基于同步辐射软X射线诱变的产L-乳酸米根霉育种研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-乳酸是广泛应用于食品、医药等行业的重要有机酸,以其为原料制备的聚L-乳酸是一种生物相容性优良的新型可生物降解材料。米根霉发酵生产L-乳酸具有营养要求简单、产L-乳酸光学纯度高等优点。但目前用于发酵产L-乳酸的米根霉菌种普遍存在发酵强度低、发酵性能差等问题。辐射诱变是微生物菌种获得稳定、优良性状的重要方法,而同歩辐射软X射线覆盖了生命分子重要组成元素的碳、氮、氧的k吸收边波长,具有很好的生物学效应,是一种具有开发应用前景的微生物辐射诱变源。
     本文基于同步辐射软X射线诱变,依据米根霉产L-乳酸的代谢控制原理,以提高L-乳酸产量、增大发酵强度、改善发酵条件适应性为目标,针对米根霉的诱变方法与定向选育技术开展研究,采用代谢分析、基因突变检测、蛋白质组表达量差异分析等技术对其突变的机理进行探讨,主要研究结论如下:
     (1)在中国科技大学国家同步辐射实验室的软X射线辐照装置上,通过考察孢子吸附固定载体的材料、样品架载样量等因素,确定了适合米根霉同步辐射软X射线辐照的条件。研究获得米根霉孢子在Ck(4.4nm)、Nk(3.02nm)、Ok(2.3nm)波长软X射线辐照条件下的致死剂量曲线,并通过致死效应、能量沉积效应分析,选择Nk波长软X射线为米根霉主要的辐射诱变源。以乙醇脱氢酶(ADH)活力弱化突变率为指标,通过分析致死率与正突变率的关系,确定了同步辐射软X射线Nk辐射诱变米根霉突变最适剂量范围为0.4kGy-0.8kGy。
     (2)以AS3.819为出发株,经同步辐射软X射线诱变选育获得ADH弱化突变株ADH-21。突变株的L-乳酸产量为94.01g/L,比出发株的L-乳酸产量82.49g/L提高了13.97%,而乙醇生产量较出发株降低了70.99%。突变株的乳酸脱氢酶(LDH)活力较出发株提高了34.7%,而ADH活性比出发株的降低了79.85%。可见下调ADH活性是减少米根霉副产物乙醇生成量,增加L-乳酸产量的有效方法。经分离、纯化得到出发株与突变株的ADH,发现pH值及[Zn2+]、[Mg2+]对二者的ADH活性影响规律基本相同,但突变株的ADH最适反应温度更低,会导致突变株ADH活力下降。另外,通过对出发株与突变株ADH基因的cDNA测序、分析,获得比对结果。
     (3)利用弱化氧化磷酸化过程降低胞内能荷水平对糖酵解影响的调控机理,以AS3.819为出发株,经同步辐射软X射线诱变选育获得F0F1-ATPase活力明显降低、胞内能荷下降了29.5%的突变株F0F1-17。突变株的糖酵解途径关键酶磷酸果糖激酶(PFK)、丙酮酸激酶(PK)、磷酸甘油醛脱氢酶(GADPH)的活性分别比出发株增加了58.5%,24.8%和19.8%。突变株的葡萄糖消耗速率、平均比消耗速率(qs)、L-乳酸发酵强度及平均比生成速率(qp)较出发株分别提高17.5%,85.9%,24.1%及61.5%。突变株的最高产量达到91.54g/L,发酵周期较出发株缩短了约6h。说明胞内的能荷状态降低,糖酵解途径关键酶活性增强,导致米根霉发酵产L-乳酸的发酵性能提高。
     (4)利用Mg2+激活己糖激酶(HK),研究[Mg2+]上调对F0F1-17及AS3.819的发酵性能影响。表明在Mg2+调节作用下,HK活性的微幅增加可导致米根霉菌株产L-乳酸发酵过程的发酵性能微幅增强,这种增强的幅度在F0F1-ATP合酶(F0F1-ATPase)活力弱化突变株中表现更明显。由此,以米根霉F0F1-17为出发株,经同步辐射软X射线诱变选育获得HK活力增加85.3%突变株HK-3。与出发株及AS3.819相比,HK-3的葡萄糖消耗速率、葡萄糖的平均比消耗速率分别增加了29.8%、141.4%及27.9%、50.3%。HK-3发酵L-乳酸产量达到97.53g/L,其发酵强度及产物平均比生成速率qp分别比出发株F0F1-17增加41%和71.8%、比AS3.819分别增加75%和177.5%。说明降低F0F1-ATPase活性、提高HK活性,米根霉菌株能获得较好的发酵性能。
     (5)为提高米根霉在酸性环境中的发酵性能,以AS3.819为出发株,经同步辐射软X射线诱变选育获得耐酸突变株acid-18。中和剂碳酸钙添加量为30g/L时,突变株的L-乳酸产量为83.5g/L,比出发株提高26.53%,其LDH比出发株提高42.2%。另外,突变株的质膜H+-ATPase酶活高于出发株的原因可能与突变株耐酸性增强相关。通过二维双向电泳分离、PDQuest软件分析,发现耐酸突变株与出发株蛋白质组表达量差异点有475个,其中丰度差异显著的12个点,并确定这12个蛋白的分子量和等电点。经质谱分析、数据库检索鉴定出其中的5个蛋白。
     本文利用同步辐射软X射线对真菌米根霉诱变进行了首次有益探索,在建立米根霉的软X射线诱变条件的基础上,研究通过ADH活力弱化、F0F1-ATPase活力弱化与HK活力增强、菌株耐酸性增强等途径提高L-乳酸发酵强度、改善发酵性能方法,综合分析突变株在代谢物、代谢关键酶、蛋白质组及cDNA水平的突变效应。研究结果为良好发酵性能的米根霉工业菌株选育提供了基础研究数据。
L-lactic acid is an important organic acid and widely applied in food,pharmaceutical and other industries. There is an increased interest inappling L-lactic acid as a starting material for the synthesis ofpolylacticacid, a biodegradable and good biocompatibility plastic.Rhizopus oryzae could be a high-performance strain to produce highoptical purity L-lactic acid, because it does not require complicatenutrition in fermentation. For all that, the primary limitation of theRhizopus fermentation for L-lactic acid is in the relatively poor yield oflactate per mole of glucose consumed and low performance in conditionsof higher temperature or lower pH. Radiation mutagenesis is an importanttechnology for microbiology to produce high-performance strains.Because synchronous radiation(SR) soft X-ray coveres K-absorption edgewavelength of fundamental life elements such as C, N and O, which hasstronger radiation biological effect, the radiobiological studies of it hadbeen payed more attentions in recent years.
     Based on SR soft X-ray radiation, breeding of Rhizopus oryzae hasbeen developed towards the goal of increasing L-lactic acid yield, highvolumetric productivity, and high performance in conditions of low pH.And mutation effects were carefully investigated on metalbolism, cDNAand proteomics level.
     Summary and main conclusions as follows:
     (1) The soft X-ray mutagenesis was carried out in SynchronousRadiation Laboratory (SNRL) at University of Science and Technology ofChina (USTC). The soft X-ray radiation conditions for Rhizopus oryzaemutagenesis were established after investigated several main factors suchas sample holder for spores and sample carriers. The lethal curves of Ck(4.4nm), Nk (3.02nm), and Ok (2.3nm) of soft X-ray on the spores ofRhizopus oryzae were developed, respectively. Using lethal curves andenergy deposition of short wavelength radition analysis, Nk wavelengthsoft-X ray with moderate energy deposition was used for Rhizopus oryzaemutagenesis. Optimum radiation dose range,0.4-0.8kGy, for Rhizopusoryzae mutagenization was concluded by analysising relation betweenlethal rate and positive mutation rate of weakened alcohol dehydrogenase(ADH) activity mutation by Nk wavelength soft X-ray radiation.
     (2) A mutant ADH-21, with high L-lactic acid yield and weakenedADH activity, was screened with yeast peptone dextrose(YPD) platecontaining allyl alcohol from Rhizopus oryzae mutants which weremutagenized by soft X-ray. L-lactic acid yield of ADH-21and paraentstrain were94.01g/L and82.49g/L, respectively. Compared with that ofparaental strain, L-lactic acid yield of ADH-21increased by13.97%,while ethanol yield decreased by70.99%. Furthermore, compared withthat of parental strain, lactate dehydrogenase(LDH) activity of ADH-21 increased by34.7%, while ADH activity of ADH-21decreased by79.85%. These results indicate that inhibition of the activity of ADH is aneffective way to reduce the production of ethanol while improve theproduction of L-lactic acid. ADH of Rhizopus oryzae AS3.819andADH-21were purified for further chartacterization. Effects of pH,concentration of Zn2+, and Mg2+on Rhizopus oryzae AS3.819andADH-21were similar, while optimum reaction temperature of ADH frommutant were lower than that from parental strain. In addition, cDNAsequence of adh gene from parant strain was compared with mutant.
     (3) For increasing the glycolytic flux of Rhizopus oryzae by defectingoxidative phosphorylation, a mutant F0F1-17, with high L-lactic acid yieldand65%of F0F1-ATPase activity decrease, was screened with PDA platecontaining neomycin from Rhizopus oryzae mutants which weremutagenized by soft X-ray. As a consequence, the glycolytic pathway keyenzyme phosphofructokinase(PFK), pyrutate kinase(PK), glyceraldehydesphosphate dehydrogenase (GAPDH) activity in the mutant increased by58.5%,24.8%and19.8%, which resulted that rate of glucose consumed,average specific glucose consumption rate, L-lactic acid productivity andaverage specific L-lactic acid production rate of the mutant increased by17.5%,85.9%,24.1%and61.5%than those of the paraental strain,respectively. The maximum L-lactic acid yield (91.54g/L) by mutant wasobtained within about48h of fermentation which was about6h shorter than that by the paraental.
     (4) The specific activity of hexokinase increased with the increase ofMg2+concentration in fermentation medium. Effects of positivlyregulating Mg2+concentration on the fermentation performance of F0F1-17and AS3.819were resulted that a slightly increase of the hexokinaseactivity resulted in a slightly increase of performances of the L-lactic acidfermentation, especially in more harsh effects on the low-energy chargeF0F1-17strains than those on the Rhizopus oryzae AS3.819. Consequently,for increasing the glycolytic flux of Rhizopus oryzae by increasing HKactivity, a mutant HK-3, with high L-lactic acid yield and85.3%ofhexokinase(HK) activity increase, was screened with medium containing2-DG as a sole carbon source from Rhizopus oryzae mutants which weremutagensised by soft X-ray. Compared with paraental strain, rate ofglucose consumed, average specific glucose consumption rate, L-lacticacid productivity and average specific L-lactic acid production rate of themutant increased by29.8%,27.9%,71.8%and41%, respectively.Compared with AS3.819, rate of glucose consumed, average specificglucose consumption rate, L-lactic acid productivity and average specificL-lactic acid production rate of the mutant increased by141.4%,50.3%,177.5%and75%, respectively. The maximum L-lactic acid yield (97.53g/L) by mutant was obtained within~36h of fermentation. It is provedthat a Rhizopus oryzae mutant with lower F0F1-ATPase activity and higher hexokinase activity could be a good performance industry strain.
     (5) For increasing fermentation performance of Rhizopus oryzae inacid-resistant conditions, a mutant acid-18, with26.53%higher L-lacticacid yield (83.5g/L), was screened with accumunation in mediumcontaining L-lactic acid from Rhizopus oryzae mutants which weremutagenized by soft X-ray. Consistently, compared with that of parentalstrain, LDH activity of mutant increased by42.2%, and H+-ATPaseactivity increased. All proteins from mutant and parental strain wereseparated by two-dimensional electrophoresis. PDQuest software analysisto electrophoresis map showed that there were475proteins with differentabundance between the acid-resistant mutant and parental strain, and12points with significantly different abundance whose molecular weight,isoelectric point and other properties were analysised and5proteins of12were identified by Maldi-toff mass spectrometry and database search.
     This thesis results have laid the experimental foundation for SR softX-ray applications to Rhizopus oryzae mutagenization. On the basis ofstudy to radiation mutagenesis conditions by SR soft X-ray with Rhizopusoryzae as a model object, methods aimed at increasing fermentationperformance, including breeding mutant with weakened ADH activity,breeding mutant with weakened F0F1-ATPase activity and increased HKactivity, breeding mutant with increased acid-resistant, were studied by SRsoft X-ray radiation mutagenesis. And mutation effects of above mutants were analysised in metabolism, key enzymes activity, proteome and cDNAlevels. This study presents underlying data for breeding a goodfermentation performance Rhizopus oryzae suitable for industryprocessing.
引文
[1]金其荣,张继民,徐勤.有机酸发酵工艺学[M].中国轻工业出版社,北京:1989.
    [2]凌关庭.食品添加剂手册(第二版)[M].化学工业出版社,北京:2000.
    [3] Mattey M. The production of organic Acids [J].Critical Reviens inBiotechnology.1992,12:87.
    [4] Expert Committee on Food Additives. Lactic acid[R]. WHO FoodAdditives,1967,29:144-148.
    [5]杨萍. L-乳酸的生产及其应用研究[J].科技信息,2008,17:31.
    [6]徐忠,汪群慈,姜兆华. L-乳酸的制备及其应用的研究进展[J].化学与粘合,2004,4:214-217.
    [7] Datta R. Technological and economical potential of polylactic acidand lactic acid derivatives[J]. FEMS Microbiology Reviews,1995,16:221-231.
    [8] Niju N, Roychoudhury P K, Srivastave A. L-(+)lactic acidfermentation and its product polymerization[J]. Electronic Journalof Biotechnology,2004(8):167-179.
    [9]梁博.聚乳酸合成方法研究进展[J].石油化工应用,2007,26(5):1-3.
    [10]钱志良.乳酸的工业化生产、应用和市场[J].食品发酵工业,2001,16:90-95.
    [11]李建军.乳酸的生产、应用及供需情况综述阴[J].广东化工,1988,3:1-5.
    [12]穆守元.国内外乳酸及其衍生品的应用和市场前景[J].化工技术经济,2001,3:10-14.
    [13]洪安安,刘灿明,刘德华. L-乳酸的微生物发酵[J].化学工程与装备,2008,2:56-63.
    [14]乔长晟,汤凤霞. L-乳酸高产菌株的诱变选育[J].食品工业科技,2002,2:35-38.
    [15]王旭明,汪群慧,马鸿志,等.用乳酸细菌从有机废弃物生产乳酸[J].现代化工,2003,23(11):50-53.
    [16] Davidson B E, Llanos R M, Cancilla M R, et al. Current research onthe genetics of lactic Acid production in lactic Acid bacteria[J].Int.Dairy J.,1995,5(8):763-784
    [17] Wisselink H W, Weusthuis R A, Eggink G,et al. MannitolProduction by Lactic Acid Bacteria: A Review [J]. Int. Dairy J.,2002,12(2-3):151-161.
    [18] Aarnikunnas J, Von Weymam N, Ronnholm K, et al. Metabolicengineering of lactobacillus fermentum for production of mannitoland pure L-lactic Acid or pyruvate[J]. Biotechnol.Bioeng.,2003,82(6):653-663
    [19] Margulies M., and W. Vishniac. Dissimilation of glucose by the MXstrain of Rhizopus[J]. J. Bacteriol.1961,81:1–9.
    [20] Lockwood L. B., G. E. Ward, and O. E. May. The physiology ofRhizopus oryzae[J]. J. Agric. Res.1936,53:849–857.
    [21] Wang C. W., Z. Lu, and G. T. Tsao. Lactic acid production bypelletform Rhizopus oryzae in a submerged system[J]. Appl.Biochem. Biotechnol.1995,51/52:57–71.
    [22] Yu, R.-C., and Y. D. Hang. Kinetics of direct fermentation ofagricultural commodities to L(+)-lactic acid by Rhizopus oryzae[J].Biotechnol. Lett.1989,11:597–600.
    [23] Christopher D Skory. Isolation and expression of lactatedehydrogenase genes from Rhizopus oryzae[J]. Applied andEnvironmental Microbiology,2000,66(6):2343–2348.
    [24]潘丽军,李兴江,潘利华,等.米根霉发酵甘薯淀粉制备L-乳酸研究[J].食品科学,2005,2:105-108.
    [25] Hang Y D. Direct fermentation of corn to L(+)-lactic acid byRhizopus oryzae[J]. Biotechnology Letters,1989,11:299-300.
    [26] Ruengruglikit C., Hang Y.D.. L(+)-Lactic acid production fromcorncobs by Rhizopus oryzae NRRL-395[J]. Lebensm.-Wiss.u.-Technol.2003,36:573–575.
    [27] Enoch Y. Park a, Pham Ngoc Anh a, Naoyuki Okuda. Bioconversionof waste office paper to L(+)-lactic acid by the filamentous fungusRhizopus oryzae[J]. Bioresource Technology.2004,93:77–83.
    [28] Datta R., Henry M., Lactic acid: recent advances in products,processes and technologies-a review[J], J. Chem. Technol.Biotechnol.2006,81:1119–1129.
    [29] Akerberg C., Hofvendahl K., Zacchi G., Hahn B.. agerdal H..Modelling the influence of pH, temperature, glucose and lactic acidconcentrationson the kinetics of lactic acid production byLactococcus lactis ssp Lactis ATCC19435in whole-wheat flour[J].Appl. Microbiol. Biotechnol.1998,49:682–690.
    [30] Lockwood L.B., Ward G.E., May O.E., The physiology of Rhizopusoryzae[J]. J. Agric. Res.1936,53:849–857.
    [31] Rosenberg M., KristofIkova L.. Physiological restriction of theL-lactic acid production by Rhizopus arrhizus[J]. Acta Biotechnol.1995,15:367–374.
    [32] Zhou Y., Du J., Tsao G.T.. Mycelial pellet formatioin by Rhizopusoryzae ATCC20344[J], Appl. Biochem. Biotechnol.2000,84–86:779–789.
    [33]王冬梅,苏彩欣,李文,等.利用天然纤维废弃物发酵生产L-乳酸的研究[J].激光生物学报,2007,6:763-767.
    [34]施巧琴,吴松刚.工业微生物育种学[M].科学出版社.2003(第三版):5-6.
    [35]白冬梅,赵学明,胡宗定.从地表土中筛选根霉乳酸菌的研究[J].化学工业与工程,2001,18(6):407-410.
    [36] Ogawa H.I.. Effects of anaerobic/aerobic incubation and storagetemperature on preservation and deodorization of kitchen garbage[J].Bioresource Technology.2002,84:213-220.
    [37] Sunstomsuk W, Hang Y.D. Strain improvement of Rhizopus oryzaefor production of L(+)-1actic acid and glucoamylase[J]. Lett. Appt.Micro.1994,19:249-252.
    [38] Longacre A, Reimers J, Gannon J E, et al. Flux Analysis of GlucoseMetabolism in Rhizopus oryzae for the Purpose of IncreasingLactate Yields[J]. Theor. Biol.1997,21:30-39.
    [39]胡燕红,姜绍通.米根霉产L-乳酸耐高温菌株的选育及发酵条件优化[D].合肥工业大学,合肥:2009.
    [40]葛春梅,余增量.离子束选育高产L-乳酸菌种及米根霉代谢调控的研究[D].中国科学院合肥物质科学研究院,合肥:2006.
    [41]杨英歌,余增量.离子注入选育高效利用木糖生产L(+)-乳酸的米根霉[D].中国科学院合肥物质科学研究院,合肥:2007.
    [42] Wang P, Li J, Wang L, et al. L(+)-Lactic acid production byco-fermentation of glucose and xylose with Rhizopus oryzaeobtained by low-energy ion beam irradiation[J]. Journal ofIndustrial Microbiology and Biotechnology,2009.
    [43] Weight B E, Longacre A, Reimers J. Models of metabolism inRhizopus oryzae[J]. Journal of Theoretical Biology,1996,182:453-457.
    [44] Skory C.D., Freer S.N., Bothast R.J.. Production of L-lactic acid byRhizopus oryzae under oxygen limiting conditions[J]. Biotechnol.Lett.1998,20:191–194.
    [45]白冬梅. L-乳酸高产菌株的诱变及其代谢通量分析[D].天津大学,天津:2001.
    [46]郑志,姜绍通,罗水忠等.限氧与通氧条件下米根霉ADH突变株的碳代谢特性[J].中国农业科学,2006,6:1228-1232.
    [47]郑志,姜绍通,罗水忠,等.米根霉丙烯醇抗性突变株的筛选及其发酵特性[J].核农学报,2007,3:242-245,255.
    [48]郑志,姜绍通,罗水忠,等.米根霉乙醇脱氢酶(ADH)突变菌株的诱变选育[J].微生物学通报,2007,1:24-27.
    [49] Liming Liu, Yin Li, Huazhong Li, Jian Chen. Signi¢cant increase ofglycolytic£ux in Torulopsis glabrata by inhibition ofoxidativephosphorylation[J]. FEMS.2006,6:1117–1129.
    [50]仇俊鹏,徐岩,阮文权,严群. L-乳酸发酵的代谢调控育种及发酵影响因素的研究[J].微生物学通报.2007,34(5):929-932.
    [51] Bailey J E. Toward a science of metabolic engineering[J]. Science,1991,252:1668-1675.
    [52] Minch S.L., Kallio P.T., Bailey J.E. Tissue plasminogen activatorcoexpressed in Chinese hamster ovary cells withalpha(2,6)-sialyltransferase contains NeuAc alpha(2,6)Gal beta(1,4)Glc-N-AcR linkages[J]. Biotechnol. Prog,1995;11(3):348~351.
    [53]赵学明.代谢工程[M].化学工业出版社,北京:2003.
    [54] Skory C D. Lactic Acid Production by Rhizopus oryzaeTransformants w ith Modified Lactate Dehydrogenase A ctivity [J].Appl. M icrobiol. Biotechnol.2004,64(2):237-242.
    [55] Skory C D. Lactic Acid Production by Saccharomyces cerevisiaeExpressing a Rhizopus oryzae Lactate Dehydrogenase G ene[J]. J.Ind ustrial Microbiol. Biotechnol.2003,30(l):22-27.
    [56] Ishida N, Saitoh K, Tokuhiro E, et al. Efficient production ofL-lactic acid by metabolically engineered Saccharomyces cerevisiaewith a genome integrated L-lactate dehydrogenase gene[J]. ApplEnviron Microbiol.2005,71:1964~1970.
    [57] Skory CD. Induction of Rhizopus oryzae pyruvate decarboxylasegenes[J]. Curr Microbiol2003,47:59–64.
    [58] Yue Fu, Helen Lee, Mary Collins. Cloning and functionalcharacterization of the Rhizopus oryzae high affinity iron permease(rFTR1) gene[J]. FEMS Microbiology Letters,2004,235:169–176.
    [59] Yoneya T., Sato Y.. Alcohol Dehydrogenase from Rhizopusjavanicus[J]. Applied and Environmental Microbiology,1979,37(6):1073-1078.
    [60]陈洵,周世奇,陈涛,王庆昭,邹少兰,赵学明.功能基因组学与代谢工程微生物菌种改进与生物过程优化[J].化工学报,2006,57(8):1792-1801.
    [61] Lee D Y, Park Y C, Kim H J, Ryu Y W, Seol J H. Proteomic analysisof Candida magnoliae strains by two dimensional gelelectrophoresis and mass spetrometry[J]. Proteomics.2003,3:2330-2338.
    [62]古绍彬.离子注入L(+)-乳酸产生菌菌种选育的研究[D].中国科学院等离子体物理研究所离子束生物工程重点试验室,合肥:2002.
    [63]李文,王陶,余增亮.离子注入选育L(+)-乳酸耐酸菌及去中和剂发酵研究[J].食品与发酵工业,2008,12:13-17.
    [64] Ge C M, Gu S B, Zhou X H, et al. Breeding of L(+)-lactic acidproducing strain by low-energy ion implantation[J]. Journal ofMicrobiology and Biotechnology,2004,14:363-366.
    [65]马礼敦,杨福家.同步辐射应用概论[M].复旦大学出版社,2000,上海:284-285.
    [66]蒋诗平.合肥同步辐射软x射线显微术实验方法研究[D].中国科技大学,合肥:2000.
    [67] Michette A.G... Optical system for soft X-rays[M].,Plenum Press,1986, NewYork,254-269.
    [68]陈建文、徐至展,朱佩平. X射线全息术[J].物理学进展.1995,15(2),135--147.
    [69] Buckley C.. The measuring and mapping of calcium in mineralisedtissues by absorption dif ference imaging[J]. Rev. Sci. In strum.1995,66(2),1318-1321.
    [70] Buckley C.. Imaging of calcium deposits in cartilage by scanningX-ray microscopy[J]. Bone,1992,13:100.
    [71] Buckley C., Ali S.J., C.A.Scotchford. Imaging of calcium depositsin human cartilage[J]. Scanning,1992,14,27-28.
    [72]沈萍.微生物学[M].高等教育出版社,2000,北京:33-34
    [73]张洪波.同步辐射CK, OK软X线对质粒PBK-CMV DNA的辐照作用及机制初探[D].安徽医科大学,合肥:2002.
    [74]吴双,顾月华,赵凌,刘加娟.软X射线同步辐射对小麦细胞膜脂质过氧化产物及相关酶活性的影响[J].核技术,2003,26(8):577-581.
    [75]曹雪芸,施巾帼,唐掌雄,江泽慧,费本华,董宝中.同步辐射(软X射线)对冬小麦的诱变效应及机理研究Ⅰ[J].同步辐射的辐射生物学效应.核农学报,2000,14(4):193-199.
    [76]陈亮.同步辐射软X射线辐射效应研究[D].中国科技大学,合肥:2010.
    [77]温崇庆,唐欣昀,蒋诗平,徐至展,孙亦阳.同步辐射软X射线对枯草杆菌的诱变效应[J].激光生物学报,2004,13(1):30-33.
    [78]肖小发.米根霉产L-乳酸优良菌株的同步辐射诱变选育及发酵特性研究[D].合肥工业大学,合肥:2007.
    [79] Frankenberg D, Kuhn.H, Lenhard.W.0.3kev carbon K ultrasoftX-rays are four times more effective than gamma-rays wheninducing oncogenic cell transformation at low dose[J]. Radiat. Biol.,1995,68(6):593-601.
    [80] Watanable M. Mutagenic and transforming efects of soft X-rayswith resonance energy of phosphor us K-absorption edge[J]. In t. J.Radiat. Biol.,1992,61(2):161-165.
    [81] Genro kashino, Kevin M. Prise, Giuseppe Schettino, MelvynFolkard. Evidence for induction of DNA double strand breaks in thebystander response to targeted soft X-rays in CHO cells[J].Mutation Research.2004,556(1-2):209-215.
    [82] Goodhead D.T., Thacker J., Cox R.. Effects of radiations ofdifferent qualities on cells: molecular mechanisims of damage andrepair[J]. International Journal of Radiation Biology.1993, V(63)5:543-556.
    [83] Thacker J., Wilkinson R.E., Goodhead D.T.. The induction ofchromosome exchange aberrations by carbon ultrasoft X-rays inV79hamster cells[J]. International Journal of Radiation Biology.1986, V(49)4:654-656.
    [84]顾月华,赵寅生,赵凌.软X射线同步辐射对小麦细胞膜脂质过氧化产物及相关酶活性的影响[J].核技术,2005,28(10):733-736.
    [85]张欣,徐师国,张玉恒,汪渊.同步辐射产生的Ck软X射线对质粒pBK-CMV DNA的辐射生物效应[J].中华放射医学与防护杂志.2001,21(5):321-326.
    [86]顾月华,高恒景,王琦,赵凌.单细胞凝胶电泳法检测研究同步辐射软X射线辐照引起的DNA损伤[J].核技术,2006,29(7):481-486.
    [87] Hieda K.. DNA damage induced by vacuum and soft X-ray photonsfrom synchrotron radiation[J]. International Journal of RadiationBiology.1994, V(66)5:561-567.
    [88] Folkard M., Prise K.M., Vojnovi B.c, Davies S., Roper M.J,,Michael B.D.. Measurement of DNA damage by electrons withenergies between25and4000ev[J]. International Journal ofRadiation Biology.1993, V(64)6:651-658.
    [89] Saigusa S., Ejima Y., Kobayashi K., Sasaki M.S.. Induction ofchromosome aberrations by monochromatic X-rays with resonanceenergy of phosphorus K-shell absorption edge[J]. InternationalJournal of Radiation Biology.1992, V(61)6:785-790.
    [1]陈亮,蒋诗平,万里飚,等.米曲霉孢子对同步辐射C、N、O元素K吸收边附近软X射线的吸收剂量分布研究.辐射研究与辐射工艺学报.2007,25(4):243-247.
    [2] Hieda K.. DNA damage induced by vacuum and soft X-ray photonsfrom synchrotron radiation[J]. International Journal of RadiationBiology.1994, V(66)5:561-567.
    [3] Folkard M., Prise K.M., Vojnovic B., Davies S., Roper M.J,Michael B.D.. Measurement of DNA damage by electrons withenergies between25and4000ev[J]. International Journal ofRadiation Biology.1993, V(64)6:651-658.
    [4] Saigusa S., Ejima Y., Kobayashi K., Sasaki M.S.. Induction ofchromosome aberrations by monochromatic X-rays with resonanceenergy of phosphorus K-shell absorption edge[J]. InternationalJournal of Radiation Biology.1992, V(61)6:785-790.
    [5] Goodhead D.T., Thacker J., Cox R.. Effects of radiations ofdifferent qualities on cells: molecular mechanisims of damage andrepair[J]. International Journal of Radiation Biology.1993, V(63)5:543-556.
    [6]温崇庆,唐欣昀,蒋诗平,徐至展,孙亦阳.同步辐射软X射线对枯草杆菌的诱变效应[J].激光生物学报,2004,13(1):30-33.
    [7]赵丽芳,王海林.几种生态因子对粉拟青霉菌生长及产孢量影响的研究.西部林业科学,2008,37(1):14-19.
    [8]沈萍.微生物学[M].高等教育出版社,2000,北京:33.
    [9]蒋诗平,张新夷,陈建文,徐至展.同步辐射讲座第三讲软X射线显微术[J].物理,2002,31(5):113-116.
    [10]施巧琴,吴松刚.工业微生物育种学[M].科学出版社.2003(第三版):118.
    [11] http://www.nsrl.ustc.edu.cn/1machine.html
    [12] Shao-jun FU, Yi-li HONG n, Xiao-ming TAO, et al. Fabrication ofSoft X-ray condenser zone plates[J]. Acta Optica Sinica,1995,15(8):1148-1150.
    [13] Masini A, Batani D, Previdi F, et al. X-ray irradiation of yeastcells[J]. Proceeding of SPIE,1997,3157:203-217.
    [14] Foster G F, Buckley C J, Bennett P M, et al. Investigation ofradiation damage to biological specimens at water windowwavelengths[J]. Review of Scientific Instruments,1992,63(1):599-600..
    [15] Henke B L, Gullikson E M, Davis J C. X-ray interactions:photoabsorption, scattering, transmission and reflection atE=50~30000eV, Z=1-92[J]. Atomic data and Nuclear Date Tables,1993,41:181-343.
    [16] Skory C.D., Freer S.N., Bothast R.J.. Production of L-lactic acid byRhizopus oryzae under oxygen limiting conditions[J]. Biotechnol.Lett.1998,20:191–194.
    [1] Weight B E, Longacre A, Reimers J. Models of metabolism inRhizopus oryzae[J]. Journal of Theoretical Biology,1996,182:453-457.
    [2]白冬梅. L-乳酸高产菌株的诱变及其代谢通量分析[D].天津大学,天津:2001.
    [3] Skory C.D., Freer S.N., Bothast R.J.. Production of L-lactic acid byRhizopus oryzae under oxygen limiting conditions[J]. Biotechnol.Lett.1998,20:191–194.
    [4]徐志南.米根霉培养条件对脱氢酶活力和产物组成的影响[J].浙江大学学报,2003,37(6):743-747.
    [5]顾月华,赵寅生,赵凌.软X射线同步辐射对小麦细胞膜脂质过氧化产物及相关酶活性的影响[J].核技术,2005,28(10):733-736.
    [6]温崇庆,唐欣昀,蒋诗平,徐至展,孙亦阳.同步辐射软X射线对枯草杆菌的诱变效应[J].激光生物学报,2004,13(1):30-33.
    [7]张洪波.同步辐射CK, OK软X线对质粒PBK-CMV DNA的辐照作用及机制初探[D].安徽医科大学,合肥:2002.
    [8] Rangel-Porras R. A., Meza-Carmen E. V., Martinez-Cadena G.,Torres-Guzman J. C.. Molecular analysis of an NAD-dependentalcohol dehydrogenase from the zygomycete Mucor circinelloides[J]. Mol. Gen. Genomics,2005,274:354–363.
    [9] Yoneya T., Sato Y.. Alcohol Dehydrogenase from Rhizopusjavanicus[J]. Applied and Environmental Microbiology,1979,37(6):1073-1078.
    [10]奥斯伯.精编分子生物学实验指南-(第五版)[M].科学出版社,2008:479.
    [11] Christopher D. Skory. Lactic acid production by Rhizopus oryzaetransformants with modified lactate dehydrogenase activity [J].Applied Microbiology and Biotechnology,2004,64:237~242
    [12]李兴江.米根霉深层发酵甘薯淀粉制备L-乳酸工艺研究[D].合肥工业大学.2004.
    [13]陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002.
    [14]赵学明.代谢工程[M].化学工业出版社,北京:2003.
    [1] Liming Liu, Yin Li, Huazhong Li, Jian Chen. Signi¢cant increase ofglycolytic£ux in Torulopsis glabrata by inhibition ofoxidativephosphorylation[J]. FEMS.2006,6:1117–1129.
    [2] Sekine H., Shimada T., Hayashi C., Ishiguro A.. H+-ATPase defectin Corynebacterium glutamicum abolishes glutamic acid productionwith enhancement of glucose consumption rate [J]. Appl MicrobiolBiotechnol.2001,57:534–540.
    [3] Causey T.B., Zhou S., Shanmugam K.T., Ingram L.O.. Engineeringthe metabolism of Escherichia coli W3110for the conversion ofsugar to redox-neutral and oxidized products: Homoacetateproduction[J]. PNAS.2003,100(3):825-832.
    [4] Baruch I. Kanner, David L. Gutnick. Use of Neomycin in theIsolation of Mutants Blocked in Energy Conservation inEscherichia coli[J]. Journal of Bacteriology,,1972,111(1):287-289.
    [5] Davies SE, Brindle KM. Effects of overexpression ofphosphofructokinase on glycolysis in the yeast Saccharomycescerevisiae[J]. Biochemistry.1992,31:4729–4735..
    [6] Miyata R, YoneharaT. Breeding of high-pyruvateproducingTorulopsis glabrata with acquired reduced pyruvatedecarboxylase[J]. Journal of Bioscience and Bioengineering1999,88,173–178.
    [7] Santana M, Ionescu M S, Vertes A, et al. Bacillus subtilisF0F1-ATPase: DNA sequence of the atp operon and characterizationof atp mutants[J]. J Bacteriol,1994,176:6802-6811.
    [8] Barnard EA. Hexokinase from yeast[J]. Methods Enzymol.1975,42:6–20..
    [9]王翠华,李友元,陈长华,李啸. Torulopsis glabrata620在丙酮酸生物合成中的能荷变化和氧化-还原态趋势[J].华东理工大学学报(自然科学版),2006,32(5):552-555.
    [10]刘立明.光滑拟球酵母中糖酵解效率与丙酮酸合成的调控研究[D].江南大学:2006.
    [11]王镜岩,朱圣庚,徐长法.生物化学(下册)[M].高等教育出版社,北京:2002,114-115.
    [1]王镜岩,朱圣庚,徐长法.生物化学(下册)[M].高等教育出版社,北京:2002,71.
    [2] Blazquez M A, Lagunas R, Gancedo C. Trehalose-6-phosphate, a new regulator of yeastglycolysis that inhibits hexokinases[J]. FEBS Lett,1993,329:51-54.
    [3] Pearce A K, Crimmins K, Groussac E. Pyruvate kinase (Pyk1) levels influence both therate anddirection of carbon flux in yeast under fermentative conditions[J]. Microbiology,2001,147:391-401.
    [4]刘立明.光滑拟球酵母中糖酵解效率与丙酮酸合成的调控研究[D].江南大学:2006.
    [5]高年发,王庆昭,杨枫.2-脱氧葡萄糖抗性黑曲霉高产柠檬酸突变株的选育[J].天津轻工业学院学报.2000,4:36-39.
    [1] Sudheer K S, Syed U A, Ashok P. Metabolic engineeringapproaches for lactic acid production[J]. ProcessBiochemistry,2006,41:991-1000.
    [2]金其荣,张继民,徐勤.有机酸发酵工艺学[M].中国轻工业出版社,北京:1989,373.
    [3] Gobbetti, M. The sourdough microflora: interactions of lactic acidbacteria and yeasts. Trends Food Sci Technol.1998,9:267-274.
    [4] Maria De Angelis, Luca Bini et al. The acid-stress response inLactobacillus sanfranciscensis CB1[J]. Microbiology.2001,147:1863–1873.
    [5] Benninga H A.A History of Lactic Acid Making[M].Dordrecht:Kluyver Academic Publishers,1990.
    [6] Angelis M,Bini L,Pallini V. et al.The acid-stress response inLactobacillus Sanfranciscensis CBI[J].Microbiology,2001,147:l863-l873.
    [7]王玉华,李岩,裴晓林,冯雁.基因组改组提高干酪乳杆菌耐酸性生产L-乳酸[J].中国生物工程杂志,2006,26(2):53~58.
    [8]李文,王陶,余增亮.离子注入选育L(+)-乳酸耐酸菌及去中和剂发酵研究[J].食品与发酵工业,2008,34(12):12-16.
    [9]柯林根J E.等.精编蛋白质科学实验指南[M].科学出版社,北京:2007.
    [10] Serrano R.In vivo glucose activation of the yeast plasma membraneATPase[J].FEBS Lett,1983,(156):11-14.
    [11] Serrano R. Kielland-Brandt M C, Fink G R. Yeast plasmamembrane ATPase is essential for growth and has homologywith(Na++K+),K+and Ca2+-ATPase[J]. Nature,1986,(319):689~693.
    [12] TakehiroMiwa, TetsuoAbe, Shinji Fukuda. Effect of ReducedH+-ATPase Activity on Acid Tolerance in Streptococcus bovisMutants[J]. Anaerobe.2000,6:197-203.
    [13] Raphaele Tourdot-Marechala; Louis-Charles Fortier. Acidsensitivity of neomycin-resistant mutants of Oenococcus oeni: arelationship between reduction of ATPase activity and lack ofmalolactic activity [J]. FEMS Microbiology Letters.1999,178:319-326.
    [14] Smeds A., Varmanen P. Palva A.(). Molecular characterization of astress-inducible gene from Lactobacillus helveticus[J]. J Bacteriol.1998,180:6148-6153.
    [15] Sullivan E O.. Condon S. Intracellular pH is a major factor in theinduction of tolerance to acid and other stresses in Lactococcuslactis[J]. Appl Environ Microbiol.1997,63:4210-4215.
    [16] Driscoll O B., Gahan C. G. M., Hill C. Two-dimensionalpolyacrylamide gel electrophoresis analysis of the acid toleranceresponse in Listeria monocytogenes LO28[J]. Appl EnvironMicrobiol.1997,63:2679-2685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700