疏水性有机污染物在水—土/沉积物体系中的环境行为与归趋
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏水性有机化合物,如多溴联苯醚、有机氯农药、拟除虫菊酯类农药等,普遍具有较大的辛醇/水分配系数(KOW),水溶性很低,疏水性很强,极易吸附和富集于环境中的土壤、沉积物、悬浮颗粒和生物体中,是目前环境中最主要的-类污染物。因此,开展疏水性有机物在土-水/沉积物体系中的环境行为与归趋研究有助于准确评价该类化合物的生态风险,为环境质量标准的制定提供理论依据。
     本论文以美国南加州地区索尔顿湖(Salton Sea)为区域模型,研究了疏水性有机物在水体沉积物中的污染水平和残留特征。研究结果发现索尔顿湖区域沉积物中有机氯农药的检出率为100%,总浓度最高可达109μg kg-1干重,平均浓度为6~30 ng g-1;拟除虫菊酯类农药的检出率为90%,总浓度可高达26 ng g-1。DDT及其降解产物DDE为该地区主要农药污染物,含量占农药污染总量的70%以上;联苯菊酯为主要的菊酯类农药,在所有好气沉积物样品占总菊酯类农药的90%以上,在90%的淹水样品中,占总菊酯类农药的50%以上。研究中结合地球统计分析软件ArcGIS和Surfer,采用Kriging(克里格)数学模型对浓度水平进行网格化(Griding)插值,建立了主要污染物的浓度水平等值线数字地图模型,直观地描绘了索尔顿湖的污染水平、浓度特征和空间分布规律。模型显示总体上该地区深层沉积物(5~30cm)较表层沉积物污染情况严重;阿拉莫河入湖口附近区域污染较新河入湖口附近严重;污染最严重的地方为河流入湖口附近15~30cm沉积物中,且以河流入湖口为中心沿四周浓度呈不断下降趋势,表明水体沉积物中DDTs的污染来源主要来于携带污染源的河水径流输入。
     土/沉积物-水分配系数Kd值和可溶性有机质亲和系数KDOC是评价疏水性有机物在环境中的迁移、扩散、富集等行为的重要参数。但是由于传统方法较难在不破坏系统平衡的条件下将可溶性有机质分离出来,因此目前关于很多疏水性有机物还没有真实Kd值及KDOC值的报道。本论文以热点疏水性有机污染物多溴联苯醚为代表,建立了多溴联苯醚在水体中自由态浓度的自动固相微萃取检测法,并将自动固相微萃取法结合传统液液萃取法,对传统吸附分配系数Kd值偏差进行校正。本研究结果发现传统LLE法可人为压缩PBDE的Kd值1.2~106倍。通过自动固相微萃取较正后得到BDE-28、47、66、99、100、153、154和183的天然沉积物有机碳标化分配系数log Koc分别为4.95~6.13、5.77~6.44、5.57~6.40、6.19~6.92、5.77~6.70、6.19~7.30、6.10~7.24和6.40~7.52;可溶性有机质吸附系数log KDOC值分别为5.81~6.81,5.48~6.19,6.05~6.78,5.10~6.31,6.08~6.99,6.43~7.24,6.35~7.20和6.60~8.02。总体上来说,PBDE在沉积物有机质和水体可溶性有机质中的吸附性都非常强,且PBDE的Koc和KDOc与其自身的正辛醇/水分配系数Kow之间呈显著正相关性。
     为了研究新型疏水性有机物——我国自主创制的新型除草剂丙酯草醚(ZJ0273)在环境中可能的行为与归趋,本研究将14C同位素示踪法与高效液相色谱系统分离纯化技术和LC-MSn等波谱分析技术相结合,对该除草剂在实验室淹水厌氧培养条件下的残留动态变化规律、矿化动力学和降解途径进行了研究。结果发现,培养100 d时,丙酯草醚在酸性红砂土(S1)、中性黄松土(S2)和弱碱性滨海盐土(S3)中,分别高达有26.5%、47.2%、和35.6%转化成为结合态残留。丙酯草醚不同位置芳环之间的矿化速度之间存在差异,A环的矿化速度显著快于B环和C环,总体上其在淹水胁迫下的矿化速度非常慢,100 d的总矿化量都不超过2.5%。丙酯草醚在S1、S2和S3中的母体半减期分别为:58~71 d,32~37 d和48~51天。本研究鉴定了丙酯草醚在淹水厌氧培养条件下的降解产物有:4-(2-(4,6-二甲氧基嘧啶-2-氧基)苄胺基)苯甲酸(M1)、4-(2-(4,6-二甲氧基嘧啶-2-氧基)苯甲酰)苯甲酸(M2)、2-(4,6-二甲氧基嘧啶-2-氧基)苯甲酸(M3)、2-(4-羟基-6-甲氧基嘧啶-2-氧基)苯甲酸(M4)和4,6-二甲氧基嘧啶-2-醇(M5)。初步推断出该除草剂在淹水厌氧培养下的降解途径主要有四条:
     a)丙酯草醚母体M通过酯水解反应脱去丙基生成M1,Ml氧化生成中间产物4-(2-(4,6-二甲氧基嘧啶-2-氧基)苯酰胺基)苯甲酸,由于4-(2-(4,6-二甲氧基嘧啶-2-氧基)苯酰胺基)苯甲酸非常不稳定,在淹水条件下迅速水解生成M2,M2进一步水解脱去对氨基苯甲酸生成M3,M3在微生物作用下可脱烷基生成M4,M4最终矿化开环,生成二氧化碳。
     b)丙酯草醚母体M通过酯水解反应脱去丙基生成M1,M1氧化生成中间产物4-(2-(4,6-二甲氧基嘧啶-2-氧基)苯酰胺基)苯甲酸,由于4-(2-(4,6-二甲氧基嘧啶-2-氧基)苯酰胺基)苯甲酸非常不稳定,在淹水条件下迅速水解生成M2,M2进一步水解脱去对氨基苯甲酸生成M3,M3在微生物作用下发生醚键断裂生成M5,M5最终矿化开环,生成二氧化碳。
     c)丙酯草醚母体M通过酯水解反应脱去丙基生成M1后,M1发生羧基化水解生成M3,M3在微生物作用下可脱烷基生成M4,M4最终矿化开环,生成二氧化碳。
     d)丙酯草醚母体M通过酯水解反应脱去丙基生成M1后,M1发生羧基化水解生成M3,M3发生醚键断裂后形成M5,M5最终矿化开环,生成二氧化碳。
     本论文进一步通过室外模拟农业生态系统实验探讨了丙酯草醚在土壤和油菜中的运转和残留。结果发现,丙酯草醚在土壤和植株中均不易运转,施药后120 d仍有90%以上的含量持留在土表10 cm以上,在油菜体内有95%以上的含量依然持留在标记叶中,籽粒、根和秸秆内的含量均低于1%。
Hydrophobic organic compounds (HOCs), such as polybrominated diphenyl ethers, organochlorine pesticides, and pyrethroids, are a class of most widely detected organic contaminants in the environment. Due to their strong affinity for organic matter, HOCs tend to be absorbed by soil, sediment, solid particles and accumulated in biota. Therefore, a good understanding about their behaviors and fate in the environment will help us to make an accurate prediction for their risk assessment.
     Salton Sea in California, US, is an inland lake with elevated concentrations of agriculture-related chemicals in water and sediment since 1960s. For a better understanding about the eventual environmental fate of HOCs, in this paper, Salton Sea was selected as a study model to give a vast view about the occurrence and transport of organochlorine pesticides (OCPs) and pyrethroids. The results indicated notable existences of OCPs in sediments from Salton Sea with mean concentrations of 3-30 ng g-1 and the maximum concentration of 109 ng g-1. Derivatives/isomers of DDT (DF=100%) were the main OCPs and bifenthrin (DF=90%) appears to be the dominant pyrethroid. The pesticide pollution pattern was demonstrated by concentration-based-Kriging contour map model which was built based on geo-statistical analysis and traditional statistical analysis. From this model, significantly higher concentrations coulde be visually observed in samples from Alamo River than from New River, in air-exposed samples than in submerged samples and in surface sediment than in sub-surface sediments. To assess the potential risks to Salton Sea-dependent habitants, the concentration data for major contaminants was compared with sediment quality guidelines like effect-rang low (ERL) and threshold effect concentrations (TEC) and samples were frequently found with exceeding ERL/TEL for DDEs, DDTs and chlordane. The result hints that further safety assessment is necessary when constructing the species conservation habitat at Salton Sea.
     The partition coefficients Kd and KDOC are important parameters for predicting the environmental behaviors and fate of HOCs. However accurate determination of Kd and KDOC becomes increasingly difficult as Kow increases because HOCs with large log Kow undergo extensive sorption not only to particulate organic matter, but also to colloids such as dissolved organic carbon. In this study, the automated solid phase microextraction method was developed to get the freely dissolved concentration (Cw-SPME) and was further combined with the traditional liquid-liquid extraction to get the partition coefficient for main PBDEs in environment. Obvious underestimation of water sediment partition coefficient Kd values was observed when measured by LLE (Kd values were 1.2-106.3-fold underestimated comparing to SPME). The organic carbon normialized sorption coefficient log Koc were reported to be 4.95-6.13, 5.77-6.44,5.57-6.40,6.19-6.92,5.77-6.70,6.19-7.30,6.10-7.24 and 6.40-7.52 for BDE-28、47、66、99、100、153、154 and 183. The corresponding log KDOC were reported to be 5.81-6.81,5.48-6.19,6.05-6.78,5.10-6.31,6.08-6.99,6.43-7.24, 6.35-7.20 and 6.60-8.02. Great log KDOC values were derived from the SPME measurements, suggesting a strong tendency for PBDEs to complex with DOC. Results from this study showed that PBDE congeners have larger sorption coefficients than would be measured by the conventional method. The high affinity to DOC also means a potential for DOC-facilitated transport, thus extending the range of PBDE movement in environmental compartments such as surface streams.
     The degradation of a novel pyrimidynyloxybenzoic herbicide ZJ0273, (propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate) was studied in flasks simulating flooded field conditions using three representative field soils. The degradation half-life (T1/2) values were calculated to be 63.7,35.1 and 49.2 days for acidic, neutral and alkaline soils respectively. The metabolites of ZJ0273 formed during degradation were identified using various analytical techniques, viz., liquid scintillation counting (LSC), high performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS/MS). Five metabolites were found and identified as 4-(2-(4,6-dimethoxypyrimidin-2-yloxy) benzylamino)benzoic acid (Ml),4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzamido)benzoic acid (M2), 2-(4,6-dimethoxypyrimidin-2-yloxy)benzoic acid (M3),2-(4-hydroxy-6-methoxy pyrimidin-2-yloxy)benzoic acid (M4) and 4,6-dimethoxypyrimidin-2-ol (M5). Two degradation pathways were concluded form the experimental data:
     a) The degradation of ZJ0273 was initiated by ester hydrolysis to form Ml, and then the phenyl ring (A ring) was cleaved from M1 to form M2, and then M2 was transformed to M3 through hydroxylation, after which M3 was demethylated to M4;
     b) The propyl group in the parent compound was broken to form M1 and then Ml was further carbonylated to M2. The M2 was degraded into M3, and then further cleaved into M5.
     c) The degradation of ZJ0273 was initiated by ester hydrolysis to form M1, and then the phenyl ring (A ring) was cleaved from M1 to form M3, which was further demethylated and form M4;
     d) The propyl group in the parent compound was broken to form M1 and then M1 was further carbonylated cleaved to form M3 and then further cleaved into M5.
     An ourdoor experiment was further conducted to simulate the transportation and residue of ZJ0273 in agro-ecosystem. The results showed that ZJ0273 has weak leaching ability in soils and about 90% of the induced amount was remained in the surface 0-10cm soil at 120 d after chemical treatment (DAT). ZJ0273 has weak transportation in the oil rape seeds and more than 95% of the induced amount was remain in the labeled leave at 120 DAT. Less than 1% was transported to the root, stem and seed in matured rape body, suggesting a low dietary exposure for humans.
引文
1. Allchin, C.R.; Law, R.J.; Morris, S. Polybrominated diphenyl ethers in sediments and biota downstream of potential sources in the UK. Environ. Pollut.1999,105: 197-207.
    2. Arthur, C.L.; Killiam, L.M.; Buchholz, K.D.; Pawliszyn, J.; Berg, J.R. Automation and optimization of solid-phase microextraction. Analyti. Chem., 1992,64:1960-1964.
    3. Arthur, C.L.; Killam, L.M.; Motlagh, S.; Lim, M.; Potter, D.W.; Pawliszyn, J. Analysis of substituted benzene compounds in groundwater using solid-phase microextraction. Environ. Sci. Technol.,1992,26:979.
    4. Asplund, L.; Athanasiadou, M.; Sjodin, A.; Bergman, A.; Borjeson, H. Organohalogen substances in muscle, egg and blood from healthy Baltic salmon (Salmo salary and Baltic salmon that produced offspring with the M74 syndrome. Ambio.,1999,28:67-76.
    5. Barriuso, E.; Baer, U.; Caivet, R. Dissolved organic matters and adsorption-desorption of dimefuron, atrazine and carbetamide by soils. J. Environ. Qual.. 1992,21:359-367.
    6. Babic, S.; Petrovic, M.; Kastelan, M.M. Ultrasonic solvent extraction of pesticides from soil. J. Chromatogr. A.,1998,823:3-9.
    7. Belmonte, V.A.; Garrido, F.A. Martinez, V.J.L. Monitoring of peticides in agricultural water and soil samples from Andalusia by liquid chromatography coupled to mass spectrometry. Anal. Chim. Acta.,2005,538:117-127.
    8. Bernal, J.L.; Jimenez, J.J.; Rivera, J.M. On-line solid-phase extraction coupled to supercritical fluid chromatography with diode array detection for the determination of pesticides in water. J. Chromatogr. A.,1996,754:145-157.
    9. Bondarenko, S.; Gan, J. Simultaneous measurement of free and total concentrations of hydrophobic compounds.Environ. Sci. Technol.,2009,43: 3772-3777.
    10. Breese, M.H. The potential for pyrethroids as agricultural, veterinary and industrial insecticides. Pestie. Sci.,1977,8:264-269.
    11. Briggs, G.G; Elliott, M.; Farnham, A.W.; Janes, N.F. Structural aspects of the knockdown of pyrethroids. Pestie. Sci.,1974,5:643-649.
    12. Capriel, P.; Haisch, A.; Khan, S.U. Supercritical methanol:an efficacious technique for the extraction of bound pesticide residues from soil and plant samples. J. Agric. Food Chem.,1986,34:70-73.
    13. Caron, G.; Suffet, I.; Belton, T. Effect of dissolved organic carbon on the environmental distribution of nonpolar organic compounds. Chemosphere,1985, 14:993-1000.
    14. Chen, T.B.; Chen, Z.J. Dissolved organic matter and its effects on adsorption and desorption of pollutants in soils. Plant Nutr. Fert. Sci.,1998,4:201-210.
    15. Chen, L.G.; Huang, Y.M.; Peng, X.C.; Xu, Z.C.; Zhang, S.Z.; Ren, M.; Ye, Z.X.; Wang, X.H. PBDEs in sediments of the Beijiang River, China:Levels, distribution, and influence of total organic carbon. Chemosphere 2009,76: 226-231.
    16. Chiou, C.T.; Malcolm, R.L.; Brinton, T.I. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fluvic acids. Environ. Sci. Technol.,1986,20:502-508.
    17. Choi W.W; Chen K.Y. Associations of chlorinated hydrocarbons with fine particles and humic substances in nearshore surficial sediments. Environ. Sci. Technol.,1976,10:782-786.
    18. Cornelissen, G.; Breedveld, G.D.; Naes, K.; Oen, A.M.P.; Ruus, A. Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod:Freely dissolved concentrations and activated carbon amendment. Environ. Toxicol. Chem.,2006,25:2349-2355.
    19. Crabbe, P.; Van, P.C. Rapid and sensitive screening of sulfamethazine in porcine urine with an enzyme linked immuno sorbent assay and a field-portable immunofiltration assay. Food Prot.,2002,65:820-827.
    20. Craven, A. Bound residues of organic compounds in the soil:the significance of pesticide persistence in soil and water:a European regulatory view. Environ. Pollut.,2000,108:15-18.
    21. Craven, A.; Hey, S. Pesticide persistence and bound residues in soil-regulatory significance. Environ. Pollut.,2005,133:5-9.
    22. Czapar, G.F., Horrton, R. and Fawcett, R.S. Herbicide and tracer movement in soil column containing artificial macropore. J. Environ. Qual.,1992,21:110-115.
    23. Darnerud, P.O.; Eriksen, G.S.; Johannesson, T.; Larsen, P.B.; Viluksela, M. Polybrominated diphenyl ethers:occurrence, dietary exposure and toxicology. Environ. Health Persp.,2001,109:49-68.
    24. Darnerud, P.O.; Thuvander, A. Effects of polybrominated diphenyl ether(PBDE) and polychlorinated biphenyl (PCB) on some immunologocal parameters after oral exposure in rats and mice. Toxicol. Environ. Chem.,1999,70:229-242.
    25. Delgodo M.L.; Wu, L.; Gan, J. Effect of dissovled organic carbon on sorption of pyrethroids to sediment. Environ. Sci. Technol.,2010,44,8473-8478.
    26. de Wit, C.; Tysklind, M. Photolytic of decabromodiphenyl ether (DeBDE). Organohalogen. Compd.,1998,35:447-450.
    27. Elliott, M.; 1977. Synthetic pyrethroids. In Synthetic pyrethroids, ACS Symp. Ser. No.42, ed. M. Elliott, pp.1-28. Washington, DC:Am. Chen. Soc.229 pp.
    28. Fillmann, G.; Readman, J.W., Tolosa, L. Persistent organochlorine residues in sediments from the Black Sea. Marine Pollut. Bulletin,2002,44:122-133.
    29. Fowles, J.R.; Fairbrother, A.; Baecher, S.L.; Kerkvliet, N.I. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice. Toxicology,1994,86:49-61.
    30. Fowler S.W. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment. Marine Environ. Res.,1990,29:1-64.
    31. Garbarini, D.R.; Lion, L.W. Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ. Sci. Technol.,1986,20(12): 1263-1269.
    32. Gerstl, Z.; Yaron, B. Behavior of bromacil and napromide in soils. Adsorption and degradation. Soil Sci. Soc. Am. J.,1983,47:474-478.
    33. Guerin, W.F; Boyd, S.A. Bioavailability of naphthalene associated with natural and synthetic sorbents. Wat. Res.,1997,31:1504-1512.
    34. Guzzella, L.; Roscioli, C.; Binelli, A. Contamination by polybrominated diphenyl ethers of sediments from the Lake Maggiore basin (Italy and Switzerland). Chemosphere,2008,73:1684-1691.
    35. Hale, R.C., LaGuardia, M.J., Harvey, E.P, Gaylor, M.O., Mainor, T.M. Flame retardants:Persistent pollutants in land-applied sludges. Nature,2001,412: 140-141.
    36. Hassett, J.P.; Anderson, M.A. Effects of dissolved organic matter on adsorption of hydrophobic organic compound by river and sewage particles. Water Res.,1982, 16:681-686.
    37. Herbert, B.E.; Bertsch, P.M.; Novak, J.M. Pyrene sorption by water-soluble organic carbon. Environ. Sci. Technol.,1993,27:398-403.
    38. Hites, R.A. Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations. Environ. Sci. Technol.,2004,38,945-956.
    39. Hong, H.; Xu, L.; Zhang, L. Environmental fate and chemistry of organic pollutants in the sediment of Xiamen and Victoria Harbors. Marine Pollut. Bulletin.,1995,31:229-236.
    40. Iwata, H.; Tanabe, S.; Sakai, N.; Tatsukawa, R. Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ. Sci. Technol.,1993,27:1080-1098.
    41. Joan, O.; Barend, L.; Alejandra, R. Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere,2004,54: 1549-1561.
    42. Johnsen, A.R.; Wick, L.Y.; Harms, H. Principles of microbial PAH-degradation in soil. Environ. Pollut.,2005,133:71-84.
    43. Johnson, R.B.; Kannan, K.; Rapaport, D.P; Rodan, B.D. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. Environ. Sci. Technol.,2005,39:5177-5182.
    44. Karickhoff, S.W.; Brown, D.S.; Scott, T.A. Sorption of hydrophobic pollutants on nature sediments. Water Res.,1979,13:241-248.
    45. Khan, S.U.J.; Jaffar N.Z.; Javad, T. Measurement of hydroperoxides in edible oils using the ferrous oxidation in xylenol orange assay. J. Agric. Food Chem.,1995: 43:7-21.
    46. Kierkegaard, A.; Bignert, A.; Sellstrom, U.; Olsson, M.; Asplund, L.; Jansson, B.; de Wit, C.A. Polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in pike from Swedish waters with emphasis on temporal trends, 1967-2000. Environ. Pollut.,2004,130:187-198.
    47. Kelsey, J.W.; Alexander, M. Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environ. Toxicol. Chem.,1997,16: 582-585.
    48. Koo, Y.; Lee, L.S. Effect of dissolved organic matter in treated effluents on sorption of atrazine and prometryn by soils. Soil Sci. Soc. Am. J.,2000,64: 1976-1983.
    49. Kruger, E.L.; Rice, P.J. Use of undisturbed soil columns under controlled conditions to study the fate of 14C-deethylatrazine. J. Agric. Food Chem.,1996, 44:1144-1149.
    50. Krzyszowska, A.J.; Allen, R.D.; Vance, G.F. Assessment of the fate of two herbicides in a wyoming rangeland soil:column studies. J. Environ. Qual.,1994, 23:1051-1058.
    51. Kuriyama, S.N.; Talsness, C.E; Grote, K.; Chahoud, I. Developmental exposure to low-dose PBDE-209:Effects on male fertility and neurobehavior in rat off-spring. Envion. Health Persp.,2005,109,149-154.
    52. Leland, H.V.; Bruce, W.N. Chlorinated hydrocarbon insecticides in sediments if southern Lake Michigan. Environ. Sci. Technol.,1973,7:833-838.
    53. Lilienthal, H.; Hack, A.; Roth, H.A.; Grande, S.W.; Talsness, C.E. Effects of developmental exposure to 2,2,4,4,5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats. Environ. Health. Perspect.,2006,114:194-201.
    54. Liu, W.P.; Gan, J.; Lee, S.J.; Kabashima, J.N. Phase distribution of synthetic pyrethroids in runoff and stream water. Environ. Toxicol. Chem.,2004,23:7-11.
    55. Li, Y.; Zimmerman, W.; Gorman, M.; Reiser, R., Fogiel, A.; Haney, P. Aerobic soil metabolism of metsulfuron-methyl. Pestic. Sci.,1999,55:434-445.
    56. Madhun, Y.A.; Yound, J. L.; Freed, V.H. Binding of herbicide by water-soluble organic materials from soil. J. Environ. Qual.,1986,15:64-68.
    57. Mai, B.X.; Fu, J.M.; Sheng, G.Y. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China, Environ. Pollut.,2002,117:457-474.
    58. Mauck, W.L.; Olson, L.E.; Marking, L.L. Toxicity of natural pyrethrins and pyrethroids to fish. Arch. Environ. Contam. Toxicol.,1976,4:18-29.
    59. Miura, T.; Takahashi, R.M. Effects of a synthetic pyrethroid on nontarget organisms when utilized as a mosquito larvicide. Mosq. News,1976,36:322-326.
    60. Mordaunt, C.J.; Gevao, B.; Jones, K.C. Formation of non-extractable pesticide residues:observations on compound differences, measurement and regulatory issues. Environ. Pollut.,2005,133:25-34.
    61. Narahashi, T. Insecticide Biochemistry and Physiology, ed. C. F. Wilkinson. New York:Plenum.,1976,768pp.
    62. Ohta, S.; Ishizuka, D.; Nishimura, H. Comparison of polybrominated diphenyl ethers in fish, vegetables, and meats and levels in human milk of nursing women in Japan. Chemosphere,2002,46:689-696.
    63. Oros, D.R.; Hoover, D.; Rodigari, F.; Crane, D.; and Sericano, J. Levels and distribution of polybrominated diphenyl ethers in water, surface sediments, and bivalves from the San Francisco Estuary. Environ. Sci. Technol.,2005,39,33-41.
    64. Park. J.S.; Wade, T.L.; Sweet. Atmospheric deposition of organochlorine contaminants to Galveston Bay, Texas. Atmospheric. Environ.,2004,35:3315-3324.
    65. Pereira, W.E.; Hostettler, F.D. Non-point source contamination of the Missippi River and its tributaries by herbicides. Environs. Sci. Technol.,1993,27: 1542-1552.
    66. Pole, M.; Gomez-Noya, G.; Quintana, J.B.; Lompart, M.; Garcia-jares, C.; Cela, R. Development of a solid-phase microextraction gas chromatography/Tandem mass spectrometry method for polybrominated diphenyl ethers and polybrominated biphenyls in water samples. Anal. Chem.,2004,76,1054-1062.
    67. Raber, B.; Kogel, K.I. Influence of origin and properties of dissolved organic matter on the partition of polycyclic aromatic hydrocarbons. Eur. J. Soil Sci., 1997,29:906-916.
    68. Ruscoe, C.N.E. The new NRDC pyrethroids as agricultural insecticides. Pestic. Sci.,1977,8:236-242.
    69. Skidmore, M.W.; Paulson, G.D.; Kuiper, H.A. Bound xenobiotic residues in food commodities of plant and animal origin. Pure & Appl. Chem.,1998,70: 1423-1447.
    70. Smith, A.M.; Mao, J.; Doane, R. A. Metabolic fate of 14C-acrolein under aerobic and anaerobic aquatic conditions.J. Agric. Food Chem.,1995,43:2497-2503.
    71. Tao, S.; Cao, H.Y.; Liu, W.X.; Li, B.G.; Cao, J.; Xu, F.L.; Wang, X.J.; Coveney, R.M.; Shen, W.R.; Qin, B.P.; Sun, R. Fate modeling of phenanthrene with regional variation in Tianjin, China. Environ. Sci. Technol.,2003,37:2453-2459.
    72. The Stockholm Convention on Persistent Organic Pollutants (POPs),The 9 new POPs under the Stockholm Convention, Accessed August 5,2010.
    73. Tolosa, I.; Readman, J.W.; Mee, L.D. Comparison of the performance of solid-phase extraction techniques in recovering organophosphorus and organochlorine compounds from water. J. Chromotogr. A.,1996,725:93-106.
    74. Ueno, D.; Isobe, T.; Ramu, K.; Tanabe, S.; Alaee, M.; Marvin, C.; Inoue, K.; Someya, T.; Miyajima, T.; Kodama, H.; Nakata, H. Spatial distribution of hexabromocyclododecanes (HBCDs), polybrominated diphenyl ether (PBDEs) and organochlorines in bivalves from Japanese coastal water. Chemosphere 2010. 78:1213-1219.
    75. U. S. Environmental Protection Agency. National survey of pesticides in drinking wells. Phase Ⅱ report,1992, US. EPA. Washington DC.
    76. Whidden, M.P. Determination of toxinin grain and grain products by HPLC and TLC. Phytopathology,1981,71:708-774.
    77. Walker, S.S.; Robinson, G.R.; Hargreaves, P.A. Weed control with atrazine and chlorsulfuron is determined by herbicide availability and persistence in soils. Aust. J. Agric. Res.,1997,48:1003-1009.
    78. Wang, D.L.; Cai, Z.W.; Jiang, G.B.; Leung, A. Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility. Chemosphere,2005,60:810-816.
    79. Wang, W.; Delgado-Moreno, L.; Ye, Q.F.; Gan, J. Improved measurements of partition coefficients for polybrominated diphenyl ethers. Environ. Sci. Technol., 2011,45:1521-1527.
    80. Wei, J.; Furrer, G.; Schulin, R. Kinetics of carbosulfan degradation in the aqueous phase in the presence of a cosolvent. J. Environs. Qual.,2000,29:1481-1487.
    81. Wauchope, R.D. The pesticide content of surface water draining from agriculture field Areview. J. Environs. Qual.,1978,7:459-472.
    82. Wu, H.M.; Zhu G.N. Study on the degradation of chlorpyrifos in sterilized and nonsterilized soil. Chin. J. Pestic. Sci.,2003,5:65-69.
    83. Young, J.L.; Spycher, G. Water dispersible soil organic mineral particles:I. Carbon and nitrogen distribution. Soil Sci. Soc. Am. J.,1979,43:324-328.
    84. Zegers, B.N.; Lewis, W.E.; Booij, K.; Smittenberg, R.H.; Boer, W.; de Boer, J.; Boon, J.P. Levels of polybrominated diphenyl ether flame retardants in sediment core from western Europe. Environ. Sci. Technol.,2003,37:3803-3807.
    85. Zhou, J.L; Hong, H.; Zhang, Z. Multi-phase Distribution of organic micropollutants in Xiamen Harbour, China. Water Res.,2000,34:2132-2150.
    86. Zhu Y.F.; Liu, H.; Xi, Z.Q. Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. Chemosphere,2005,60:770-778.
    87.陈长青.超临界流体萃取技术在农药残留分析中的应用进展.农药科学与管理,2001,22(4):20-22.
    88.陈伟琪,洪华生,张路平.闽江口-马祖海域表层沉积物中有机氯污染物的残留水平与分布特征.海洋通报,2000,19(2):53-58.
    89.陈伟琪,洪华生,张路平.珠江口表层沉积物和悬浮颗粒物中的持久性有机氯污染物.厦门大学学报(自然科学版),2004,43(3):230-235.
    90.陈子元.核农学论文选集,浙江教育出版社,杭州,浙江,1998,10.
    91.崔听毅.黑碳对沉积物中疏水性有机物的生物富集、降解与基因毒性的作用机制.[博士学位论文].杭州:浙江大学,2010.
    92.郭江峰,孙锦荷,叶庆富.14C-绿磺隆结合残留的释放研究.核农学报,1999,13(2):107-110.
    93.郭江峰,孙锦荷,叶庆富.14C-绿磺隆结合残留物的微生物释放.核技术,2000,23(4):243-246.
    94.何方洋ELISA试剂盒与我国动物兽药残留检测.动物保健,2005,(4):45-47.
    95.金军,赵国栋,崔云等.高效液相色谱/大气压电离质谱(HPLC/APIMS)在农药残留分析中的应用.化学通报,1999,(6):25-29.
    96.凌婉婷,徐建民,高彦征,汪海珍.溶解性有机质对土壤中有机污染屋环境行为的影响.应用生态学报,2004,15(2):326-330.
    97.李权龙,袁东星.多壁碳纳米管用于富集水样中有机磷农药残留的研究.厦门大学学报(自然科学版),2004,43(2):531-536.
    98.刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素——吸附和脱附.中国环境科学,1996,16(1):25-30.
    99.刘维屏.农药环境化学.北京:化学工业出版社,2006,237-245.
    100.刘现明,徐学仁,张笑天等.大连湾沉积物中的有机氯农药和多氯联苯.海洋环境科学,2001,20(4):40-44.
    101.欧晓明,张俐,裴晖,王晓光,樊德方.新农药硫肟醚在土壤中的降解.中国环境科学,2005,25(6):705-709.
    102.苏允兰,莫汉宏,杨克武等.土壤中结合态农药环境毒理研究进展.环境科学学报,1999,7(3):45-51.
    103.孙绣华.土壤中农药的降解机制探究.安徽农业科学,2007,35(31):10036-10037.
    104.吴启航,麦碧娴,彭平安.不同粒径沉积物中多环芳烃和有机氯农药分布特征.中国环境监测,2004,20(5):1-6.
    105.熊双喜.超声波提取及其快速检测土壤中的甲苯.科学技术与工程,2007,7(10):2321-2322.
    106.徐锦洪,陈日光,康莉等.农药速测卡测定蔬菜中有机磷农药残留.中国食品卫生杂志,1996,8(5):14-15.
    107.徐瑞薇,胡钦红,靳伟等.多效唑在土壤中降解、吸附和淋溶作用.环境化学,1994,11(3):53-59.
    108.赵元凤,吕景才,徐恒振等.连湾养殖海域有机氯农药污染研究.农业工程学报,2002,18(4):108-112.
    109.郑和辉,叶常明.乙草胺和丁草胺在土壤中的移动性.环境科学,2001,22(5):117-121.
    110.张元标,林辉.厦门海域表层沉积物中DDTs, HCHs和PCBs的含量与分布[J].台湾海峡,2004,23(4):423-428.
    1. Amweg, E.L.; Weston, D.P.; Ureda, N.M. Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ. Toxicol. Chem.,2005, 24:966-972.
    2. Bidleman, T.F. Atomospheric transport and air-surface exchange of pesticides. Water, Air and Soil Pollut.,1999,115:115-166.
    3. Budd, R.; Bondarenko, S.; Haver, D.; Kabashima, J.; Gan, J. Occurrence and bioavailability of pyrethroids in a mixed and use watershed.J. Environ. Qual., 2007,36:1006-1012.
    4. Bopp, R.F.; Simpson, H.J.; Olsen, C.R.; Trier, R.M.; Kostyk, N. Chlorinated hydrocarbons and radionuclide chronologies in sediments of the Hudson River and Estuary, New York. Environ. Sci.& Technol.,1982.16:666-676.
    5. Cold, A.; Forbes, V.E. Consequences of short pulse of pesticide exposure for survival and reproduction of Gammarus pulex. Aquati. Toxicol.,2004,67: 287-299.
    6. Crepeau, K.L.; Kuivila, K.M.; Bergamaschi, B.2002. Dissolved pesticides in the Alamo River and the Salton Sea, California,1996-97:U.S. Geological Survey Open-File Report 2002-232,7 p.
    7. Daly, G.L.; Lei, Y.D.; Teixeira, C.; Muir, D.C.; Wania, F. Pesicides in western Canadian mountain air and soil. Environ. Sci.& Technol.,2007,41:6020-6025.
    8. Dunnbier, H.T. DDT metabolite bis(chlorophenyl)aceticid:the neglected environmental contaminant. Environ. Sci.& Technol.,1999.33:2346-2351.
    9. Eccles, L.A.1979. esticide residues in agricultural drains, southeastern desert area. California:U.S. Geological Survey Water-Resources Investigations Report 79-16,60 p
    10. EPA, US,1996. Test methods for evaluating solid waste:Physical/chemical method.in:Agency, U.S.E.P. (Ed.), Washington, DC.
    11. Filiz. N.; Kucuksezgin, F. Composition and distribution of organochlorine pesticide residues in surface sediments from Gediz and Bakircay Rivers (Eastern Aegean). Fresenius Environmental Bulletin,2008,17:44-754.7
    12. Gong, Z.M.; Tao, S.; Xu, F.L. Level and distribution of DDT in surface soils from Tianjin, China. Chemosphere,2004,54:1247-1253.
    13. Hellmann, H.A. Recent contamination trend:polycylic aromatic hydrocarbons (PAHs) in aquatic and terrestrial sediments. Acta hydrochim. Hydrobiol.,2003, 31:85-96.
    14. Hung, C.C.; Gong, G.G.; Chen, H.Y.; Hsieh, H.L.; Santschi, P.H.; Wade, T.L Sericano, J.L. Relationships between pesticides and organic carbon fractions in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan. Environ. Pollut.,2007,148:546-554.
    15. Irwin, G.A.1971. Water-quality data for selected sites tributary to the Salton Sea, California, August 1969-June 1970:U.S. Geological Survey Open-File Report, 12 p.
    16. Iwata, H.; Tanabe, S.; Sakai, N.; Tatsukawa, R. Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ. Sci.& Technol.,1993,27:1080-1098.
    17. Long, E.R.; Morgan, L.G.1991. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NoAA Technical Memorandum NOS OMA 52, National Oceanic and Atmospheric Administration, Seattle, WA, p.175.
    18. Kalbitz, K.; Popp, P.; Geyer, W. β-HCH mobilization in polluted wetlang soils as influenced by dissolved organic matter. Sci. Total Environ.,1997,204:37-48.
    19. LeBlanc, L.A.; Orlando, J.L.; Kuivila, K.M.2004. Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo Rivers, Salton Sea watershed, California, April 2003:Geological Survery Data Series 104, p.15.
    20. MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidlines for freshwater ecosystems. Arch. Environ. Contam. Toxicol.,2000.39:20-31.
    21. Moore, A.; Waring, C.P. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquati. Toxicol., 2001,52:1-12.
    22. Setmire, J.G.1984. Water quality in the New River from Calexico to the Salton Sea Imperial County, California:U.S. Geological Survey Water-Supply Paper 2212:42 p.
    23. Setmire, J.G.; Schroeder, R.A.1998. Selenium and salinity concerns in the Salton Sea area of California in Franken-berger, W.T., Jr., and Engberg, R.A. (eds.). Environmental Chemistry of Selenium:Marcel Dekkar Inc., New York,chap.12, p.205221.
    24. Smith. S.L.; MacDonald, D.D.; Keenleyside, K.A.; Ingersoll, C.G.; Field. J.A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J Great Lakes Res.,1996,22:624-638.
    25. Spencer, W.F.; Cliath, M.M.; Blair, J.W.; LeMert, R.A.1985. Transport of pesticides from irrigated fields in surface runoff and tile drain waters:U.S. Department of Agriculture Conservation Research Report 31,71 p.
    26. Wu, W.Z.; Xu, Y.; Schramm, K.W. Study of sorption, biodegradation and isomerization of HCH in stimulated sediment/water system. Chemosphere,1997, 35:1887-1894.
    27. Xu, J.; Yu, Y.; Wang, P.; Guo, W.; Dai, S.; Sun, H. Polycyclic aromatie hydrocarbons in the surface sediments from Yellow River, China. Chemsphere 2007,67:1408-1414.
    28. Zhou, J.L.; Maskaoui, K.; Qui, Y.W.; Hong, H.S.; Wang, Z.D. Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of Daya Bay, China. Environ. Pollut., 2001,113,373-384.
    29.陈莉,章刚娅,靳伟.土壤中拟除菊酯类残留农药的气相色谱测定方法研究.土壤学报,2006,43(1):764-771.
    30.高彦伟,董德明,尹华.长春地区地下水中含氮化合物的空间分布及预测.吉林大学学报,2008(4):795-799.
    31.龚瑞忠,蔡道基.拟除虫菊酯类农药对水生生物的毒性评价研究.环境科学研究,1998,1(4):39-44.
    32.姚慧丽,王英辉,祁士华,游远航.土壤-水环境系统中有机氯药地球化学特征.环境科学与技术,2008,31(6):4-7.
    33.张红艳,高如泰,江树人,黄元仿.北京市农田土壤中有机氯农药残留的空间分析.中国农业科学,2006,39(7):1403-1410.
    1. Arthur, C.L.; Killiam, L.M.; Buchholz, K.D.; Pawliszyn, J.; Berg, J.R. Automation and optimization of solid-phase microextraction. Analyti. Chem., 1992. V64, P1960.
    2. Arthur, C.L.; Killam, L.M.; Motlagh, S.; Lim, M.; Potter, D.W.; Pawliszyn, J. Analysis of substituted benzene compounds in groundwater using solid-phase microextraction. Environ. Sci. Technol.,1992,26, p 979.
    3. Backhus, D.A.; Gschwend, P.M. Fluorescent polycylic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater. Environ. Sci. Technol.,1990,24:1214-1223.
    4. Bejarano, A.C.; Chandler, G.T.; Decho, A.W. Influence of natural dissolved organic matter (DOM) on acute and chronic toxicity of the pesticides chlorothalonil, chlorpyrifos and fipronil on the meiobenthic estuarine copepod Amphiascus tenuiremis. J. Exp, Mar. Biol. Ecol.,2005,321:43-57.
    5. Burkhard, L.P. Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ. Sci. Technol.,2000,22:4663-4668.
    6. Cater, C.W.; Suffet, I. H. Binding of DDT to dissolved humic materials. Environ. Toxicol. Chem.,1982,16:735-740.
    7. Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol.,1986,20:502-508.
    8. Chiou, C.T.; Peters, L.J.; Fried, V.H. A physical concept of soil-water equilibria for nonionic organic compounds. Science,1979,206:831-832.
    9. Chiou, C.T.; Lee, J.F.; Boyd, S.A. The surface area of soil organic matter. Environ. Sci. Technol.,1990,24:1164-1166.
    10. Chiou, C.T; Rutherford, D.W.; Manes, M. Sorption of NZ and EGBE vapors on some soils, clays, and of sorption data. Environ. Sci. Technol.,1993,27: 1587-1594.
    11. Chen, L.G.; Huang, Y.M.; Peng, X.C.; Xu, Z.C.; Zhang, S.Z.; Ren, M.; Ye, Z.X.; Wang, X.H. PBDEs in sediments of the Beijiang River, China:Levels distribution, and influence of total organic carbon. Chemosphere,2009,76: 226-231.
    12. Darnerud, P.O.; Eriksen, G.S.; Johannesson, T.; Larsen, P.B.; Viluksela, M. Polybrominated diphenyl ethers:occurrence, dietary exposure and toxicology. Environ. Health Persp.,2001,109:49-68.
    13. Day, E.D. Effects of dissolved organic carbon on accumulation and toxicity of fenvalerate, deltamethrin and cyhalothrin to Daphnia Magna (straus). Environ. Toxicol. Chem.,1991,10:91-101.
    14. Delgodo-Moreno, L.; Wu, L.; Gan, J. Effect of dissovled organic carbon on sorption of pyrethroids to sediment. Environ. Sci. Technol.,2010,44:8473-8478.
    15. de Wit, C.A. An overview of brominated flame retardants in the environment. Chemosphere,2002,46:583-624.
    16. Doucette. W.J. Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals. Environ. Toxicol. Chem.,2003,22:1771-1788.
    17. Freidig, A.P.; Garicano, E.A.; Busser, F.J.M. Estimating impact of humic acid on bioavailability and bioaccumulation of hydrophobic chemicals in guppies using kinetic solid-phase extraction. Environ. Toxicol. Chem.,1998,17,998-1004.
    18. Gauthier, T.; Seitz, W.R.; Grant, C.L. Effects of structural and compositional variations of dissolved humic materials on pyrene Aoc values. Environ. Sci Technol.,1987,21:243-248.
    19. Guzzella, L.; Roscioli, C.; Binelli, A. Contamination by polybrominated diphenyl ethers of sediments from the Lake Maggiore basin (Italy and Switzerland). Chemosphere,2008,73:1684-1691.
    20. Hassett, J.P.; Anderson, M.A. Association of hydrophobic organic compounds with dissolved organic matter in aquatic systems. Environ. Sci. Technol.,1979,13: 1526-1529.
    21. Hites, R.A. Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations. Environ. Sci. Technol.,2004,38:945-956.
    22. Hunter, W.; Xu, Y.P.; Spurlock, F.; Gan, J. Using Disposable Polydimethy-lsiloxane Fibers to Assess the Bioavailability of Permethrin in sediment. Environ. Toxicol. Chem.,2008,27:568-575.
    23. Kuriyama, S.N.; Talsness, C.E; Grote, K.; Chahoud, I. Developmental exposure to low-dose PBDE-209:Effects on male fertility and neurobehavior in rat off-spring. Envion. Health Persp.,2005,109:149-154.
    24. La Guardia. M.J.; Hale, R.C. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environ. Sci. Technol.,2006,40:6247-6254.
    25. Laor, Y.; Rebjun, M. Complexation-flocculation:a new method to determine binding coefficients of organic contaminants to dissolved humic substances. Environ. Sci. Technol.,1997,31:3558-3564.
    26. Lee, S.; Gan, J.; Liu, W.P.; Anderson, M.A. Evaluation of Kd underestimation using Solid Phase Microextraction. Environ. Sci. Technol.2003,37,5597-5602.
    27. Lindsy, M.E.; Tarr, M.A. Inhibited hydrophobic radical degradation of aromatic hydrocarbons in the presence of dissolved fulvic acid. Water Res.,2000,34: 2385-2389.
    28. Oros, D.R.; Hoover, D.; Rodigari, F.; Crane, D.; and Sericano, J. Levels and distribution of polybrominated diphenyl ethers in water, surface sediments, and bivalves from the San Francisco Estuary. Environ. Sci. Technol.,2005,39:33-41.
    29. Pole, M.; Gomez-Noya, G.; Quintana, J. B.; Lompart, M.; Garcia-jares, C.; Cela. R. Development of a solid-phase microextraction gas chromatography/Tandem mass spectrometry method for polybrominated diphenyl ethers and polybrominated biphenyls in water samples. Anal. Chem.,2004,76:1054-1062.
    30. Randall, R.C.; Young, D.R.; Lee, H.; Echols, S.F. Lipid methodology and pollutant normalization relationships for neutral nonpolar organic pollutants. Environ. Toxicol. Chem.,2009,17:788-791.
    31. Schwarzenbach, R.P.; Gschwend, P.M.; Imboden, D.M. Environmental Organic Chemistry, Second ed.; John Wiley & Sons:Hoboken, NJ,2003.
    32. Song, W., Ford, J.C., Li, A. Polybrominated diphenyl ethers in the sediments of the Great Lakes.l. Lake Superior.,2004. Environ. Sci. Technol.,38:3286-3293.
    33. ter Laak, T.L.; Van Eijkeren, J.C.H.; Busser, F.J.M.; Van Leeuwen, H.P.; Hermens, J. L. M. Facilitate transport of polychlorinated biphenyls and polybrominated diphenyl ethers by dissolved organic matter. Environ. Sci. Technol.,2008,43: 1379-1385.
    34. Ter Laak, T.L.; Mayer, P.; Busser, F.J.M.; Klamer H.J.C.; Hermens, J.L.M. Sediment dilution method to determine sorption coefficients of hydrophobic organic chemicals. Environ. Sci. Technol.,2005,39:4220-4225.
    35. Ter Laak, T.L.; Durjava, M.; Struijs, J.; Hermens, J.L.M. Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes. Environ. Sci. Technol.,2005,39:3736-3742.
    36. The Stockholm Convention on Persistent Organic Pollutants (POPs), The 9 new POPs under the Stockholm Convention, Accessed August 5,2010
    37. Ueno, D.; Isobe, T.; Ramu, K.; Tanabe, S.; Alaee, M.; Marvin, C.; Inoue, K.: Someya, T.; Miyajima, T.; Kodama, H.; Nakata, H. Spatial distribution of hexabromocyclododecanes (HBCDs), polybrominated diphenyl ether (PBDEs) and organochlorines in bivalves from Japanese coastal water. Chemosphere,2010, 78:1213-1219.
    38. Van der Wal, L.; Jager, T.; Fleuren, R. H. L. J.; Barendregt, A.; Sinnige,T. L.; Van Gestel, C. A. M.; Hermens, J. L. M. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ. Sci. Technol., 2004,38:4842-4848.
    39. Wang, D.L.; Cai, Z.W.; Jiang, G.B.; Leung, A. Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility. Chemosphere,2005,60:810-816.
    40. Wang, W.; Delgado-Moreno, L.; Ye, Q.F.; Gan, J. Improved measurements of partition coefficients for polybrominated diphenyl ethers. Environ. Sci. Technol., 2011,45:1521-1527.
    41.凌婉婷,徐建民,高彦征,汪海珍.溶解性有机质对土壤中有机污染屋环境行为的影响.应用生态学报,2004,15(2):326-330.
    42.孟范平,李卓娜.多溴联苯醚(PBDEs)在海洋环境中的行为研究进展.中国海洋大学学报,2009,39(2):285-289.
    1. Anon.,1991. EC Directive 91/4/414, concerning the placing of plant protection products on the market (Authorisations Directive). Commission of the European Communities-Directorate-General for Agriculture-DG Ⅵ B Ⅱ-1-Brussels, Belgium.
    2. Bollag, J.M.; Loll, M.J. Incorporation of xenobiotics into soil humus. Experientia,1983,15:1221-1232.
    3. Craven, A. Bound residues of organic compounds in the soil:the significane(?) pesticide persistence in soil and water:a European regulatory view. Environ. Pollut.,2000,108:15-18.
    4. Craven, A.; Hey, S. Pesticide persistence and bound residues in soil-regulato(?) significance. Environ. Pollut.,2005,133:5-9.
    5. Doyle R.C.; Kaufman D.D.; Burt G.W. Effect of dairy manure and sewage on 14C-pesticide degradation in soil. J. Agric. Food Chem.,1978,26,987-989.
    6. Duah-Yentumi, S.; Kuwatsuka, S. Effect of organic matter and chemie(?) fertilizers on the degradation of benthiocarb and MC (4-chloro-o-tolyloxyacetic acid) herbicides in soils. Soil Sci. Plant Nutri.,1980, 26:541-549.
    7. Printz, H.; Burauel, P.; Fuhr, F. Effect of organic amendment on degradation and formation of bound residues of Methabenzthiazuron in soil under constant climate conditions. J. Environ. Sci. Health,1995,30:435-456.
    8. Robertson, B.; Alexander, M. Sequstration of DDT and dieldrin in soil: disappearance of acute toxicity but not the compounds. Environ. Toxicol. Chem., 1998,17:1038-1043.
    9. Seibert, K.; Fuhr, F.; Mittelstaedt, W. Experiments on the influence of roots soils on 2,4-D degradation. Land-wirtschaftliche Forschung,1982,35:5-13.
    10. Wang H.Y.; Ye Q.F.; Yue, L.; Han, A.L.; Yu, Z.Y.; Wang, W.; Yang, Z.M., Lu, L. Fate characterization of a novel herbicide ZJ0273 in aerobic soils sing multi-position 14C labeling.Sci.Total Environ.,2009,407:4134-4139.
    11.Wang H.Y.;Yu Z.Y.,Ling,Y.;Han A.L.;Zhang,Y F.;Li J.Y;Ye Q.F.;Yang,Z. M.;Long,L.Transformation of 14C-pyrimidynyloxybenzoic herbicide ZJ0273 in aerobic soils.Sci.Total Environ.,2010,2239-2244.
    12.陈祖义,程薇,成冰.14C-绿磺隆的土壤结合残留及其有效性.南京农业大学学报,1996,19(2):78-83.
    13.韩爱良.新型高效除草剂丙酯草醚的作用机制研究:[博士学位论文].杭州:浙江大学,2010.
    14.苏允兰,莫汉宏,杨克武,等.土壤中结合态农药环境毒理研究进展.环境科学学报,1999,7(3):45-51.
    15.刘维屏.农药环境化学.。北京:化学工业出版社,2006,237-245.
    16.欧晓明,张俐,裴晖,王晓光,樊德方.新农药硫肟醚在土壤中的降解.中国环境科学,2005,25(6):705-709.
    17.汪海珍,徐建民,谢正苗.农药与土壤腐殖质的结合残留及其环境意义.生态环境2003,12(2):208-212.
    18.余志扬.不同芳环14C标记示踪法研究丙酯草醚在土壤中的降解途径与产物组成:[硕士学位论文].杭州:浙江大学,2008.
    19.岳玲.土壤中不同芳环14C标记丙酯草醚的结合残留及其生物有效性.[硕士学位论文].杭州:浙江大学,2008.
    20.周振惠,翁朝联,莫汗宏.单甲脒在土壤中的降解及持效性研究.环境化学,1995,14(3):47-53.
    1. Crouch, L.S.; Feely, W.F. Fate of 14C-emamectin benzoate in head lettuce. J. Agric. FoodChem.,1995,43:3075-3087
    2. Doyle R.C.; Kaufman D.D.; Burt G.W.. Effect of dairy manure and sewage on 14C-pesticide degradation in soil. J. Agric. Food Chem.,1978,26:987-989.
    3. Duah, Y.S.; Kuwatsuka, S. Effect of organic matter and chemical fertilizers on the degradation of benthiocarb and MCPA (4-chloro-o-tolyloxyacetic acid) herbicides in soils. S. Sci. and Plant Nutri.,1980,26:541-549.
    4. Kruger, E.L.; Rice, P.J. Use of undisturbed soil columns under controlled conditions to study the fate of 14C-deethylatrazine. J. Agric. Food Chem.,1996, 44:1144-1149
    5. Mordaunt, C.J.; Gevao, B.; Jones, K.C. Formation of non-extractable pesticide residues:observations on compound differences, measurement and regulatory issues. Environ. Pollut.,2005,133:25-34.
    6. Helling, C.S.; Krivonak, A.E. Biological characteristic of bound dinitroaniline herbicides in soils. J. Agric. Food Chem.,1978,26:1164.
    7. Printz, H.; Burauel, P.; Fuhr, F. Effect of organic amendment on degradation and formation of bound residues of Methabenzthiazuron in soil under constant climate conditions. J.Environ. Sci. Health,1995,30,435-456.
    8. Skidmore, M.W.; Kuiper, H. A.; Hamilton, D. Safety evaluation of pesticide residues in food. Chem. International,1997,19:119-126.
    9. Smith, A.M.; Mao, J.; Doane, R.A. Metabolic fate of 14C-acrolein under aerob(?) and anaerobic aquatic conditions. J. Agric. Food Chem.,1995,43:2497-2503,
    10. Traub, E.U.; Henschel, V.K.P.; Kordel, W. Influence of different field sites on pesticide movement into subsurface drains. Pest. Sci.,1995,43:121-129.
    11. Walker, S.S.; Robinson, G.R.; Hargreaves, P.A. Weed control with atrazine and chlorsulfuron is determined by herbicide availability and persistence in soils.. tus(?) J. Agric. Res.,1997,48:1003-1009.
    12. Yang, Z.M.; Wang, W.; Han, A.L.; Ye, Q.F.; Lu, L. Determination of herbicide ZJ0273 residue in rapeseed by radioisotopic tracing method. Food Chem.,2009, 114:300-305.
    13.丁炜.14C-丙酯草醚在土壤中的行为与归趋:[硕士学位论文].杭州:浙江大学,2006.
    14.逮州,侯志广,王岩,张浩,韩大勇,逮忠斌.吡喃草酮在不同类型土壤环境中降解行为.农药,2010,49(2):353-355.
    15.韩爱良.新型高效除草剂丙酯草醚的作用机制研究:[博士学位论文].杭州:浙江大学,2010.
    16.施晨辉.丙炔噁草酮在稻田环境中的行为研究.[博士学位论文].杭州:浙江大学,2009.
    17.王伟,岳玲,丁炜,余志扬,汪海燕,叶庆富,吕龙.[A环-U-14C]-丙酯草醚在土壤中的迁移和淋溶研究,核农学报,2007.21(3):1000-8551。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700