各向同性弹性固体介质中二维非线性纵波方程的有限元解法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
客观物质世界中的非线性现象是非常普遍的,研究各门科学与技术问题中的非线性共性规律的非线性科学,已成为人类揭示强扰动,强耦合,强关联系统的普遍规律和探索复杂性的基础。早在18世纪中叶,科学工作者就已经注意到许多非线性现象了。随着现代科学技术的不断发展,非线性科学有了迅猛的发展,其本质不断被揭示与发现。在近二十年中,自然科学,工程技术甚至社会科学各领域,广泛深入地展开了非线性问题的研究。非线性科学被誉为本世纪继相对论和量子力学之后自然科学的“第三次大革命”,是研究世界复杂性的科学。非线性波动是其中的重要分支。近几年来,在物理学和工程学的许多领域中,非线性波的传播越来越受到重视。由于地球是个庞大的系统,存在着复杂性和非线性,在地震勘探中我们不可能得到波场的全部信息,如何最大限度的利用这些资料,提高资料的可靠程度,体现找油找矿的巨大经济效益,十分必要对非线性波动理论进行研究。
    本文研究了各向同性固体介质中的二维非线性有限振幅纵波,采用有限元方法求解二维非线性纵波运动方程。在求解非线性波动方程时,有限元方法通过剖分插值构造有限维子空间SN的基函数的方法保持了古典Ritz-Galerkin方法的优点,克服了它的不足。这种方法尤其适用于区域的形状复杂、定解条件中含有第二或者第三类边界条件、方程的系数有间断等情形,有限元方法以变分原理及剖分插值为基础。一方面,它是传统的能量法,即Ritz-Galerkin方法的变形。另一方面,它又与差分方法有相通之处,因此有限元方法是能量法与差分法相结合而发展的方法。有限元离散化保持了原问题的对称正定性,且其刚度矩阵为稀疏矩阵,这些优点使其便于数值计算。有限元方法的各个环节,包括单元分析、总体合成和代数解算等在程序实现上都便于标准化。有限元方法对简单或复杂问题基本上同等对待。随着问题在几何或物理上增加复杂性,其优点愈加显著。有限元方法成功的处理了自然边界
    
    
    条件。该类边界条件已被吸收在变分形式中,不需要单独处理。有限元方法有坚实的数学基础。对许多问题已有关于收敛性和误差估计的完备结果,保证了可靠性。
    本文在证明各向同性固体介质中二维非线性纵波运动方程真解存在性的基础上,给出了其数值解并分析了稳定性、收敛性并建立了误差估计式。
    首先,本文介绍了非线性波动的基本理论,指出了其研究意义和深远影响,介绍了非线性波动方程的求解历史及现状。
    其次, 我们从非线性的角度,依据非线性波动方程的物理、数学基础,特别是弹性固体介质中的非线性波的情况和质量、动量、能量三大守恒定律出发,给出了三维非线性波动数学模型,在忽略横波效应的情况下得到了各项同性固体介质中二维非线性纵波方程。并运用泛函分析的知识,严格证明了其真解的存在性。
    再次,我们介绍了有限元方法的基本原理和数学基础,即泛函分析、Sobolev空间的逼近性质,并说明有限元方法的求解步骤、有限元的程序设计方法。
    最后,在这些理论的基础上,我们用有限元方法求解了各向同性固体介质中二维非线性波动方程,推导出了线性双曲型方程有限元解的误差估计和椭圆投影算子的界定常数,并在此基础上完成了二维非线性纵波的半离散有限元解的误差估计和波的半离散有限元解的误差估计,继而给出了非线性纵波方程的全离散有限元解的存在性、稳定性、收敛性和误差估计。根据这些先验估计,我们综合应用了数值积分技巧、插值技巧、尼采技巧以及程序设计技巧,得到了固体介质中二维非线性纵波运动方程组的有限元数值解及其不同频率下的误差。运用数学软件MatLab编程形成波形图,通过对二维纵波的波形图的分析,我们得到了各向同性固体介质中的二维非线性纵波的传播特性。
    对于更高维及更复杂条件下的非线性波动问题,无论是解析解还是数值解,都有难以逾越的障碍。我们所研究的还只是二维非线性纵波的数值解和传播特征,为了实际的应用,研究三维的非线性波的传播特征和数值解是迫切和必要的。
Non-linear phenomenon is so usually for the natural world, non-linear science concerning about non-linear common disciplinary in different study fields of science and technology has become the base of investigation of natural disciplinary. In the previous 18th century, science workers had paid more attention to so many non-linear phenomena in actual world. As the development of modern science and technology, non-linear science has obtained rapidly progress and its essence was discovered and explained continually. The research of the nonlinear theory is a contemporary important subject that is obtained prevalent attention, which is the science on the complexity. Nonlinear wave is an important part of it. Recently, the propagation has become more and more important in a large number of fields of physics and engineering science。The earth is a complicated and changing system, so there have complexity and nonlinear, we can’t get all data from earthquakes. How to find the biggest degree to use these data and improve dependability, so as to embody great economical benefit in searching now oil fields, it’s necessary for us to study the nonlinear wave.
    The 2-D nonlinear longitudinal wave in the isotropy solid medium studied in this paper is the finite amplitude wave, which thought about the nonlinear of the motion and medium. The finite element numerical method based on centimo theory and dispart-insert-value One side ,it is conventional energy method. It is transfiguration of Ritz-Galerkin method .On the other hand ,it also has some similitude with difference method . Therefore, The finite element numerical method is the unite of energy method
    
    
    and difference method . The finite element disperse keep the symmetry poditive nature of original problem. Even its freshness matrix is sparsity matrix. All of these excellence make mumerical value compute easy. but wave energy look toward to high frequency space, these lead to strong dissipation in the high frequency, accelerating the nonlinear wave dissipation. In this time, the nonlinear is the mainly characteristic, so we reasonable analyze the medium nonlinear action is most necessary. The finite element method is made use of the nonlinear wave equations, along with increment of degree of freedom in unit , the precision of interpolating function and approximate solution have to certain extent difficulty .Every concrete nonlinear wave equation need concrete interpolating function, variant periphery condition need variant precise approximate function. We can put to use variant approximate function in variant unit. We can utilize variant interpolating function in variant periphery condition. By this method, we can heighten precision and quicken the velocity of convergence.
     we gained the solution of hyperbolic 2-D nonlinear primary wave equation by finite element numerical method .Based on the proof of existence of the exact value ,we have gained the numerical value,analyzed the stability, convergence, and established the error estimate formula.
     Firstly, the basic theory of nonlinear science was introduced and its influences on the development of science and technology were showed in this paper. Furthermore, the history and its modern status of solutions on non-linear wave equations were shown here.
    Secondly, in this paper, Physical and mathematical fundamental of the nonlinear wave is introduced, especially, with regard to the nonlinear wave of elastic solid medium. Form power of point of view, the conception of the strain work is introduced. We built 3-D hyperbolic nonlinear evolution and the general motion equation by making good use of the
    
    
    conservation of mass、moment and energy. Meanwhile, the paper builds three-dimension nonlinear wave model in isotropic medium. Ignoring the transverse wave domino effect, 2-D nonlinear Primary wave equation in isotropy solid medium was gained.
    Moreover ,existence of the exact value have been rigidly proved with functional analysis. Based on it ,we have gained the numerical value,analyzed the stability, con
引文
[1] 钱祖文,非线性声学, 北京:科学出版社,1992 ,324~344。
    [2] 郭柏灵, 非线性演化方程, 上海:上海科学教育出版社,1995,42~58。
    [3] 阎贵卿、阎毅,近代数学物理理论计算与可视化技术,长沙:国防科技大学出版社,2000 1~348。
    [4] den, J .T. , Reddy,J.N., An introduction to the mathematical theory of finite elements,1976 。
    [5]Tommee, V Finite element Galerkin methods for different equations Lecture Notes in pure and applied mathematics, 21-198 。
    [6] Dupont, T. A Galerkin methods for a nonlinear Dirichlet problem, Mathematics of computer, 24(1975),689~696。
    [7] Douglas, J., Galerkin methods for parabolic equations, SIAM Journal on Numerical Analysis, 7:4(1970),575~626。
    [8] Dupont, T,-Estimates for Galerkin methods for second order hyperbolic equation. SIAM, J, Numerical, Analysis, 10(1973), 880~889。
    [9] 李翊神、汪克林,非线性科学选讲, 合肥:中国科学技术大学出版社,1994,2~13。
    [10] 斯特朗,有限元法分析,北京:科学出版社,1985。
    [11] 陈传淼,有限元超收敛构造理论,长沙:湖南科学技术出版社,2001。
    [12] [美]G.B.克瑟姆等著,庄峰育、岳曾元译,线性与非线性波,北京:科学出版社,1986。
    [13] 库比切克,M. 马雷克著,刘式达,刘式适译.分岔理论和耗散结构的计算方法,北京:科学出版社,1990。
    [14] Jackson, Atlee, Perspectives of nonlinear dynamics, Cambridge University Press, 1989, 3~42。
    [15] A priori error estimates for Galerkin approximations to parabolic partial different SIAM,J, Numerical.Analysis,10:4(1973),723~759。
    [16] Mccall, Theoretical study of nonlinear elastic wave propagation ,J. Geophysical Research,99(D2),12591~12600(1994)。
    [17] 谷超豪,非线性现象的个性和共性,科学A辑,1992(3),23~34。
    
    [18] 谢 靖,地球物理近代数学方法,吉林科学技术出版社,1996。
    [19] 叶其孝、王耀东、应隆安等译,索波列夫空间,北京:人民教育出版社,1981。
    [20] P.G.Ciarlet,有限元素法的数值分析,上海:上海科学技术出版社,1978年,32~84。
    [21] 张本祥等,非线性的概念、性质及其哲学意义,自然辩证法研究,1996(2)13,13~14。
    [22] Mittag- Leffler ,The lifespan of classical solutions of non-linear wave equations ,
    Report No,5,1985 13~25。
    [23] Xu J C. error estimate on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numerical,Analysis, 1995(32):1170~1184。
    [24] Hou Yijun, Lou Shunli, Xie Qiang, and Yang Liangui, The nonlinear evolution on the shallow water waves , SCIENCE BULLETI, 1998.43(10),844~847
    [25] 侯一筠、楼顺里、谢强、杨联贵,浅水非线性波的演化方程,科学通报
    1998,43(3)305~309。
    [26] 李荣华、冯果忱,微分方程数值方法(第三版),北京:高等教育出版社,1995。
    [27] 刘式达、刘式适,地球流体力学中的数学问题,北京:海洋出版社,1990,104~394
    [28] 王瑞丽、周凌云、吴光敏等,非线性物理理论及应用,北京:科学出版社,2000 1~68。
    [29] 冯长根,李石强,祖元刚,非线性科学的理论、方法和应用,北京:科学出版社,1997。
    [30] Л.Д.朗道著,彭旭麟译,连续介质力学.第三册,北京:人民教育出版社,1978。
    [31] John F.Blow up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. , 1979,28:235-268
    [32] Kato T.Blow up of solutions of some nonlinear hyperbolic equations .Comm .Pure. Aure. Math.,1980,33(4):501-505
    [33] Β.Β.诺沃日洛夫.非线性弹性力学基础.北京:科学出版社,1958。
    [34] 丁启财,固体中的非线性波,北京:中国友谊出版公司,1985。
    [35] Glassey R.Blow up theorems for nonlinear wave equations.Math.Z.,1981,177:323-340
    [36] Gaffearlli L,Friedmen V.The blow up boundary for nonlinear wave equations.Tran.Amer.Math.Soc.,1986,197(1):223-241
    
    [37] 刘式达、刘式适,地球流体力学中的数学问题,北京:海洋出版社,1990。
    [38]姜礼尚、庞之垣等,有限元方法及其理论基础,北京:人民教育出版社,1980,1~217。
    [39] Asajyra F. Existence of a global solution to a semilinear wave equation with slowly decreasing initial data in three space dimensions. Comm. P.D.E.1986,11(3):1459-1487
    [40] Ristow D.Fourier finite-difference migration.Geophysics,1994,59(12):1882-1993
    [41] Claerbout J F.Image the Earth’s Interior.USA Black Scientific Publication,1985
    [42] 李庆扬、关 治、白峰杉,数值计算原理,清华大学出版社,2000,242~299。
    [43] Gazdag J. Sguazzero P.Migration of seismic data by phase-shift plus interpolation.Geophysics, 1984,49(1):124-131
    [44] A.D.亚历山大洛甫等著,数学——它的内容,方法和意义,科学出版社,2002。
    [45] 赵松年,非线性科学:它的内容、方法和意义,科学出版社,1993,200~620
    [46] Kleinerman S.Global existence for nonlinear wave equations. Comm.Pure..Appl.Math.,
    1980,,33:43-101
    [47] Klainerman S.Long-time behavior of solutions to nonlinear evolution equations.Arch.Rat.
     Mech.Anal.,1982,78:73-98
    [48] 袁益让 一类非线性双曲型方程有限元方法的稳定性和收敛性 计算数学学报 1983,No.2
    [49] 李荣华,冯果忱. 微分方程数值解法.第三版. 北京:高等教育出版社,1995
    [50] Klaimerman S,Pomce G.Global,small amplitude solutions to nonlimear evolution equations. Comm.Pure.Appl.Math.,1983,36:133-141
    [51] 唐世敏,若干非线性波方程的行波解,物理学报,1991,40(11)
    [52] 高理平,粘弹性拟线性波动方程的全离散有限元方法及数值分析,山东大学学报,2000,9,246~252
    [53] Matsumura A.Initial value problems for some quasilimear partial differential equations in mathematical physics.Doctor Thesis,Kyoto Univ.,June,1980
    [54] 姜子文,李潜,非线性双曲型方程的插值全离散有限元方法的整体超收敛性,工程数学学报,1999(5),2~10
    
    [55] 戴培良等,关于非线性双曲型方程半离散有限元方法的误差估计,苏州大学学报 2001,vol.17,No.1
    [56] 刘 财,王建民,等. 地球物理场中近代数学方法. 长春:吉林科学技术出版社 1999
    [57] H~ormander L.Linear partial differentisl operators[M].New York:/springer-Verlag,1963
    [58] 王勖成,邵敏著,有限单元法基本原理和数值方法,北京:清华大学出版社,
    1997 105~112
    [59] [日]谷内俊弥,西原功修,徐福元等译,非线性波动, 原子能出版社,1977
    [60] 李大潜,陈韵梅著,非线性发展方程, 北京: 科学出版社, 1999,50~52
    [61] Dresner L./similarity solutions of nonlinear partial differential equation[M].Boston:
    Pitman,1983
    [62] Hirota R,Satsuma J.Soliton solutions of a coupled KdV equation [J]. Phys Letter,1981,A85(8-9):407
    [63] Kupershmidt B A.Axoupled KcV equation with dispersion [J].Jphys A:Math Gen,1985,L18:571
    [64] 仪垂祥, 非线性科学及其在地学中的应用, 气象出版社, 1995 ,63~69
    [65] 丁启财,固体中的非线性波, 中国友谊出版社, 1985 34~49
    [66] Guha-Roy C.Solitary wave solutions of a system of coupued nonlinear equation[J].J.Math
     Phys,1987,28(9):2087
    [67] Guha-Roy C.Exact solutions to a coupled nonlinear equation[J].Inter J Theor Phys,1988,27(4):447
    [68] 钱祖文,我国非线性声学方面的研究进展, 物理学报,1999, 28(10)
    [69] 冯长根,李石强等,非线性科学的理论、方法和应用,北京:科学出版社,1997
    [70] Ma W X,Fuchsstiner B.Explicit and exact solutions to a KolmogorovPetrovishii-Piskunov
    equation [J].Int J Nonlinear-Machanics,1996,31(3):329
    [71] BAKER G A.Error estimates for finite element methods for second order hyperbolic equations[J].Siam Numer Anal,1976,13(2):564-576
    [72] 袁益让,王宏 非线性双曲型方程有限元方法的误差估计,系统科学与数学学
    
    
    报 1983,5(3),161-171。
    [73] 王明新著, 非线性抛物型方程, 北京: 科学出版社 , 1993 ,61~64。
    [74] CLARLET P G.The Finite element Method for Elliptic Problems[M].Amsterdam:North Holland,1987
    [75] GARCLA S M F .Improved error estimates for mixed finite element approximationefor nonlinear parabolic equations:the contimuous time case [J].Numer Methods for PD,
    1994,10(1):127-147
    [76] 李庆扬等著,非线性方程组的数值解法,北京:科学出版社,1987,14~17。
    [77] 矢信男、野木达夫著,发展方程数值分析,北京:人民教育出版社,1983 2~4。
    [78] THOMEE V.Galerkin Finite Element Methods for Parabolic Problems[M].New York:
    Springer-Berlag,1984,1054:15-258
    [79] GEVECI T.On the application of mixed finite element methods the wave equation [J].
    Rairo Model Math Amal Numer,1988,22:243-250.
    [80] T.Dupont,L-Estimates for Galerkin Methods for second order hyperbolic equation,SIAM J.Numer.Anal.,10:5(1973),880-889
    [81]J.T.Oden,J.N.Reddy,An introduction to the mathematical theory of finite elements,wiley Interscience,New York,1976
    [82] 尚亚东, 一类非线性色散—耗散方程的显示精确解, 高校应用数学学报,
    1990,14.A辑(3)280~284。
    [83] R.Bellman,Stability theory of differential equations,McGraw-Hill,New York,1952
    [84] 李 潜,一类非线性双曲型方程有限元方法的误差估计,山东大学学报 1988,vol.23,No.4, 11~17。
    [85] M.F.Wheeler,A Priori L error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J.Numer.Anal,10:4(1973),723-759
    [86]J.Douglas,T.Dupont,A Galekin methods for a nonlinear Dirichlet problem,Math.Comp.,29(1975),689-696
    [87] 陈传淼,有限元解及其导数的超收敛性 ,高等学校计算数学学报 ,1981(3), 118~125。
    [88] 尚亚东, 一类非线性波动方程的显式精确解, 纺织高校基础科学学报,1999,12(1)。
    
    [89] J.Douglas,T.Dupont,Galerkin methods for parabolic equations,SIAM J.Numer.Anal., 7:4(1970),575-626
    [90] 尚亚东, 两类非线性波动方程的精确解, 兰州大学学报,1999,35(1)。
    [91] 朱 江,非线性RLW方程的特征数值方法, 应用数学学报,1990,13(1)。
    [92] 唐世敏, 若干非线性波方程的行波解, 物理学报,1991,40(11)214~221。
    [93] 徐炳振等, 一类五阶非线性演化方程的新孤波解, 物理学报1998,47,(12)1947~1950
    [94] 孙方裕, 金小刚,具有高次强非线性项的发展方程的精确孤波解,应用数学,1999,12
    [95] 张文旭,沈隆钧,非线性波动方程的弱隐式与显式差分方法,计算数学,1995,17(2)218~227
    [96] 张文旭, 沈隆钧, 高阶非线性波动方程的有限差分方法, 应用数学学报,1997,20(3)419~430
    [97] 文世鹏著, 应用数值分析,北京石油工业出版社,1997。
    [98] 蔡四维,蔡敏著 ,有限元素法,它的内容、方法和实质,科学出版社,1980,1~200。
    [99] 林群、朱起定,有限元的预处理和后处理理论,上海科学技术出版社,1994,1~136。
    [100] 陈传森著,有限元方法及其提高精度的分析,湖南科学技术出版社,1982。
    [101] 南京大学数学系,偏微分方程,科学出版社,1979。
    [102] 陈恕行著,偏微分方程概论,人民教育出版社,1981 ,324~351。
    [103] 龙驭球著,有限元法概论,人民教育出版社,1978 ,127~139。
    [104] 姜礼尚,庞之垣著,有限元方法及其理论基础,人民教育出版社,1980。
    [105] 张卫国。几类具有5次强非线性项的发展方程的显式精确孤波解,应用数学学报,1998,21(2):249~255。
    [106] 谷超豪等著,孤立子理论与应用, 浙江科学技术出版社,杭州,1990。
    [107] 郭柏灵等著,孤立子 ,科学出版社,北京 ,1987 ,8~10。
    [108] 袁益让,王宏,非线性双曲型方程的有限元方法的误差估计,系统科学与数学,1987,5 (3),161-171。
    [109] 王宏,关于非线性双曲型方程全离散有限元方法的稳定性和收敛性估计,计算数学5 (3)(1985),163~175。
    
    [110] W.Van Saarloos,P.C.Hohenberg.Fronts,Pulses,Sources and Sinks in eneralizedComplex
    Ginzburg-Landau Equation.Phys.D.,1992,56:303-367.
    [111] A.Kundu.Landau-Lifshitz and Higher-order Nonlinear Systems Gauge Generated from Nonlinear Schrodinger Type Equations.J.Math.Phys.,1984,25:3433-3436.
    [112] H.H.Chen,Y.C.Lee and C.S.Liu .Integrability of Nonlinear Hamiltonian Systems by Inberse Scattering Method.Phys .Scr.,1979,20:490-492.
    [113] V.S.Gwesjikov,I.Ivanov.The Quadratic Bundle of General Form and the Nonlinear Evolution Equation .Bulg.J.Phys.,1983,10(2):130-143.
    [114] I.L.Bogolubsky.Some Examples of Inelastic Soliton Enteraction.Computer Physics Communications,1977,13:149-155.
    [115] P.A.Clarkson,R.J.Leveque and R.Saxton.Solitary-wave Interactions in Elastic Rods.Studies inApplied Mathematics,1986,75:95-122.
    [116] M.J.Ablowitz,A.Ramani and H.Segur.A Connection Between Nonlinear Evolution Equations and Ordinary differential Equation of P-type .J.Math.Phys.,1980,21(5):
    1006-1015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700