hard-sphere model in the deterministic way. Additionally, the momentum coupling between fluid and particle is depicted by point-force approximation.
     For the one-way coupling, the effect of particle-particle collision as well as particle dispersion at different Stokes numbers is investigated respectively. The simulation results indicate the close correlation between the characteristics of particle-particle collision and dispersion for particles with different Stokes numbers and the evolution of fluid coherent structure. Although the mean particle concentration is kept low, particle-particle collision is observed in the accumulation regions with relatively high particle concentration. Meanwhile, the local accumulation effect is the dominant factor of particle-particle collision for particles with small inertia, whereas for particles with large inertia, collision phenomenon is mainly influenced by the turbulent transport effect. Moreover, particle-particle collision causes the particle distribution in the fluid field become more uniformly and the degree of dispersion enhanced slightly. With regard to the particle size distribution based on the Rosin-Rammler function, it is observed that the particle-particle collision is enhanced by mixing between different size particles, and the effect of particle-particle collision on enhancement of particle dispersion becomes more evident.
     For the two-way coupling, detailed investigations on fluid-particle collision interaction are carried out. In order to obtain more accurate results, the concept of computational particles is not taken into account. Alternatively, actual numbers of particles are traced based on the mass loading. Simulation results indicate that the evolution of fluid coherent structure is changed by particles with different Stokes numbers. For the same Stokes number, larger particle mass-loading causes greater changes in fluid vortex structure. The mean streamwise velocity profile becomes higher and narrower by the additive of particles, and the mean lateral velocity and fluctuation are decreased. With the same mass-loading, the changes in mean streamwise velocity are more evident for particles with St=0.5 and St=1 than that for other Stokes numbers. Meanwhile, the decay of mean streamwise velocity in the jet axis is attenuated, and it is more evident for St=0.5. The turbulence intensity at both sides of the lateral are increased, whereas the turbulence energy and Reynolds stress are decreased by additive of particles. Moreover, the effect of two-way coupling on particle motion and dispersion cannot be neglected too. The characteristics of particle dispersion in the fluid field, such as the degree of dispersion, motion velocity, concentration and the energy distribution, are all changed by the two-way coupling effect.
     Finally, for the four-way coupling, the inter-phase coupling effects in the three-dimensional gas-solid two-phase jet with low mass-loadings are investigated. By carrying out quantitative statistics of particle collision, it is indicated that particle-particle collision occurs mainly in the central region, and the collision times is related to the concentration, the motion velocity and the size of particles. The particle collision changes the statistical results of fluid field in different degrees. Collision enhances the decay of fluid in the jet axis and the total turbulence intensity for all particles. However, for the low mass loading, the four-way coupling interaction doesn't change the property of fluid field radically. Moreover, statistics of particle motion velocity and concentration distribution in the fluid field are also carried out for four-way coupling case. It is observed that the motion velocity and concentration of particles are closely related to the dispersion characteristics of particles. Additionally, the effect of particle collision on the particle motion in the jet axis is preliminarily interpreted, such as the particle velocities in the lateral direction are changed, etc.
引文
1. Reynolds, O., An experimental investigation of the circumstance which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channel. Phil. Trans. Roy. Soc.1883,174,935-982.
    2. Von Karman, T., On the Statistical Theory of Turbulence. Proc. Natl. Acad. Sci. USA 1937,23,98-105.
    3. Hinze, J.O., Turbulence.2nd ed. New York:McGraw Hill,1975.
    4. Corrsin, S, Kistler, A.L., NACA Rep.,1955.
    5. Townsend, A.A., The structure of turbulent shear flow. Cambridge Univ. Press, 1956.
    6. Grant, H.L., The large eddied of turbulent motion. J. Fluid Mech.1958,4, 149-190.
    7. Kline, S.J., Rundstadler, P.W., Visual studies of the wall layers in the turbulent boundary layer. J. Appl. Mech.1959,26,166-170.
    8. Kline, S.J., Reynolds, W.C., Schraub, F.A., Rundstadler, P.W., The structure of turbulent boundary layer. J. Fluid Mech.1967,30,741-773.
    9. Brown, G.L., Roshko, A., On density effects and large structure in turbulent mixing layers. J. Fluid Mech.1974,64,775-816.
    10. Sommerfeld, M., The importance of inter-particle collisions in horizontal gas-solid channel flows. In:Stock, D.E.et al. (Eds.),1995. Gas-Particle Flows. In: ASME Fluids Engineering Conference, Hiltons Head, USA, FED-Vol.228. ASME, 335-345.
    11. Smoluchowski, M.V., Versuch einer mathematischen theorie der koagulation-skinetic kolloider losunggen. Z. phys. Chem.1917,92,129.
    12. Camp, T.R., Stein, P.C., Velocity gradients and internal work in fluid motion. J. Boston Soc. Civil Engrs.1943.30,219-228.
    13. Saffman, P.G., Turner, J.S., On the collision of drops in turbulent clouds. J. Fluid Mech.1956,1,16-30.
    14. Abrahamson, J., Collision rates of small particles in a vigorously turbulent fluid. Chem. Eng. Sci.1975,30,1371-1379.
    15. Balachandar, S., Particle coagulation in homogeneous turbulence. Ph.D. thesis, Division of Engineering, Brow University, Rhode Island,1988.
    16. Kruis, F.E., Kusters, K.A., The collsion rate of particles in turbulent media. J. Aerosol Sci.1996,27,263-264.
    17. Sundaram, S., Collins, L.R., Collision statistics in an isotropic particle-laden turbulent suspension I. direct numerical simulations. J. Fluid Mech.1997,335, 75-109.
    18. Wang, L.P., Wexler, A.S., Zhou, Y., On the collision rate of small particles in isotropic turbulence Ⅰ. zero-inertia case. Phys. Fluids 1998,10,266-276.
    19. Zhou, Y., Wexler, A.S., Wang, L.P., On the collision rate of small particles in isotropic turbulence Ⅱ. finite inertia case. Phys. Fluids 1998,10,1206-1216.
    20. Wang, L.P., Wexler, A.S., Zhou, Y., Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids 1998,10,2647-2651
    21. Wang, L.P., Wexler, A.S., Zhou, Y., Statistical mechanical description and modeling of turbulent collision of inertial particles. J. Fluid Mech.2000,415, 117-153.
    22. Alipchenkov, V.M., Zaichik, L.I., Particle collision rate in turbulent flow. Fluid Dynamics 2001,36,608-618
    23. Tanaka, T., Tsuji, Y., Numerical simulation of gas-solid two-phase flow in a vertical pipe:on the effect of inter-particle collision. ASME/FED Gas-Solid Flows 1991,121,123-128.
    24. Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y., Large-eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel:Effect of Considering Inter-particle Collisions. J. Fluid. Mech.2001,442,303-334.
    25. Sommerfeld, M., Zivkovic, G.,1992. Recent advances in the numerical simulation of pneumatic conveying through pipe systems. In:Hirsch, Ch., Periaux, J., Onate, E. (Eds.), Computational Methods in Applied Science. In:Invited Lectures and Special Technological Sessions of the First European Computational Fluid Dynamics Conference and the First European Conference on Numerical Methods in Engineering, Brussels.201-212.
    26. Oesterle, B., Petitjean, A., Simulation of particle-to-particle interactions in gas-solid flows. Int. J. Multiphase Flow 1993,19,199-211.
    27. Burmester De Bessa, R., Lourenco, L., Riethmuller, M.L., A kinetic model for gas-particle flow. Paper presented at Pneumotransport 5, Fifth International Conference on the Pneumatic Transport of Solids in Pipes, London,16-18. April, 1980.
    28. Tsuji, Y., Morikawa, Y., Tanaka, T., Nakatsukasa, N., Nakatani, M., Numerical simulation of gas-solid twophase flow in a two-dimensional horizontal channel. Int. J. Multiphase Flow 1987,13,671-684.
    29. Yonemura, S., Tanaka, T., Tsuji, Y., Cluster formation in gas-solid flow predicted by the DSMC method. In Gas-Solid Flows.1993, FED-Vol.166,303-309.
    30. Bird, G.A.,1976. Molecular Gas Dynamics. Clarendon.
    31. Lun, C.K.K., Liu, H.S., Numerical simulation of dilute turbulent gas-solid flows in horizontal channels. Int. J. Multiphase Flow 1997,23,575-605.
    32. Sakiz, M., Simonin, O.,2001. Continuum modelling and Lagrangian simulation of massive frictional colliding particles in a vertical gas-solid channel flow. In: Michaelides, E. (Ed.), Proc.4th Int. Conf. on Multiphase Flow. New Orleans, USA, (CD-ROM Proc. ICMF_2001, Paper 186).
    33. Sommerfeld, M., Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. Int. J. Multiphase Flow 2001,27,1829-1858.
    34. Sommerfeld, M., Analysis of collisions effects for turbulent gas-particle flow in a horizontal channel:Part Ⅰ. Particle transport. Int. J. Multiphase Flow 2003,29, 675-699.
    35. Sommerfeld, M., Kussin, J., Analysis of collision effects for turbulent gas-particle flow in a horizontal channel. Part Ⅱ. Integral properties and validation. International Journal of Multiphase Flow 2003,29,701-718.
    36. Hsh, C.H., Chang, K.C., A Lagrangian modeling approach with the direct simulation Monte-Carlo method for inter-particle collisions in turbulent flow. Advanced Powder Technol.2007,18,395-426.
    37. Kulick, J.D., Fessler J.R., Eaton, J.K., Particles response and turbulence modification in fully developed channel flow. J. Fluid Mech.1994,277,108-134.
    38. Simonin, O., Prediction of the dispersed phase turbulence in particle-laden jets. In Gas-Solid Flows.1991, FED-Vol.121,197-206. ASME.
    39. Simonin, O., Continuum modelling of dispersed turbulent two-phase flows. Von Karman Institute for Fluid Dynamic,1996.
    40. Fede, P., Simonin, O., Villedieu P., Monte Carlo simulation of colliding particles in gas-solid turbulent flows from a joint fluid-particle PDF equation. in Proceedings of ASME FEDSM. Quebec, Canada,2002.
    41. Mei, R., Hu, K.C., On the collision rate of small particles in turbulent flows. J. Fluid Mech.1999,391,67-89.
    42. Reade, W.C., Collins, L.R., Effect of preferential concentration on turbulent collision rates. Phys.Fluids 2000,12,2530-2540
    43. Maxey, M.R., The gravitational settling of aerosol particles in homogeneous and random flow fields. J. Fluid Mech.1987,174,441-465.
    44. Squires, K.D., Eaton, J.K., Preferential concentration of particles by turbulence. Phys.Fluids A 1991,3,1169-1178.
    45. Fessler, J.R., Kulick, K.D., Eaton, J.K., Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 1994,6,3742-3749.
    46. Eaton, J.K., Fessler, J.R., Preferential concentration of particles by turbulence. Int. J. Multiphase Flow 1994,20,169-209.
    47. Wang, L.P., Maxey, M.R., Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech.1993,256, 27-68.
    48. Fallon, T., Rogers, C.B., Turbulence-induced preferential concentration of solid particles in microgravity conditions. Exp. Fluids 2002,33,233-241.
    49. Hogan, R.C., Cuzzi, J.N., Stokes and Reynolds number dependence of preferential particle concentration in simulated three-dimensional turbulence. Phys. Fluids 2001,13,2938-2945.
    50. Wood, A.M., Hwang, W., Eaton, J.K., Preferential concentration of particles in homogeneous and isotropic turbulence. Int. J. Multiphase Flow 2005,31, 1220-1230.
    51. Li, J., Kwauk, M., Particle-Fluid Two-phase flow:The Energy-Minimization Multi-Scale Method. Beijing, Metallurgical Industry Press,1994.
    52. Wassen, E., Frank, T., Simulation of cluster formation in gas-solid flow induced by particle-particle collisions. Int J Multiphase Flow 2001,27,437-358
    53. Zhou, H., Flamant, G., Gauthier, D., Lu, J., Lagrangian approach for simulating the gas-particle folw structure in a circulating fluidized bed riser. Int J Multiphase Flow 2002,28,1801-1821.
    54. Zaichik, L.I., Simonin, O., Alipchenkov, V.M., Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence. Phys.Fluids 2003,15,2995-3005.
    55. Zaichik, L.I., Simonin, O., Alipchenkov, V.M., Comparison of two statistical models for the calculation of collisions of particles in isotropic turbulence. High Temperature 2003,41,646-56.
    56. Zaichik, L.I., Alipchenkov, V.M., Pair dispersion and preferential concentration of particles in isotropic turbulence. Phys. Fluids 2003,15,1776-1787.
    57.陈胤密.均匀湍流内有限惯性颗粒碰撞率的直接模拟.武汉:华中科技大学,2004.
    58.陈胤密,柳朝晖,郑楚光.颗粒碰撞的直接数值模拟方法.计算物理,2004,21(5):421-426.
    59.李瑞霞.均匀湍流内湍流-布朗颗粒碰撞的直接数值模拟研究.武汉:华中科技大学,2006.
    60.李瑞霞,柳朝晖,贺铸,陈胤密,郑楚光.各向同性湍流内颗粒碰撞率的直接模拟研究.力学学报,2006,38(1):25-32.
    61.赵海波,郑楚光,陈胤密.考虑颗粒碰撞的多重Monte-Carlo算法.力学学报,2005,37(5):564-571.
    62.赵海波,柳朝晖,郑楚光,陈胤密,章骥.气固两相流中颗粒碰撞的Monte-Carlo数值模拟.计算力学学报,2005,22(3):299-304.
    63.耿珺,张丰豪,柳朝晖,郑楚光.超细颗粒在碰撞凝并作用下的尺寸分布变化.燃烧科学与技术,2005,11(6):565-569.
    64.张鑑,由长福,徐旭常.循环床内气固两相流中稠密颗粒间碰撞的数值模拟.工程热物理学报,1998,19(2):256-260.
    65.蔡毅,赵海亮,由长福,祁海鹰,徐旭常.颗粒碰撞率的实验研究.工程热物理学报,2004,25(6):974-976.
    66.于勇,蔡飞鹏,周力行,时铭显.考虑颗粒间碰撞的稠密气/固流动二阶矩两相湍流模型.化工学报,2005,56(4):620-626.
    67.张文斌,祁海鹰,由长福,徐旭常.碰撞诱发颗粒团聚及破碎的力学分析.清华大学学报(自然科学版),2002,42(12):1639-1643.
    68.张文斌,祁海鹰,程旭,由长福,徐旭常.应用PTV技术对颗粒碰撞规律的研究.工程热物理学报,2002,23(增刊):193-196.
    69.郭印诚,陈志兵,陈新国,徐春明,高金森.颗粒动力学与湍动能耦合的稠密两相流动数学模型.计算机与应用化学,2003,20(1):186-190.
    70.刘敏,张会强,郭印诚,王希麟,林文漪.稠密气固流动中的格子-确定性轨道模型.清华大学学报(自然科学版),2003,43(2):246-249.
    71.刘敏,张会强,王希麟,郭印诚,林文漪.稠密气固流动中颗粒聚集现象的数值模拟.燃烧科学与技术,2003,9(2):128-134.
    72.刘敏,张会强,郭印诚,王希麟,林文漪.稠密气固流动中颗粒聚集的定量评价.工程热物理学报,2004,25(5):804-806.
    73.陆慧林,赵广播,刘文铁,别如山.低颗粒浓度气固两相均匀剪切流.计算物理,1999,16(4):436-441.
    74.刘阳,陆慧林,刘文铁,赵云华.气固流化床的离散颗粒运动-碰撞解耦模型与模拟.燃烧科学与技术,2003,9(6):551-555.
    75.刘欢鹏,王淑彦,陆慧林,刘文铁,沈志恒DSMC-LE方法研究循环流化床内颗粒团聚物的流动特性.化工学报,2005,56(7):1198-1205.
    76.何玉荣,陆慧林,别如山,刘文铁.鼓泡流化床宽筛分颗粒气固两相流动的流体动力学.动力工程,2003,23(5):2646-2651.
    77.鲁录义,周逢森,冯诗愚,顾兆林.多分散系统不同粒径颗粒碰撞的多重八叉树搜索算法.西安交通大学学报,2008,42(3):305-308.
    78.亢力强,郭烈锦.风沙跃移中颗粒与多粒径床面碰撞的数值模拟.工程热物理学报,2006,27(1):82-84.
    79.昌泽舟,Berlemont A., Gouesbet G考虑颗粒间碰撞的气固两相流拉格朗日模拟.计算力学学报,2001,18(4):388-392.
    80.蔡杰,凡凤仙,吴晅,袁竹林.颗粒间碰撞对气固两相流中细长颗粒流化取向分布的影响.中国电机工程学报,2008,28(17):66-69.
    81.欧阳洁,李静海.模拟气固两相流动非均匀结构的颗粒运动分解轨道模型. 中国科学:B辑,1999,29(1):29-38.
    82.李满枝DSMC方法在循环流化床中的数值模拟.西北工业大学,2004.
    83.孙平,樊建人,岑可法.计及颗粒间碰撞的湍流气固两相流模型及验证.自然科学进展,1998,8(5):572-580.
    84.樊建人,姚军,张新育,岑可法.气固两相流中颗粒—颗粒随机碰撞新模型.工程热物理学报,2001,22(5):629-632.
    85.吴锦坤,罗坤,胡桂林,樊建人,岑可法.鼓泡流化床流动特性的直接颗粒模拟.浙江大学学报(工学版),2007,41(3):504-508.
    86. Gui, N., Fan, J.R., Luo, K. Experimental study on collision rates of inertial particles in particulate flows under the effect of gravity. Chem. Eng. Sci.2007,62, 6112-6120.
    87. Gui, N., Fan, J.R., Cen K.F. Effect of particle-particle collision in decaying homogeneous and isotropic turbulence. Phys. Rev. E 2008,78,046307.
    88.王叶龙,林建中,石兴.柱状粒子间相互作用对沉降运动的影响.自然科学进展,2'004,14(1):39-45.
    89.王叶龙.相互碰撞的圆粒子在竖直通道中沉降的数制研究.应用数学和力学.2006,27(7):859-866.
    90. Elghobashi, S.E., On predicting particle-laden turbulent flows. Appl. Sci. Res. 1994,52:309-329.
    91. Taylor, G.I., Diffusion by continuous movements. Proc. Lond. Math. Soc.,1921, 20:196-212.
    92. Batcherlor, G.K., Diffusion in a field of homogeneous turbulence. I. Eulerian analysis. Aust. J. Sci. Res.1949,2,437-450.
    93. Corrsin, S., Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci.1963,20,115-119.
    94. Corrsin, S., Remarks on turbulent heat transfer in Proceedings of the Iowa Thermodynamics Symposium. State University of Iowa, Iowa City.1953,5-30.
    95. Yudine, M.I., Physical considerations on heavy particle diffusion. Adv. Geophy. 1959,6,185-191.
    96. Csanady, G.T., Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci.1963,20,201-208.
    97. Reeks, M.W., On the dispersion of small particles suspended in an isotropic turbulent field. J. Fluid Mech.1977,83,529-546.
    98. Wang, L.P., Stock, D.E., Dispersion of heavy particles by turbulent motion. J. Atmos. Sci.1993,50,1897-1913.
    99. Snyder, W.H., Lumley, J.L., Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech.1971,48,41-71.
    100. Wells, M.R., Stock, D.E., The effect of crossing trajectories on the dispersion of particles in a turbulent flow. J. Fluid Mech.1983,136,31-62.
    101. Crowe, C.T., Gore, R.A., Troutt, T.R., Particle dispersion by coherent structures in free shear flows. Particulate Science and Technology,1985,3,149-158.
    102. Crowe, C.T., Chung, T.N., Troutt, T.R., Particle mixing in free shear flows. Progress in Energy and Combustion Science,1988,14,171-194.
    103. Wen, F., Kamalu, N., Chung, J.N., Crowe, C.T., Troutt, T.R., Particle dispersion by vortex structures in plane mixing layers. J Fluids Engng.1992,114,657-666.
    104. Chein, R., Chung, J.N., Simulation of particle dispersion in a two-dimension mixing layer. AIChE J.1988,34,946-954.
    105. Ling, W., Chung, J.N., Troutt, T.R., Crowe, C.T., Direct numerical simulation of a three-dimensional temporal mixing layer with particle dispersion. J. Fluid Mech. 1998,358,61-85.
    106. Fan, J.R., Zheng, Y.Q., Yao, J., Cen, K.F., Direct simulation of particle dispersion in a three-dimensional temporal mixing layer. Proc. R. Soc. Lond A,2001,457, 2151-2166.
    107. Fan, J.R., Luo, K., Zheng, Y.Q., Jin, H.H., Cen, K.F., Modulation on coherent vortex structures by dispersed soild particles in a three-dimensional mixing layer. Physical Review E.2003,68,036309.
    108. Longmire, E.K., Eaton, J.K., Structure of a particle-laden round jet. J. Fluid Mech.1992,236,217-257.
    109. Longmire, E.K., Active open-loop control of particle dispersion of round jets. AIAA J.1994,32,555-563.
    110. Chung, M.K., Troutt, T.R., Simulation of particle dispersion in an axisymmetric jet. J. Fluid Mech.1988,186,199-222.
    111. Yang, Y., Crowe, C.T., Chung, J.N., Troutt, T.R., Experiments on particle dispersion in a plane wake. Int. J. Multiphase Flow 2000,26,1583-1607.
    112. Tang, L., Wen, F., Yang, Y, Crowe, C.T., Chung, J.N., Troutt, T.R., Self-organizing particle dispersion mechanism in free shear flows. Phys. Fluids A, 1992,4,2244-2251.
    113. Luo, K., Fan, J.R., Cen, K.F., Modulations on turbulent characteristics by dispersed particles in gas-solid jets. Proc. Roy. Soc. A,2005,461,3279-3295.
    114. Squires, K.D., Eaton, J.K., Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech.1991,226, 1-35.
    115. Elghobashi, S., Truesdell, G.C., Direct simulation of particle dispersion in decaying isotropic turbulence. J. Fluid Mech.1992,242,655-700.
    116. Wang, L.P., Maxey, M.R., Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech.1993,256, 27-68.
    117. Pedinotti, S., Mariotti, G., Banerjee, S., Direct numerical simulation of particle behavior in the wall region of turbulent flows in horizontal channels. Int. J. Multiphase Flow 1992,18,927-941.
    118. Rizk, M.A., Elghobashi, S.E., The motion of a spherical particle suspended in a turbulent flow near a plane wall. Phys. Fluids 1985,28,806-811.
    119. Brooke, J.W., Kontomaris, K., Hanratty, T.J., McLaughlin, J.B., Turbulent deposition and trapping of aerosols at wall. Phys. Fluids A 1992,4,825-834.
    120. Ounis, H., Ahmadi, G., McLaughlin, J.B., Brownian particle deposition in a directly simulated turbulent channel flow. Phys. Fluids A 1993,5,1427-1423.
    121. Soltani, M., Ahmadi, G., Direct numerical simulation of particle entrainment in turbulent channel flow. Phys. Fluids 1995,7,647-657.
    122. Maeda, M., Hishida, K., Furutani, T., Optical measurement of local gas and particle velocity in an upward flowing dilute gas-solids suspension. Polyphase Flow and Transport Technology, Century 2-ETC, San Francisco, Calif,1980, 211-216.
    123. Modarress, D., Tan, H., Elghobashi, S.E., Two-component LDA measurement in a two-phase turbulent jet. AIAA J.1984,22,624-630.
    124. Tsuji, Y., Morikawa, Y., LDV measurements in air-solid two-phase flow in a vertical pipe. J. Fluid Mech.1982,139,417-434.
    125. Tsuji, Y, Morikawa, Y, Shiomi, H., LDV measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mech.1984,139,417-434.
    126. Lee, S.L., Durst, F., On the motion of particles in turbulent duct flows. Int. J. Multiphase Flow 1982,8,125-146.
    127. Gore, R.A., Crowe, C.T., Effect of particle size on modulating turbulent intensity. Int. J. Multiphase Flow 1989,15,279-285.
    128. Hetsroni, G, Particle-turbulence interaction. Int. J. Multiphase Flow 1989,15, 735-746.
    129. Gore, R.A., Crowe, C.T., Modulation of Turbulence by a dispersed phase. J. Fluid Eng.1991,113,304-307.
    130. Hosokawa, S., Tomiyama, A., Morimura, M., Fujiwara, S., Sakaguchi, T., Influences of relative velocity on turbulent intensity in gas-solid two-phase flow in a vertical pipe. In:Third International Conference on Multiphase Flow, ICMF'98,1998, Lyon, France.
    131. Paris, A.D., Eaton, J.K., Turbulence attenuation in a particle-laden channel flow. Technical Report TSD-137,2001, Standford University.
    132. Yuan, Z., Michaelides, E.E., Turbulence modulation in particulate flows-a theoretical approach. Int. J. Multiphase Flow 1992,18,779-785.
    133. Yarin, L.P., Hetsroni, G, Turbulence intensity in dilute two-phase flows-3. Int. J. Multiphase Flow 1994,20,27-44.
    134. Kenning, V.M., Crowe, C.T., On the effect of particles on carrier phase turbulence in gas-particle flows. Int. J. Multiphase Flow 1997,23,403-408.
    135. Crowe, C.T., Sommerfeld, M., Tsuji, Y, Multiphase Flows with Droplets and Particles. Boca Raton:CRC Press,1998,112-165.
    136. Crowe, C.T., On models for turbulence modulation in fluid-particle flows. Int. J. Multiphase Flow 2000,26,719-727.
    137. Squires, D.K., Eaton, J.K., Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 1990,2,1191-1203.
    138. Eaton, J.K., Fessler, J.R., Preferential concentration of particles by turbulence. Int. J. Multiphase Flow 1994,20,169-209.
    139. Boivin, M., Simonin, O., Squires, K.D., Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech.1998, 375,235-263.
    140. Elghobashi, S.E., Truesdell, GC., On modification of energy spectrum of homogeneous turbulence by dispersed solid particles. In:Sixth Workshop on Two-Phase Flows, Erlangen, Germany,1992.
    141. Elghobashi, S.E., Truesdell, GC., On the two-way interaction between homogeneous turbulence and dispersed solid particles Ⅰ:turbulence modification. Phys. Fluids A,1993,5,1790-1796.
    142. Ahmed, A.M., Elghobashi, S., On the mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles. Phys. Fluids 2000,12, 2906-2930.
    143. Maxey, M.R., Patel, B.K., Chang, E.J., Wang L.P., Simulations of dispersed turbulent multiphase flow. Fluid Dynamics Res.1997,20,143-156.
    144. Druzhinin, O.A., Elghobashi, S., On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids 1999,11,602-610.
    145. Druzhinin, O.A., The influence of particle inertia on the two-way coupling and modification of isotropic turbulence by microparticles. Phys. Fluids,2001,13, 3738-3755.
    146. Ferrante, A., Elghobashi, S., On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids,2003,15,315-329.
    147. Pan, Y., Banerjee, S., Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 1996,8,2733-2755.
    148. Pan, Y., Banerjee S., Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids 1997,9,3786-3807.
    149. Portela, L.M., Oliemans, R.V.A., Nieuwstadt, F.T.M., Numerical simulation of particle-laden channel flows with two-way coupling, Paper FEDSM99-7890 in Proceedings 3rd ASME/JSME Joint Fluids Engineering Conference. July 18-23, 1999, San Francisco, California, USA.
    150. Portela, L.M., Oliemans, R.V.A., Eulerian-Lagrangian DNS/LES of particle-turbulence interactions in wall-bounded flows. Int. J. Numer. Meth. Fluids 2003, 43,1045-1065.
    151. Lain, S., Sommerfeld, M., Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective. Int. J. Heat Fluid Flow 2003,24, 616-625.
    152. Burton, T.M., Eaton, J.K., Fully resolved simulations of particle-turbulence interaction. Technical Report TSD-151, Stanford University
    153. Rani, S.L., Vanka, S.P., Direct numerical simulation of two-way coupling effects in a particle-laden turbulent pipe flow.36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Huntsville, Ala., Jul.2000) AIAA paper no.2000-3570 (2000).
    154. Boivin, M., Simonin, O., Squires, K.D., On the prediction of gas-solid flows with two-way coupling using large eddy simulation, Phys. Fluids 2000,12,2080-2090.
    155. Boivin, M., Simonin, O., Squires, K.D., Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech.1998, 375,235-263.
    156. Yuu, S., Ueno, T., Umekage, T., Numerical simulation of the high Reynolds number slit nozzle gas-particle jet using subgrid-scale coupling large eddy simulation. Chem. Engng. Sci.2001,56,4293-4307.
    157. Sundaram, S., Collins, L.R., A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech.1999,379,105-143.
    158. Fukagata, K., Zahrai, S., Kondo, S., Bark, F.H., Anomalous velocity fluctuations in particulate turbulent channel flow. Int. J. Multiphase Flow,2001,27,701-719.
    159. Lain, S., Sommerfeld, M., Kussin, J., Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow. Int. J. Heat Fluid Flow 2002,23,647-656.
    160. Pan, Y.K., Tanaka, T., Tsuji, Y., Large-eddy simulation of particle-laden rotating channel flows. ASME FEDSM 2000-11144, Boston, USA,2000.
    161. Pan, Y.K., Tanaka, T., Tsuji, Y., Direct numerical simulation of particle-laden rotating channel flow. Phys. Fluids 2001,13,2320-2337.
    162. Pan Y.K., Tanaka T., Tsuji Y, Turbulence modulation by dispersed solid particles in rotating channel flows. Int. J. Multiphase Flow 2002,28,527-552.
    163. Nasr, H., Ahmadi, G., The effect of two-way coupling and inter-particle collisions on turbulence modulation in a vertical channel flow. Int. J. Heat And Fluid Flow 2007,28,1507-1517.
    164. Benavides, A., van Wachem B., Numerical simulation and validation of dilute turbulent gas-particle flow with inelastic collisions and turbulence modulation. Powder Technology 2008,182,294-306.
    165. Lun, C.K.K., Numerical simulation of dilute turbulent gas-solid flows. Int. J. Multiphase Flow 2000,26,1707-1736.
    166. Wu, J.S., Faeth, G.M., Sphere wakes at moderate Reynolds numbers in a turbulent environment. AIAA J.1994,32,535-541.
    167. Berlemont, A., Achim, P., Influence of the isotropization of particle motion due to collisions on the fluid turbulence anisotropy in a turbulent pipe flow.4th International Conference on Multiphase Flow, ICMF 2001, New Orleans, USA, Paper No.354.
    168. Rani, S.L., Winkler, C.M., Vanka, S.P., Numerical simulations of turbulence modulation by dense particles in a fully developed pipe flow. Powder Technology, 2004,141,80-99.
    169. Lain, S., Garcia, J. A., Study of four-way coupling on turbulent particle-laden jet flows. Chemical Engineering Science 2006,61,6775-6785.
    170. Volkov, A.N., Tsirkunov, Y.M.,2002. CFD/Monte Carlo simulation of collision-dominated gas-particle flows over bodies. In:CD-ROM Proc. ASME FEDSM_02, Montreal, Canada, paper 31222.
    171.Volkov, A.N., Tsirkunov, Y.M., Oesterle, B., Numerical simulation of a supersonic gas-solid flow over a blunt body:The role of inter-particle collisions and two-way coupling effects. Int. J. Multiphase Flow 2005,31,1244-1275.
    172. Helland, E., Occelli, R., Tadrist, L., Computational study of fluctuating motion and cluster structures in gas-particle flows. Int. J. Multiphase Flow 2002,28, 199-223.
    173. Clark, D.K., Tsimring, L.S., Aranson, I.S., Oscillations and defect turbulence in a shallow fluidized bed.2008. submitted to PRL http://arxiv.org/abs/nlin/0005010.
    174. Sharma, A.K., Tuzla, K., Matsen, J., Chen, J.C., Parametric effects of particle size and gas velocity on cluster characteristics in fast fluidized beds. Powder Technol.2000,111,114-122.
    175. Mansoori, Z., Saffar-Avval, M., Basirat-Tabrizi, H., The effect of particle-particle interaction on heat transfer in a horizontal turbulent gas-solid channel flow, in:The ISHMT/ASME Heat and Mass Transfer Conf., India,2000,379-384.
    176. Mansoori, Z., Saffar-Awal, M., Basirat-Tabrizi, H., Ahmadi, G., Thermo-mechanical modeling of turbulent heat transfer in gas-solid flows including particle collisions, Int. J. Heat Fluid Flow 2002,23,792-806.
    177. Mansoori, Z., Saffar-Avval, M., Basirat-Tabrizi, H., Ahmadi, G., Modeling of heat transfer in turbulent gas-solid flow, Int. J. Heat Mass Transfer 2002,45, 1173-1184.
    178. Saffar-Awal, M., Basirat Tabrizi, H., Mansoori, Z., Ramezani. P., Gas-solid turbulent flow and heat transfer with collision effect in a vertical pipe. Int. J. Thermal Sciences 2007,46,67-75.
    179.张会强,郭印诚,王希麟,林文漪.两相圆湍射流中Stokes数的影响.燃烧科学与技术,1999,5(04):436-440.
    180.由长福,祁海鹰,徐旭常.湍流对气固两相流动中颗粒受力的影响.清华大学学报(自然科学版),2002,42(10):1357-1360.
    181.范全林,张会强,郭印诚,王希麟,林文漪.自由剪切湍流中颗粒-拟序结构相互作用研究进展.力学进展,2001,31(04):611-620.
    182.范全林,张会强,郭印诚,王希麟,林文漪.气粒两相平面湍射流拟序结构的大涡模拟.燃烧科学与技术,2001,7(01):21-25.
    183.刘奕,郭印诚,张会强,王希麟,林文漪.平面自由射流中燃料扩散的大涡模拟.燃烧科学与技术,2001,7(02):153-157.
    184.王兵,张会强,虞建丰,王希麟,郭印诚,林文漪.气粒两相二维后台阶突扩流动的大涡模拟.燃烧科学与技术,2003,9(05):447-452.
    185.陆慧林,何玉荣,刘阳,别如山,刘文铁.多组分颗粒稠密气固两相流动的数值模拟.工程热物理学报,2002,23(03):369-371.
    186.刘欢鹏,刘玉成,李巍DSMC-LES方法数值模拟鼓泡流化床内气泡和颗粒流动行为.高校化学工程学报,2006(02):180-185.
    187.李玲,徐忠.颗粒浓度及颗粒尺寸对管内气固两相流动速度结构的影响.水动力学研究与进展A辑,1999,14(02):154-161.
    188.李玲,徐忠.颗粒存在对网栅后气相流动湍流特性的影响.应用力学学报,2000,(01):36-40.
    189.顾璠,许晋源.气固两相流场的湍流颗粒浓度理论模型.应用力学学报,1994,11(04):11-18.
    190.袁竹林.流化床中颗粒流化运动的直接数值模拟.燃烧科学与技术,2001,7(02):120-122.
    191.袁竹林,徐益谦.从软、硬球模型探讨颗粒自转对流化状态的影响.工程热物理学报,2001,22(03):363-366.
    192.袁竹林,徐益谦.用数值模拟对循环流化床颗粒分离特性的研究.工程热物理学报,2001,22(S1):185-188.
    193.柳朝晖,李勇,郑楚光,周向阳.空间发展湍流气粒两相平面混合层的大涡模拟与统计.工程热物理学报,2002,23(04):495-498.
    194. Hishida, K., Ando, A., Maeda, M., Experiments on particle dispersion in a Turbulent mixing layer. Int. J. Multiphase Flow 1992,18(2):181-194.
    195.柳朝晖,翁磊,贺铸,郑楚光.三维槽道两相湍流的大涡模拟.华中科技大学学报(自然科学版),2004,32(11):10-12.
    196.栗晶,柳朝晖,吴意,贺铸,郑楚光.三维槽道两相流颗粒运动的大涡模拟. 工程热物理学报,2006,27(06):973-976.
    197.贺铸,柳朝晖,郑楚光.三维均匀各向同性两相湍流的直接模拟.工程热物理学报,2003,24(04):621-624.
    198.彭伟,陈胜,郑楚光.格子Boltzmann方法模拟气固两相流.华中科技大学学报(自然科学版),2004,32(08):45-46.
    199.刘红娟,邹春,田智威,郑楚光.撞击流中单颗粒运动行为的数值模拟.华中科技大学学报(自然科学版),2008,36(05):106-109.
    200.徐进,葛满初.气固两相流动的数值计算.工程热物理学报,1998,19(2):233-236.
    201.鲁嘉华,凌志光.气固两相透平内颗粒湍流扩散的Lagarange数值模拟.热能动力工程,2003,18(05):454-458.
    202.鲁嘉华,凌志光,张志英.燃气透平粘性湍流场中颗粒运动的真实性分析.燃气轮机技术,2004,17(02):24-29.
    203.邵萌,王安麟,马立新,张灼.三维流固两相流的颗粒群轨道柔性模型.机械设计,2004,21(06):28-30.
    204.王安麟,邵萌,梁波,马立新.三维流固两相流的颗粒群轨道柔性模型.上海交通大学学报,2005,39(05):790-794.
    205.林建忠,石兴,余钊圣.二维气固混合层中拟序结构对固粒运动影响的研究.空气动力学学报,1999,17(02):155-162.
    206.林建忠,石兴,余钊圣.二维气固两相混合层中固粒对流场影响的研究.应用数学和力学,2000,21(08):771-776.
    207.石兴,林建忠.两相流动直接模拟双向速度耦合模型的研究.自然科学进展,2000,10(10):890-895.
    208.石兴,林建忠.气固两相混合层二维涡配对的数值研究.应用力学学报,2001,18(01):27-33.
    209.罗坤,金晗辉,樊建人,岑可法.三维混合层中湍流拟序结构对颗粒扩散的影响.燃烧科学与技术,2003,9(01):29-34.
    210.樊建人,罗坤,金晗辉,岑可法.直接数值模拟三维气固两相混合层中颗粒与流体的双向耦合.中国电机工程学报,2003,23(04):153-157.
    211.夏钧,由广大,樊建人,岑可法.气固两相湍流射流的直接数值模拟.自然科学进展,2003,13(05):528-532.
    212.罗坤,金晗辉,樊建人,岑可法.平面湍流射流拟序结构与颗粒的双向耦合作用.西安交通大学学报,2003,37(03):302-305.
    213.李文春,金晗辉,任安禄,樊建人,岑可法.气固两相三维圆柱绕流的直接数值模拟.工程热物理学报,2006,27(05):808-810.
    214.罗坤,刘小云,樊建人,岑可法.高雷诺数气固湍流射流的直接数值模拟.工程热物理学报,2004,25(03):431-434.
    215.罗坤,樊建人,岑可法.转捩射流中涡结构与颗粒扩散的直接模拟.工程热物理学报,2006,27(4):607-610.
    216.罗坤,樊建人,岑可法.气固两相流动中颗粒扩散的转捩现象.科学通报,2006,51(23):2810-2817.
    217.张兆顺,崔桂香,许春晓.湍流理论与模拟.2005,9第一版清华大学出版社.北京.
    218. Albertson, M.L., Dai, Y.B., Jenson, R.A., House, H., Diffusion of submerged jets. Trans. Am. Soc. Civ. Eng.1950,115,639-664.
    219. Miller, D.R., Comings, E.W., Static pressure distributions in the free turbulent jet. J. Fluid Mech.1957,3,1-16.
    220. Bradbury, L.J.S., The structure of a self-preserving turbulent plane jet. J. Fluid Mech.1965,23,31-64.
    221. Heskestad, G, Hot-wire measurements in a plane turbulent jet. J. Appl. Mech. 1965,32,721-734.
    222. Gutmark, E., Wygnanski, I., The planar turbulent jet. J. Fluid Mech.1976,73, 465-495.
    223. Sforza, P.M., Mons, R.F., Mass, momentum, and energy transport in turbulent free jets. Int. J. Heat Mass Transfer 1978,21,371-384.
    224. Pope, S., Turbulent Flows. New York:Cambridge University Press,2000.
    225. Bernard, P., Wallace, J., Turbulent Flow. Hoboken, New Jersey:John Wiley & Sons, Inc.,2002.
    226. LaRue, J.C., Ly, T., Rahai, H., Jan, P. Y., On similarity of a plane turbulent jet in a co-flowing stream. In Proc. Eleventh Symp. on Turbulent Shear Flows,1997, 3:25.11-25.16, Grenoble, France, Springer-Verlag.
    227. Kennedy, C., Chen, J., Mean flow effects on the linear stability of compressible planar jets. Phys. Fluids 1998,10,615-626.
    228. Yule, A.J., Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 1978,89,413-432.
    229. Cohen, J., Wygnanski, I., The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech.1987, 176,191-219.
    230. Tso, J., Hussain, F., Organized motions in a fully developed turbulent axisymmetric jet. J. Fluid Mech.1989,203,425-448.
    231. Batchelor, G.K., Gill, A.E., Analysis of the stability of axisymmetric jets. J. Fluid Mech.1962,14,529-551.
    232. Morris. P.J., Spatial viscours instability of axisymmetric jets. J. Fluid Mech. 1976,77,511-529.
    233. Monkewitz, P.A., Pfizenmaier, E., Mizing by side jets in strongly forced and self-excited round jets. Phys. Fluids A 1991,3,1356-1361.
    234. Liepmann, D., Gharib, M., The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech.1992,245,643-668.
    235. Martin, J.E., Meiburg, E., Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J. Fluid Mech. 1991,230,271-318.
    236. Fatica, M., Orlandi, P., Verzicco, R., Direct and Large eddy simulations of round jets. In Voke P.R., editor, Direct and Large-Eddy Simulation I,1994,49-60. Kluwer Academic Publishers, Netherlands.
    237. Boersma, B.J., Brethouwer, G., Nieuwatadt, F.T.M., A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 1998,10,899-909.
    238. Lubbers, C.L., Brethouwer, G., Boersma, B.J., Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dynamics Research 2001,28, 189-208.
    239. Forstall, W., Shapiro, A.H., Momentum and mass transfer in coaxial gas jets. Trans. ASME, J. Appl. Mech.1951,18,219-228.
    240. Ko, N.W.M., Kwan, A.S.H., The initial region of subsonic coaxial jets. J. Fluid Mech.1976,73,305-332.
    241. Kwan, A.S.H., Ko, N.W.M., The initial region of subsonic coaxial jets. Part2. J. Fluid Mech.1977,82,273-287.
    242. Favre-Martinet, M., Camano, E.B., Sarboch, J., Near-field of coaxial jets with large density differences. Exp. Fluids 1999,26,97-106.
    243. Abdel-Rahman, A.A., Chakroun, W., AI-Fahed, S.F., LDA measurement in the turbulent round jet. Mechanics Research Communications 1997,24,277-288.
    244. Warda, H.A., Kassab, S.Z., Elshorbagy, K.A., Elsaadawy, E.A., An experimental investigation of the near-field region of free turbulent round central and annular jets. Flow Measurement and Instrumentation 1999,10,1-14.
    245. Vouros, A. Panidis, Th., Influence of a secondary, parallel, low Reynolds number, round jet on a turbulent axisymmetric jet. Experimental Thermal and Fluid Science 2008,32,1455-1467.
    246. Abid, M., Brachet, M.E., Numerical characterization of the dynamics of vortex filaments in round jets. Phys. Fluids 1993,5,2582-2584.
    247. Brancher, P., Chomaz, J.M., Huerre, P., Direct numerical simulations of round jets-vortex induction and side jets. Phys. Fluids 1994,6,1768-1774.
    248. Dai, Y., Kobayashi, T., Taniguchi, N., Large eddy simulation of plane turbulent jet flow using a new outflow velocity boundary condition. JSME Int. J.,1994,37, 242-253.
    249. Miller, R.S., Madnia, C.K., Givi, P., Numerical simulation of non-circular jets. Computers & Fluids 1995,24,1-25.
    250. Grinstein, F.F., Gutmark, E.J., Parr, T.P., Hanson-Parr, D.M., Obeysekare, U., Streamwise and spanwise vortex interaction in an axisymmetric jet. A computational and experimental study. Physics of Fluids 1996,8,1515-1524.
    251. Danaila, I., Dusek, J., Anselmet, F., Coherent structures in a round, spatially evolving, unforced, homogeneous jet at low Reynolds numbers. Physics of Fluids, 1997,9,3323-3342.
    252. Reynolds, W.C., Parekh, D.E., Juvet, P.J.D., Lee, M.J.D., Bifurcating and Blooming Jets. Annu. Rev. Fluid Mech.2003,35,295-315.
    253. Klein, M, Sadiki, A, Janicka, J. Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation. Int. J. Heat and Fluid Flow 2003,24,785-794.
    254. Yu, H., Luo, L.S., Girimaji, S.S., LES of turbulent square jet flow using an MRT lattice Boltzmann model. Computers & Fluids 2006,35,957-965.
    255. Wang, P., Frohlich, J., Michelassi, V., Rodi W., Large-eddy simulation of variable-density turbulent axisymmetric jets. International Journal of Heat and Fluid Flow 2008,29,654-664,
    256. Mao, C.P., Szekely, G.A., Jr., Faeth, G.M., Evaluation of a locally homogeneous flow model of spray combustion. J. Energy 1980,4,78-87.
    257. Shuen, J.S., Solomon, A.S.P., Zhang, Q.F., Faeth, G.M., The structure of particle-laden jets and non-evaporating sprays. NASA, CR-168059,1983.
    258. Faeth, G.M., Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 1983,9,1-76.
    259. Yuu, S., Yasukouchi, N., Hirosawa, Y., Jotaki, T., Particle turbulent diffusion in a dust laden round jet. AICHE J.1978,24,509-519.
    260. Gosman, A.D., Ioannides, E., Aspects of computer simulation of liquid-fueled combustors. AIAA,1981, Paper No.81-0323.
    261. Sijercic, M., Belosevic, S., Stevanovic, Z., Simulation of free turbulent particle-laden jet using Reynolds-stress gas turbulence model. Appl. Math. Modelling 2007,31,1001-1014.
    262. Call, C.J., Kennedy, I.M., Measurements and simulations of particle dispersion in a turbulent flow. Int. J. Multiphase Flow 1992,18,891-903.
    263. Uthuppan, J., Aggarwal, S.K., Grinstein, F.F., Kailasanath K., Partilce dispersion in a transitional axisymmetrical jet-A numerical simulation. AIAA J.1994,32, 2004-2014.
    264. Aggarwal, S.K., Uthuppan, J. Particle dispersion enhancement in the near region of a forced jet. J. Propulsion and Power 1999,15,266-271.
    265. Anderson, S.L., Longmire, E.K., Particle motion in the stagnation zone of an impinging air jet. J. Fluid Mech.1995,299,333-366.
    266. Anderson, S.L., Particle motions in the stagnation region of natural and forced impinging round air jets. Doctoral Thesis, University of Minnesota,1997.
    267. Sakakibara, J., Wicker, R.B., Eaton, J.K., Measurements of the particle-fluid velocity correlation and the extra dissipation in a round jet. Int. J. Multiphase Flow 1996,22,863-881.
    268. Cerecedo, L.M., Aisa, L., Garcia, J.A., Santolaya, J.L., Changes in a coflowing jet structure caused by acoustic forcing. Exp. Fluids 2004,36,867-878.
    269. Hoffmann, R., Moreira, A.L.N., Particle dispersion in an acoustically excited round jet. In:8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon,Portugal,1996.
    270. Martin, J.E., Meiburg, E., The accumulation and dispersion of heavy particles in forced two-dimensional mixing layer. Ⅰ. The fundamental and subharmonic cases. Phys.Fluids 1994,6,1116-1132.
    271.Bulzan, D.L., Shuen, J.S., Faeth, G.M., Particle-laden swirling free jets: Measurements and predictions. AIAA Paper 1987,87-0303.
    272. Amitay, M., Kondor, S., Herdic, S., Anderson, S.L.,2003. Directed particle-laden micro-jet for dental caries evacuation. FEDSM 2003-45059.
    273. Apte, S.V., Mahesh, K., Moin, P., Oefelein, J.C., Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Int. J. Multiphase Flow 2003,29,1311-1331.
    274. Middha, P., Wexler, A.S., Particle focusing characteristics of sonic jets. Aero. Sci. Technol.2003,37,907-915
    275. Laats, M.K., Experimental study of dynamics of an air-duct jet. Inzhenerno-Fizicheskii Zhurnal,1966,10,11-15.
    276. Tsuji, Y., Morikawa, Y., Tanaka, T., Karimine, K., Measurement of an axisymmetric jet laden with coarse particles. Int. J. Multiphase Flow 1988,14, 565-574.
    277. Mostafa, A.A., Mongia, H.C., Mcdonell, V.G., Samuelsen, G.S., Evolution of particle-laden jet flows:A theoretical and experimental study. AIAA J.1989,27, 167-183.
    278. Lazaro, B.J., Lasheras, J.C., Particle dispersion in the developing free shear layer. Part 1. Unforced flow. J. Fluid Mech.1992,235,143-178.
    279. Lazaro, B.J., Lasheras, J.C., Particle dispersion in the developing free shear layer. Part 2. Forced flow. J. Fluid Mech.1992,235,179-221.
    280. Swanson, T.R., Richards, C.D., The structure of an acoustically forced dropletladen jet. Atomization Spray 1997,7,561-579.
    281. Davidson, M.R., Comparison of two-way coupling models for confined turbulent gas-particle jets in flash smelting. Appl. Math. Modelling,1998,22,39-55.
    282. Despirito, J, Wang, L.P., Linear instability of two-way coupled particle-laden jet. Int. J. Multiphase Flow 2001,27,1179-1198.
    283. Almeida, T.G., Jaberi, F.A., Large-eddy simulation of a dispersed particle-laden turbulent round jet. Int. J. Heat and Mass Transfer 2008,51,683-695.
    284. Gillandt, I., Fritsching, U., Bauckhage, K., Measurement of phase interaction in dispersed gas/particle two-phase flow. Int. J. Multiphase Flow 2001,27, 1313-1332.
    285. Cerecedo, L.M., Aisa, L., Ballester J., Experimental study on a non-dilute two-phase coflowing jet:Dynamics of particles in the near flow field. Int. J. Multiphase Flow 2009, in press.
    286.范全林,张会强,郭印诚,赵子英,王希麟,林文漪.圆湍射流拟序结构的频谱特性.燃烧科学与技术,1999,5(3):240-245.
    287.范全林,王希麟,郭印诚,张会强,林文漪.圆湍射流控制的实验研究.燃烧科学与技术,1999,5(1):46-51.
    288.范全林,张会强,郭印诚,王希麟,林文漪.宽粒径分布气粒两相圆湍射流特性研究.燃烧科学与技术,1999,5(4):416-421.
    289.范全林,张会强,郭印诚,王希麟,林文漪.圆湍射流的轴对称大涡模拟.燃 烧科学与技术,2001,7(4):248-251.
    290.范全林,张会强,郭印诚,王希麟,林文漪.入流滑移条件对两相射流特性影响的大涡模拟研究.燃烧科学与技术,2001,7(1):99-103.
    291.刘奕,郭印诚,张会强,王希麟,林文漪.射流温度场与拟序结构间相互作用的大涡模拟.工程热物理学报,2001,22(03):394-396.
    292.刘奕,郭印诚,张会强,王希麟,林文漪.入口速度比对射流拟序结构的影响.计算力学学报,2003,20(2):140-145.
    293.容易,张会强,王希麟.城垛形喷口圆湍射流拟序结构的流动显示.清华大学学报(自然科学版),2004,44(2):248-251.
    294.容易,张会强,王希麟.城垛形喷口两相圆湍射流拟序结构的流动显示研究.工程热物理学报,2004,25(2):259-261.
    295.容易,张会强,王希麟.入口扰动对圆湍射流流动大涡模拟预报的影响.清华大学学报(自然科学版),2006,46(5):732-735.
    296.张东东,许宏庆,何枫.气固两相射流瞬时速度场和浓度场的PIV研究.清华大学学报(自然科学版),2003,43(11):1491-1494.
    297.崔金雷,王希麟,容易.气固两相圆湍射流颗粒对气相流动的影响.工程热物理学报,2005,26(6):974-976.
    298.蒋平,郭印诚,张会强,王希麟,林文漪.矩形射流流动的大涡模拟.清华大学学报(自然科学版),2004,44(5):689-692.
    299.蒋平,郭印诚,张会强,王希麟,林文漪.矩形射流中的流向涡分布特性及作用.清华大学学报(自然科学版),2005,45(8):1110-1113.
    300.李伟锋,刘海峰,龚欣,王辅臣,于遵宏.平面射流拟序结构的离散涡模拟.华东理工大学学报,2005,31(3):319-322.
    301.秦军,李伟锋,代正华,陈谋志,刘海峰,龚欣,于遵宏.受限气固两相射流的实验研究和数值模拟.高校化学工程学报,2005,19(5):619-624.
    302.黄琳,刘君.气—固两相自由射流的粒子仿真方法.国防科技大学学报2002,24(3):9-12.
    303.陈玉忠,谢欢德.气固两相自由射流燃烧的数值模拟.重庆大学学报(自然科学版),2003,26(12):64-66.
    304.周泽宣,林建忠.高浓度气固两相射流的稳定性研究.科技通报,1999,15(3):187-192.
    305.周泽宣,林建忠.气-固两相旋转射流场稳定性研究.杭州应用工程技术学院学报,1999,11(4):1-7.
    306.林建忠,林江,朱丽兵.气固轴对称射流中固粒扩散的研究.工程热物理学报,2000,21(2):234-237.
    307.林建忠,王叶龙,王常斌.悬浮柱状体在圆射流中运动的研究.浙江大学学报(工学版),2003,37(1):82-86.
    308.蔡丹云,郑水华,樊建人,岑可法.质量浓度比对气固两相圆湍射流影响的实验研究.动力工程,2005,25(3):408-411.
    309.刘小云,罗坤,金军,岑可法.气固两相湍流射流中颗粒的统计特性.中国电机工程学报,2005,25(9):108-113.
    310.郑水华,罗坤,樊建人,岑可法.大涡模拟气固两相三维湍流射流.浙江大学学报(工学版),2005,39(4):574-578.
    311.白建基,郑水华,樊建人,岑可法.雷诺数对气固两相圆湍射流影响的实验研究.浙江大学学报(工学版),2006,40(3):433-437.
    312.罗坤,樊建人,刘兰,岑可法.直接模拟离散颗粒对湍流射流的影响.工程热物理学报,2005,26(4):617-620,
    313.罗坤,樊建人,郑水华,岑可法.圆湍射流中的拟序结构和颗粒弥散.化工学报,2006,57(6):1329-1333.
    1.是勋刚.湍流.天津:天津大学出版社,1994,1-255.
    2.陶文铨.数值传热学(第2版).西安:西安交通大学出版社,1988,1-566.
    3. Crowe, C.T., Troutt, T.R., Chung, J.N., Numerical models for two-phase turbulent flows. Anuu. Rev. Fluid Mech.1993,28,11-43.
    4. Moin, P., Mahesh, K., Direct numerical simulation:a tool in turbulence research. Annu. Rev. Fluid Mech.,1998,30,539-578
    5. Rai, M.M., Moin, P., Direct simulation of turbulent flow using finite-difference schemes. J. Comput. Phys.1991,96,15-53.
    6. Fu, D.X., Ma, Y.W., A high order accurate difference scheme for complex flow fields. J. Comput. Phys.1997,134,1-15.
    7.夏钧.气固两相平面湍流射流的直接数值模拟.浙江大学博士学位论文,2002.
    8.周筱洁.关于有限容积紧致格式的研究和有限差分紧致格式的边界处理.苏州大学硕士学位论文,2005.
    9.姚军.气固两相圆柱绕流的直接数值模拟和肋条弯管抗磨机理的数值试验研究.浙江大学博士学位论文,2002.
    10. Orszag, S.A., Spectral methods for problems in complex geometries. J. Comput. Phys.1980,37,70-92.
    11. Spalart, P.R., Moser, R.D., Rogers, M.M., Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comp. Phys.1991,96, 297-324
    12.郑友取.气固两相混合层湍流拟序结构的直接数值模拟和实验验证.浙江大学博士学位论文,2001.
    13.Alfonsi, G., Passoni, G., Pancaldo, L., Zampaglione, D., A spectral-finite difference solution of the Navier-Stokes equation in three dimensions. Int. J. Numer. Mech. Fluids 1998,28,129-142.
    14.段占元,童秉纲,姜贵庆.高分辨率有限差分-有限元混合方法及其在气动热机算中的应用.空气动力学学报,1997,15(4):462-467.
    15. Leseur, M., Metais, O., New trends in large-eddy simulation of turbulence. Annu. Rev. Fluid Mech.1996,28,45-82.
    16.岑可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1990.1-666.
    17. Spalding, D.B., Mathematical Models of Continuous Combustion, Emission from Continuous Combustion Systems. Plenum Press,1972.
    18. Soo, S.L., Fluid Dynamics of Multiphase Systems. Blaisdell,1967.
    19. Soo, S.L., Dynamics of Charged Suspensions. Topics in Current Aerosol Reserch, Pergamon,1971.
    20. Drew, D.A., Averaged field equations for two-phase media. Stud. Appl. Math. 1971,50,133-166.
    21. Crowe, C.T., Sharma, M.P., Stock, D.E., The particle-Source-in-Cell (PSI-CELL) for gas-droplet flows. J. Fluid Engr.1977,99,325-331.
    22. Pan, T.W., Joseph, D.D., Bai, R., Glowinski, R., Sarin,V., Fluidization of 1204 spheres:simulation and experiment. J. Fluid Mech.,2002,451,169-191.
    23. Hoomans, B.P.B., Kuipers, J.A., M,Briels, W.J., van Swaaij, W.P.M., Discrete Particle Simulation of Bubble and ug Formation in a Two-dimensional Gas-fluidized:a Hard-sphere Approach. Chem. Eng. Sci.,1996,51,99-108.
    24. Hoomans, B.P.B., Granular Dynamics of Gas-Solid Two-phase Flow. Netherlands: Maastricht,1999,146-149.
    25. Ouyang, J., Li, J.H., Particle-motion-resolved Discrete Model for Simulating Gas-Solid Fluidization. Chem. Eng. Sci.,1999,54,2077-2083.
    26. Ouyang, J., Li, J.H., Discrete Simulation of Heterogeneous Structure and Dynamic Behavior in Gas-Solid Fluidization. Chem. Eng. Sci.,1999,54,5427-5440.
    27. Alder, B.J., Wainwright, T.E., Phase Transition for Hard-sphere System. J. Chem. Phys.1957,27,1208-1209.
    28. Tsuji, Y., Tanaka, T., Ishida, T., Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe. Powder Technol.1992,71,239-250.
    29. Kuwagi, K., Mikami, T., Horio, M., Numerical Simulation of Metallic Solid Bridging Particles in a Fluidized Bed at High Temperature. Powder Technol.2000, 109,27-40.
    30. Cundall, P.A., Strack, O.D.L., A Discrete Numerical Model for Granular Assemblies. Geotechnique 1979,29,47-65.
    31.Yonemura, S., Tanaka, T., Tsuji, Y., Cluster Formation in Gas-Solid Flow Predicted by the DSMC Method. Gas-Solid Flows ASME/FED.1993,166, 303-309.
    32. Ogawa, S., On statistical approaches to the dynamics of fully fluidized granular materials. In:Shahinpoor, M. (Ed.), Advances in the Mechanics and Flow of Granular Materials. Transp-Tech.,1983,601-612.
    33. Bird, G.A., Molecular Gas Dynamics. Oxford University Press, Oxford,1976.
    34. Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford,1994.
    35. Tsuji, Y., Kawaguchi, T., Tanaka, T., Discrete particle simulation of two-dimensional fluidized bed. Powder Technology 1993,77,79-87.
    36. Boivin, M., Simonin, O., Squires, K.D., Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech.1998,375, 235-263.
    37. Chorin, A.J., Numerical solution of the Navier-Stokes equations. Mathematics of Computation 1968,22,745-762.
    38. Temam, R., On an approximate solution of the Navier-Stokes equations by the method of fractional steps. Arch. Rational Mech. Anal.,1969,32,377-385.
    39. Fortin, M., Peyret, R., Temam, R.J., Calcul des ecoulements d'un fluide visqueux incompressible Mec.1971,10,357-390. Lecture Notes in Physics, New York: Springer-verlag,1971 (8):337-342.
    40. Patankar, S.V.著,张政译.传热与流体流动的数值模拟.北京:科学出版社,1992
    41. Williamson, J., Low-storage Runge-Kutta schemes. J. Comput. Phys.1980,35, 48-56.
    42. Klein, M, Sadiki, A, Janicka, J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 2003,186:652-665
    43. Klein, M., Sadiki, A., Janicka, J. Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation. Int. J. Heat and Fluid Flow,2003,24(6),785-794.
    44.罗坤.气固两相自由剪切流动的直接数值模拟和实验研究.浙江大学博士学位论文,2004.
    45. Vojir, D.J., Michaelides, E.E., Effect of the history term on the motion of rigid spheres in a viscous fluid. Int. J. Multiphase Flow 1994,20,547-556.
    46. Stock, D.E., Particle dispersion in flowing gases-1994 Freeman Scholar Lecture. Trans. ASME 1996,118,4-17.
    47. Tanaka, T., Tsuji, Y., Numerical simulation of gas-solid two-phase flow in a vertical pipe:on the effect of inter-particle collision. ASME/FED Gas-Solid Flows 1991,121,123-128.
    48. Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y., Large-eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel:Effect of Considering Inter-particle Collisions. J. Fluid. Mech.2001,442,303-334.
    49. Sundaram, S., Collins, L.R., Numerical considerations in simulating a turbulent suspension of finite-volume panicles. J. Comput Phys.1996,124,337-350.
    1. Luo, K., Klein, M., Fan, J.R., Cen, K.F., Effects on particle dispersion by turbulent transition in a jet. Physics Letter A 2006,357,345-350.
    2. Chung, M.K., Troutt, T.R., Simulation of particle dispersion in an axisymmetric jet. J. Fluid Mech.1988,186,199-222.
    3. Uchiyama, T., Naruseb, M., Vortex simulation of slit nozzle gas-particle two-phase jet. Powder Technol.2003,131,156-165.
    4. Fan, J. R., Luo, K., Ha, M. Y., Cen, K. F., Direct numerical simulation of a near-field particle-laden plane turbulent jet. Physical Review E 2004,70,026303.
    5. Wang, L.P., Wexler, A.S., Zhou, Y., Statistical mechanical description and modeling of turbulent collision of inertial particles. J. Fluid Mech.2000,415, 117-153.
    6.李瑞霞,柳朝晖,贺铸,陈胤密,郑楚光.各向同性湍流内颗粒碰撞率的直接模拟研究.力学学报,2006,38(1):25-32.
    1. Luo, K., Klein, M., Fan, J.R., Cen, K.F., Effects on particle dispersion by turbulent transition in a jet. Physics Letter A 2006,357,345-350.
    2. Despirito, J., Wang L.P., Linear instability of two-way coupled particle-laden jet. Int. J. Multiphase Flow 2001,27,1179-1198.
    3. Modarress, D., Tan, H., Elghobashi, S., Two-component LDA measurement in a two-phase turbulent jet. AIAA J.1984,22,624-630.
    4. Elghohashi, S.E., On Predicting Particles by Turbulence. Appl. Sci. Res.1994,52, 309-329.
    1. Ramaprian, B. R., Chandrasekhara, M. S.. LDA measurements in plane turbulent jets. ASME J. Fluids Engrg.,1985,107:264-271.
    2. Thomas, F. O., Chu, H. C.. An experimental investigation of the transition of a planar jet:Subharmonic suppression and upstream feedback. Phys. Fluids A,1989, 1(9):1566-1587.
    3. Browne, L. W. B., Antonia. R. A., Rajagopalan. S., Chambers. A. J.. Interaction region of a two-dimensional turbulent plane jet in still air. In R. Dumas and L Fulachier, editors, Structure of Complex Turbulent Shear Flow, IUTAM Symp. Marseille 1982, pages 411-419. Springer,1983.
    4. Gui, N., Fan, J.R., Luo, K., Experimental study on collision rates of inertial particles in particulate flows under the effect of gravity. Chem. Eng. Sci.2007, 6112-6120.
    5. Gui, N., Fan, J.R., Cen, K.F., Effect of particle-particle collision in decaying homogeneous and isotropic turbulence. Phys. Rev. E 2008,78,046307.
    6. Bird, G.A.,1994. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700