若干非线性双曲方程解的全局稳定性与爆破问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双曲方程是偏微分方程理论的一个重要的研究内容,对它的研究必将促进偏微分方程理论和其它数学分支的进一步发展.本文的研究内容主要有两个.一是应用势井理论和(?)Sobolev空间理论研究具非线性阻尼和源项及粘弹性项的波动方程的解的爆破.二是应用Lyapunov能量法,结合势井理论研究波动方程的解的全局存在性和能量衰减问题.
     论文分为三章.
     第一章是引言,主要介绍本文的研究背景,国内外研究现状及本文的主要结果.
     第二章主要研究一些双曲系统的解的爆破,解的局部存在以及全局存在性.主要包括粘弹性波动方程的Cauchy问题,边界上带有分数阶耗散项的波动方程,以及各向异性的波动方程.
     第二章第一节考虑以下的粘弹性波动方程的柯西问题:其中m≥2,p>2.函数g:R+→R+是G1类函数,满足以下假设初值u0,u1和参数m,p满足以下假设带有紧支集.(G3)当n≥3时,22.假设系统具有负的初始能量,系统中的核函数和参数满足适当的条件时,我们分别得到了解在有限时刻爆破和全局存在的结论.
     第二章第二节讨论以下初边值问题其中Ω是Rn(n≥1)中的具有光滑边界aQ的有界区域.边界由两部分组成:(?)Ω=Г0∪Г1,Г0∩Г1=(?),其中r0与r1在(?)Ω上是可测的,带有(n-1)-维Lebesgue测度λn-1(Γi),i=0,1. v是(?)Ω上的单位外法向量.函数f(u)=|u|p-2u是多项式源项,p>2.核函数是弱奇次核,其中0<α<1,β,b>0均为常数.系统中的卷积项代表u的分数阶导数(Caputo意义下).假设系统具有正的初始能量,系统中的参数α,β,p满足适当的条件时,我们借助势井理论和凸分析的方法得到了解在有限时刻爆破的结论.
     第二章的第三节研究了以下各向异性的波动方程其中pi≥2,i=1,...,n,T>0,Ω是Rn(n≥1)中的有界开子集,带有光滑边界(?)Ω,f(u)=u|u|σ-2,σ>1假设参数pi(i=1,2,…,n),σ满足一定的条件下:我们证明了局部解的存在性和带负初始能量的解的爆破.
     第三章研究论文的第二个主要内容:带有非线性阻尼和源项的波动方程解的全局存在性和能量衰减问题.
     第三章第一节研究如下的带边界阻尼和源项的粘弹性波动方程这里m≥2,p≥2.Ω是Rn(n≥1)中的有界区域,带有光滑边界(?)Ω,且(?)Ω=Г0∪Г1,Г0∩Г1=(?),其中Γ0和r1在(?)Ω上是可测的,带有(n-1)-维Lebesgue测度λn-1(Γi),i=0,1.v是(?)Ω上的单位外法向量.g是一个正的核函数.当核函数具有一般的衰减性,且与参数满足一定的条件时,我们利用势井理论和Lyapunov能量法得到了全局解的存在性和能量具有与核函数一致衰减率的结论.
     第三章第二节研究如下的拟线性波动方程其中Ω是RN中的有界区域,带有光滑边界(?)Ω.
     做如下假设:函数
     阻尼项具有形式源项为其中参数p满足:当N=1,2时,p≥1;当N≥3时,1≤p≤N/N-2.
     非线性应变项σ(s)满足:对任意的s≥0,其中Ai,bi,di(i=1,2)都是非负常数,且b1+b2>0.
     利用微分不等式和解的延拓原理,通过讨论非线性应变项,阻尼项,源项的增长阶的关系,我们得到了上述系统整体解存在的几个新的充分条件.
     第三章第三节研究如下耦合的非线性波动方程其中m,r≥1,Ω是RN中的有界区域,带有光滑边界(?)Ω.
     全文做如下假设:
     非线性应变项σ(s)∈C1满足:且对任意的s≥0,其中b1,b2都是非负常数,且b1+b2>0.
     源项f1,f2和初值u0,u1,u0,u1满足以下假设:其中其中a,b>0,p≥3.初值满足利用微分不等式和解的延拓原理,通过讨论非线性应变项,阻尼项,源项的增长阶的关系,我们得到了上述耦合系统整体解存在的几个新的充分条件.
Hyperbolic equations is an important contents of partial differential equation (PDE) . Studies to hyperbolic equations will promote the further development of PDE theory and other branches of mathematics. The main contents of this thesis consist of two parts. The first one is to study the blow-up of solutions for wave equations with nonlinear damping and source terms. We do this by applying Potential Well theory and Sobolev space theory. The second one is to study global existence and energy decay for wave equations. We do this by combining Lyapunov energy method and Potential Well theory.
     This thesis consists of three chapters.
     In Chapter 1, firstly, a survey on the research background and the research advance of the related work are given. Secondly, the main results obtained in this thesis are listed.
     Chapter 2 is devoted to the study on the properties of solutions for some hyperbolic systems. The properties include local existence, global existence and blow-up of solutions. Hyperbolic systems include Cauchy problem for viscoelastic wave equation, wave equation with a fractional boundary dissipation, and an anisotropic wave equation.
     In Section 1 of Chapter 2, we consider the following Cauchy problem with viscoelastic term where m≥2,p≥2.
     g:R+→R+is a C1-function satisfying The initial data u0,u1 and the parameters m,p satisfy the following assumptions with compact support.
     (G3) 2< p<2n-1/n-2, if n≥3, and p>2, if n=1,2.
     Assume that the initial energy is negative. Under some suitable assumptions on the kernel function and the parameters in the equation, we establish a finite-time blow-up result and a global existence result, respectively.
     Section 2 of Chapter 2 is devoted to the study on the following wave equation with fractional derivative term on a part of its boundary WhereΩis a bounded open subset of Rn(n≥1), with a smooth boundary (?)Ω. And (?)Ω=Г0∪Г1,Г0∩Г1=(?),whereГ0 andГ1 are measurable over (?)Ω, endowed with the (n-1)-dimensional Lebesgue measureλn-1(Гi),i=0,1. v is the unit outward normal to (?)Ω. The function f(u)=|u|p-2u is a polynomial source, p>2. The function ia a weakly singular kernel, where 0<α<1,β,b>0. The convolution term in the problem represents a modified fractional derivative of u(in the sense of Caputo).
     Assume that the initial energy is positive. By using the potential well theory and con-cavity method, we prove that under some suitable assumptions on the parametersα,β,p in the equation, the solution of the problem blows up in finite time.
     Section 3 of Chapter 2 deals with the following anisotropic nonlinear hyperbolic equation Where pi≥2, i=1,…,n, T> 0,Ωis a bounded open subset of Rn(n≥1), with a smooth boundary (?)Ω,g(u)=u|u|σ-2, (σ>1) is a polynomial source.
     Under some restriction on the parameters and the initial data, we obtain several results on the local existence of the solution and the blow-up of solutions.
     Chapter 3 is devoted to studying the second main content:the study on global existence and energy decay of solutions for wave equations with nonlinear damping and source terms.
     In Section 1 of Chapter 3, we consider the following viscoelastic wave equation Here m≥2, p≥2.Ωis a bounded open subset of Rn(n≥1), with a smooth boundary (?)Ω=Г0∪Г1,Г0∩Г1=(?), where F0 and F1 are measurable over (?)Ω, endowed with the (n-1)-dimensional Lebesgue measureλn-1(Гi),i=0,1.νis the unit outward normal to (?)Ω.上. g is a positive kernel function.
     By using the potential well theory and Lyapunov energy method, we prove that, under some appropriate assumptions on the kernel function and the parameters, the solution of the problem exists globally and the energy has a general decay.
     Section 2 of Chapter 3 is concerned with the global existence of solutions for the following quasilinear wave equation: whereΩis a bounded domain of RN. with a smooth boundary (?)Ω.
     We make the following assumptions:σis a function which satisfies for s>0,
     The nonlinear damping term has the form
     The source term has the polynomial form where the parameters p satisfies:
     The nonlinear strain termσ(s) satisfies for s≥0, where ai,bi, di,(i=1,2) are nonnegative constants, and b1+b2>0.
     By using differential inequality and continuation principle, and analyzing the param-eters in the equation, some new sufficient conditions for global existence of the solution were obtained.
     In Section 3 of Chapter 3, we investigate the following coupled quasilinear wave equation where m,r≥1.Ωis a bounded open domain of RN, with a smooth boundary (?)Ω.
     We make the following assumptions
     σis a C1 function which satisfies for s>0, and for all s≥0, where b1, b2 are nonnegative constants, and b1+b2>0.
     The source terms f1, f2 have the form and where a, b>0, p≥3. And the initial data u0, u1, v0,v1 satisfy By using differential inequality and continuation principle, and analyzing the relationship between the growth orders of the nonlinear strain term, the damping term and the source term, some new sufficient conditions for global existence of the solution were obtained.
引文
1 M. Tsutsum. On solutions of semilinear differention equations in Hillbert space. Math Japon., 1972,17,173-193.
    [2]R. T. Glassey. Blow-up theorems for nonlinear wave equation. Math. Z.,1973,132,183-203.
    [3]L. Payne, D. Sattinger. Saddle points and instability of nonlinear hyperbolic equations. Israel Math. J.,1981,22,273-303.
    [4]H. A. Levine. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal.,1974,5(4),138-146.
    [5]H. A. Levine. Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt=-An+F(u). Trans. Amor. Math. Soc.,1974,192.1-21.
    [6]J.Ball. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart.J.Math.Oxford.,1977,28(2),473-486.
    [7]0. A. Oleinik, E. V. Radkevich. Method of introducing of parameterevolution equations. Russian Math. Surver.,1978,33,7-84.
    [8]S. Alinhac. Blow-up for nonlinear hyperbolic equations. Birkhauser, Boston, Berlin,1995.
    [9]H. A. Levine. The roal of critical exponents in blowup theorems. SIAM Review,1974,32(2), 262-288.
    [10]H. A. Levine. A note on a nonexistence theorem for nonlinear wave equations. SIAM J. Math. Anal.,1974,5(5),644-648.
    [11]H. A. Levine, L. E. Payne. Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations. J. Math. Anal. Appl.,1976,55,329-334.
    [12]M. Ohta. Blow-up of solutions of dissipative nonlinear wave equations. Hokkaido Math. J., 1997,26,115-124.
    [13]K. Ono. Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Diff. Equa.,1997,137,273-301.
    [14]O. A. Ladyzhenskaya, V. K. Kalantarov. Blow up theorems for quasilinear parabolic and hyperbolic equations. Zap. nauckn. SLOMI Steklov,1977,69,77-102.
    [15]E.Vitillaro. A potential well theory for the wave equation with nonlinear source and boundary damping terms. Glasgow Math. J.2002,44,375-395.
    [16]Zhijian Yang. Global existence, asympotic behavior and blow up of solutions for a class of nonlinear wave equations with dissipative term. J. Diff. Equa.,2003,187,520-540.
    [17]J. A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation. Disc. Cont. Dyna. Sys.,10 (3) 787-804.
    [18]D. H. Sattinger. On global solution of nonlinear hyperbolic equations. Arch. Rational Mech. Anal.1968,30,148-172.
    [19]A. Haraux, E. Zuazua. Decay estimates for some semilinear damping hyperbolic problems. Arch. Ration. Mech. Anal.,1988,150,191-206.
    [20]V.K.Kalantarov, O.A.Ladyzhenskaya. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J.Soviet Math.,1978 (10),53-70.
    [21]V. Georgiev, G. Todorova. Existence of solution of the wave equation with nonlinear damping and source term. J. Differential Equation,1994,109,295-308.
    [22]Salim A. Messaoudi. Blow-up in a nonlinearly damped wave equation. Math. Nachy.,2001, 231,1-7.
    [23]M.Kopackova. Remark on bounded solutions of a semilinear dissipative hyperbolic equation. Comment.Math. Univ.Carolin.,1989,30,713-719.
    [24]E. Vitillaro. Global nonexistence theorem for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal.,1999 149,155-182.
    [25]H. A. Levine, S. P. Park. J. Serrin. Global existence and nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation. J. Math. Anal. Appl.,1998,228, 181-205.
    [26]H.A. Levine, J.Serrin. A global nonexistence theorem for quasilinear evolution equation with dissipation. Arch.Rational Mech. Anal.,1997,137,341-361.
    [27]H. Levine, G. Todorova. Blow up of solutions of the Cahchy problem for a wave equation with nonlinear damping and source terms and positive initial energy. Proceeding of the American Mathematical Society,2000,129,793-805.
    [28]G.Todorova. Cauchy problems for a nonlinear wave equations with nonlinear damping and source terms. Nonlinear Anal.,2000,41,891-905.
    [29]G.Todorova. Stable and unstable sets for the Cauchy Problem for a nonlinear wave equation with nonlinear damping and source terms. J. Math. Anal. Appl.,1999,239,213-226.
    [30]Salim A. Messaoudi. Blow up in the Cauchy problem for a nonlinearly damped wave equation. Comm.On.Applied.Analysis,2003,3,379-386.
    [31]M. M. Cavalcanti, V. N. Domingos Cavalcanti. and J.A.Soriano. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Elec-t.J.Diffe.Eqns.,2002,44,1-14.
    [32]E.Zuazua. Exponential decay for the semilinear wave equation with locally distributed damp-ing. Comm.PDE,1990,15,205-235.
    [33]J.E.Munoz Rivera, R.Baretto. Decay rates for viscoelastic plates with memory. J.Elast.,1996,44,61-87.
    [34]M.M.Cavalcanti, V.N.Domingos Cava;canti, and J.Ferreira. Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Math.Meth.Appl.Sci.,2001,24,1043-1053.
    [35]M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.A. Soriano. Global existence and asymptotic stability for viscoelastic problems. Differential Integral Equations.2002,15.731-748.
    [36]M.M. Cavalcanti, H.P. Oquendo. Frictional verus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim.,2003,42,1310-1324.
    [37]S.A. Messaoudi. Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr.,2003,260,58-66.
    [38]Salim A. Messaoudi. Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic eqution. J. Math. Anal. Appl,2006,320,902-915.
    [39]S.A. Messaoudi. General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal,2008,69,2589-2598.
    [40]S.A. Messaoudi, M.I. Mustafa. On convexity for energy decay rates of a viscoelastic equation with boundary feedback. Nonlinear Anal,2010,72,3602-3611.
    [41]W.J.Liu. Partial exact controllability and exponential stability in higher-dimentional linear thermoelasticity. ESIAM:Control, Optimisation and Calculus of Variations.1998,3,23-48.
    [42]W.J.Liu. The exponential stabilization of the higher-dimentional linear system of thermo-viscoelasticity. J.Math.Pures et Appliquees.1998,37,355-386.
    [43]W.J.Liu. Partail exact controllability for the linear thermo-viscoelastic model. Elec-t.J.Differential Eqns.,1998,17,1-11.
    [44]E. Vitillaro. Global nonexistence for the wave equations with nonlinear boundary damping and source terms. J. Differential Equations,2002,186,259-298.
    [45]R. Ikehata, T. Suzuki. Stable and unstable sets for evolution equations of parabolic and hyperbolic type. Hiroshima Math. J.,1996,26,475-491.
    [46]R. Ikehata. Some remark on the wave equations with nonlinear damping and source terms. Nonlinear Analysis,1996,27,1165-175.
    [47]K. Agre, M. A. Rammaha. System of nonlinear wave equations with damping and source terms. Differential Integral Equations,2006,19,1235-1270.
    [48]Xiaosen Han, Mingxin Wang. Global existence and blow-up of solution for a system of nonlinear viscoelastic wave equations with damping and source. Nonlinear Analysis,2009, 71(11),5427-5450.
    [49]A. Guesmia. Existence global et stabilization interne non lineaire d:un system de Ptrovsky. Bull. Belr. Math. Soc.,1998,5,583-594.
    [50]Xiaosen Han, Mingxin Wang. Energy decay rate for a coupled hyperbolic system with non-linear damping. Nonlinear Analysis,2009,3264-3272.
    [51]M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.A. Soriano, Exponential decay for the solu-tion of semilinear viscoelastic wave equations with localized damping. Electron.J.Differential Equations,2002,44,1-14.
    [52]M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.A. Soriano, Global existence and asymptotic stability for viscoelastic problems. Differential Integral Equations,2002,15,731-748.
    [53]Wenjun Liu. Uniform decay of solutions for a quasilinear system of viscoelastic equations. Nonlinear Analysis,2009,71(5-6),2257-2267.
    [54]Wenying Chen, Yong Zhou. Global nonexistence for a semilinear Petrovsky equation. Non-linear Analysis,2009,70,3203-3208.
    [55]Xiaosen Han, Mingxin Wang. Global existence and asymptotic behavior for a coupled hy-perbolic system with localized damping. Nonlinear Analysis,2010,72(2),965-986.
    [56]Salim A. Messaoudi. Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms. J. Math. Anal. Appl., 2010,365(1),277-287.
    [57]B. Said-Houari. Global nonexistence of positive initial-energy solution of a system of non-linear wave equation with damping and source terms. Differential integral Equations,2010, 23 (1-2),79-92.
    [58]E.Zuazua. Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Optim.,1990,28,466-477.
    [59]M. Aassila, M. M. Cavalcanti, V. N. Domingos Cavalcanti. Existence and uniform decay rate of the wave equation with nonlinear boundary damping and boundary memory source term. Cale. Var. Partial Differential Equations,2002,15,155-180.
    [60]M. Aassila, M. M. Cavalcanti, J. A. Soriano. Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain. SIAM J. Control Otim.,2000,38 (5),1581-1602.
    [61]D. Andrade, J. E. Munoz Rivera. Exponential decay of nonlinear wave equation with vis-coelastic boundary. Math. Meth. Appl. Sci.,2000,23,41-61.
    [62]M. M. Cavalcanti, V. N. Domingos Cavalcanti, M. L. Santos. Existence and uniform decay rates of solutions to a degenerate system with memory condition at the boundary. Applied Mathematics and Computation,2004,150,439-465.
    [63]M.M. Cavalcanti, V.N. Domingos Cavalcanti, I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J.Differential Equations 2007,236.407-459.
    [64]M. L. Santos. Decay rates for solutions of a system of wave equation with memory. Eur. J. Differen. Equat.,2002,38,1-17.
    [65]G.Gripenberg, S.O.Londen, J.Priiss. On a fractional partial differential equation with dom-inating linear part. Math.Methods Appl.Sci.,1997,20,1427-1448.
    [66]H.Petzeltova, J.Pruss. Global stability of a fractional partial differential equation. J. Integral Equations Appl.,2000,12,323-347.
    [67]I.Podlubny. Fractional Differential Equations. in:Mathematics in Science and Engineering, Vol.198, New York, London, Academic press,1999.
    [68]S.G.Samko, A.A.Kilbas, O.I. Marichev. Fractional Integrals and Derivatives:Theory and Applications. Gordon and Breach,1987, transl. from Russian,1993.
    [69]N.-e.Tatar.The decay rate for a fractional differential equations. J.Math.Anal.Appl.,2004, 295,303-314.
    [70]B.Mbodje, G. Montseny, J. Audounet, P.Benchimol. Optimal control for fractionally damped flexible systems. Proc. of the Third IEEE Conference,24-26 Aug.1994, Control Appl.,1994, 2,1329-1333.
    [71]D. Matignon, J. Audounet, G. Montseny. Energy decay for wave equations with damping of fractional order, in:Proc. of the Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, INRIA-SIAM, Golden, Colorado, June 1998,pp.638-640.
    [72]M.Kirane, N.-e.Tatar. Exponentail growth for a fractionally damped wave equation. Z. Anal. Anwendungen,2003,22,167-177.
    [73]N.-e.Tatar. A wave equation with fractional damping. Z. Anal. Anwendungen,2003,22.1-10.
    [74]N.-e.Tatar. A blow up result for a. fractionally damped wave equation. Nonlinear Differential Equations Appl.,(NoDEA)2005,12(2),215-226.
    [75]S.A.Messaoudi, B.Said-Houari, N.-e. Tatar. Global existence and asymptotic behavior for a fractional differential equation. Appl. Math. Coinput.,2007,188,1955-1962.
    [76]S. Labidi, N.-e. Tatar. Unboundedness for the Euler-Bernoulli beam equation with fractional boundary dissipation, Appl. Math. Comput.,2005,161,697-706.
    [77]S. Labidi, N.-e. Tatar. Blow-up for the Euler-Bernoulli beam problem with a fractional boundary dissipation. Dynamic Systems and Applications,2008,17,109-120.
    [78]N.-e.Tatar. On a boundary controller of fractional type. Nonlinear Anal.,2010,72,3209-3215.
    [79]J.Greenberg, R.C.MacCamy, V.J.Mizel. On the existence, uniquness and stability of solu-tions of the equation σ'(ux)uxx+λuxtx=ρoutt, J.Math.Mech.,1968,17,707-728.
    [80]D.D.Ang, Pham Ngoc Dinh. Strong solutions of a quasilinear wave equation with nonlinear damping, SIAM J.Math.Anal.,1988,19,337-347.
    [81]A.C.Biazutti. On a nonlinear evolution equation and its applications. Nonlinear Anal., 1995,24,1221-1234.
    [82]M.Nakao. Energy decay for the quasilinear wave equation with viscosity. Math.Z.,1992,219, 289-299.
    [83]G.F.Webb. Existence and asymptotic for a strongly damped nonlinear equation. Canadian J.Math.,1980,32,631-643.
    [84]Y.Yamada. Some remarks on the equation ytt-σ(σ(yx)yxx-yxtx=f.Osaka J.Math.,1980,17, 303-323.
    [85]J.-L. Lions. Quelques methodes de resolution des problemes aux limites non linearires. Dunod-Gauthier Villars, Paris,1969.
    [86]J.-L. Lions, W.A. Strauss. Some non-linear evolution equations. Bull.Soc.Math. France., 1965,93,43-96.
    [87]M. Tsutsumi. Some nonlinear evolution equations of second order. Proc. Japan Acad.,1971, 47,950-955.
    [88]H.Gao, T.F.Ma. Global solutions for a nonlinear wave equation with the p-Laplacian oper-ator. EJQTDE 1999,11,1-13.
    [89]T.F. Ma, J.A. Soriano. On weak solutions for an evolution equation wiyh exponential non-linearities. Nonlinear Anal.,1999,8,1029-1038.
    [90]M.Nakao. A difference inequality and its applications to nonlinear evolution equations. J.Math.Soc. Japan,1978,30,747-762.
    [91]W.A.Strauss. The energy method in nonlinear partial differential equations. Notas de Matematica, No.47 Instituto do Matem atica Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de janeiro,1969.
    [92]M.Sango. On a nonlinear hyperbolic equation with anisoropy:Global existence and decay of solution. Nonlinear Anal.,2009,70.2816-2823.
    [93]M.Nakao. Decay of solutions of some nonlinear evolution equations. J.Math.Anal.Appl.,1977,60,542-549.
    [94]Jianghao Hao, Yajing Zhang, Shengjia Li. Global existence and blow-up phenomena for a nonlinear wave equation. Nonlinear Analysis,2009,71(10),4823-4832.
    [95]Guowang Chen, Yanping Wang. A note on " On the existence of solutions of quasilinear wave equations with viscosity". Nonlinear Analysis.2008,68,609-620.
    [96]A. Guesmia. A new approach of stabilization of nondissipative distributed systems. SIAM J. Control Optim.,2003,42(1),24-52.
    [97]W. Liu, G. Williams. Exact controllability for problems of transmission of the plate equation with low-order terms. Quart. Appl. Math.,2000,58,37-68.
    [98]W. Liu. Stability and controllability for the transmission wave equation. IEEE Trans. Au-tomat. Control,2001,46,1900-1907.
    [99]M. Aassila. Exact boundary controllability of the plate equation. Differential Integrations, 2002,13,1413-1428.
    [100]J.A. Nohel, D.F. Shea. Frequency domain methods for Volterra equations. Adv. Math.,1976, 22,278-304.
    [101]Matsuyama T.,Ikehata R.. On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear torms[J]. J.Math. Anal. Appl.,1996,204:729-753.
    [102]Narasimha K.. Nonlinear vibration of an elastic string[J]. J. Sound V ibration,1968,8:134-146.
    [103]Wu Jieqiong, Li Shengjia, Chai Shugen. Existence and nonexistence of a global solution for coupled nonlinear wave equation[J]. Nonlinear Anal,2010,72:3969-3975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700