生物质废弃物羽毛的改性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环境问题日益突出,使环境友好材料取代部分合成材料成为研究热点。羽毛角蛋白具有可再生、贮量丰富、质量及供应稳定等优点。本研究以羽毛为中心进行了如下研究:
     1、综述了羽毛的形成、形态、结构及组成。系统介绍了羽毛研究中的表征方法,红外光谱、拉曼光谱、x-射线衍射是研究羽毛的主要方法,光学显微镜、电子显微镜也是研究羽毛重要手段。对羽毛的应用进行了分类讨论。羽毛首先被用于填充保温材料,近来的研究还可以利用羽毛进行纺织;大多数羽毛应用研究均集中在水解羽毛领域,其中酸水解、碱水解以及在氧化剂或还原剂存在下的酸、碱水解均有较多的研究,也有利用高温水及近临界水水解羽毛的研究。生物法水解羽毛是近年来的研究热点,但目前的研究主要集中在寻找有效的角蛋白水解酶及菌类。羽毛可用于高分子增强材料,羽毛还被用于吸附有机物及无机重金属离子。
     2、以离子液体氯化1-丁基-3-甲基咪唑为溶剂,溶解羽毛,用乙醇再生后得到再生羽毛颗粒(RF)。RF的结晶度有所下降,其β-折叠的比例为31.71%,低于羽毛(47.19%)。原羽毛为疏水性物质而RF颗粒表面却变成了亲水性表面,其水接触角由羽毛的138°降低为76°。RF颗粒能高效地去除污水中的Cr(Ⅵ)离子。羽毛的离子液体溶液经水或乙醇再生,直接过滤可得到羽毛角蛋白纸,其机械性能很差。加入少量成膜剂聚乙烯醇或聚乙烯醇缩丁醛后的羽毛离子液体溶液可制备透明的羽毛角蛋白膜。由于聚乙烯醇缩丁醛的疏水性较强,其虽然可以提高膜的机械性能,但所得膜仍很脆。聚乙烯醇的亲水性远大于聚乙烯醇缩丁醛,所以其能极大地提高膜的机械性。该工作为离子液体及废弃羽毛的利用提供了新途径。
     3、通过多种化学方法对羽毛进行了处理,(1)以不同浓度的氢氧化钠溶液进行处理;(2)在氢氧化钠溶液中用环氧氯丙烷(Epi)进行交联,制得Epi修饰羽毛(EpiF);(3)在氢氧化钠溶液中,以Epi为交联剂,用乙二胺进行修饰,制得乙二胺修饰羽毛(EAEpiF)。利用FT-IR、XRD、SEM、元素分析和水接触角对化学处理羽毛的结构进行了研究。结果表明,当仅以氢氧化钠溶液处理羽毛时,反应只在羽毛表面进行,羽毛表面的角蛋白片段将分层脱落,进而溶解在氢氧化钠溶液中。不同浓度的碱处理后的羽毛在结构及性质上均相似,对阴离子型金属离子Cr(Ⅵ)离子的吸附能力虽然较原羽毛有所提高,但仍较弱,吸附属于物理吸附。碱处理羽毛对金属阳离子Cu(Ⅱ)离子的吸附能力有很大的提高,但吸附仍是物理吸附。EpiF对低浓度的Cr(Ⅵ)离子有很强的吸附能力。EAEpiF为亲水性材料,在很宽的浓度范围内(10-80ppm),对Cr(Ⅵ)离子均有90%以上的去除率,其吸附可能属化学吸附;但对铜离子的吸附较弱,属物理吸附。
     4、以羽毛为原料,钛酸丁酯为前驱体,通过在羽毛表面的缓慢水解胶凝过程,制备了纳米二氧化钛/羽毛复合材料。最佳制备条件为:羽毛经0.1 mol·L~(-1)的NaOH水溶液处理后,在1。5%的钛酸丁酯乙醇溶液中回流反应24 h。通过x-射线衍射分析表明复合材料中的TiO_2为无定型态。扫描电子显微镜结果显示,复合材料中的TiO_2为一均匀涂层。虽然成功制备了二氧化钛/羽毛复合材料,但实验表明此复合材料无光催化性能。
     5、利用溶胶-凝胶法制备了二氧化钛/羽毛复合材料。XRD结果表明,复合材料中的二氧化钛为锐钛矿型。以酸性大红3R和丁基罗丹明B为模型污染物,对复合材料的光催化降解能力进行了考察。结果表明,复合材料对酸性大红3R的去除率很高,在20 min内可去除80%。复合材料对阴离子型染料有极强的吸附作用,对酸性大红3R的吸附可达到0.27g·g~(-1),其吸附为化学吸附。对阳离子型染料丁基罗丹明B的吸附较弱。由于羽毛纤维的固有性质,其可以很方便地通过过滤回收,解决了TiO_2光催化剂回收困难的问题。
     6、利用硝酸、醋酸、乙醇的不同配方,研究酸处理羽毛的结构及性质。羽毛经硝酸处理后,其角蛋白中的部分胺基被阳离子化。硝酸处理后的羽毛(NF)对阴离子型染料酸性大红3R有极强的吸附能力,属于化学吸附。对阳离子型染料丁基罗丹明B的吸附能力相对很弱,但吸附作用力很强,属于化学吸附:NF对阴离子型金属离子Cr(Ⅵ)离子有强的吸附能力,与Cr(Ⅵ)离子之间存在强相互作用,可能为阴阳离子之间的静电相互作用,属于化学吸附:Cr(Ⅲ)离子虽然属阳离子,NF对其也有一定的吸附,但相互作用较弱,属物理吸附;NF对其它金属阳离子如:Cu(Ⅱ)离子、Mn(Ⅱ)离子、Co(Ⅱ)离子等均无吸附,因此,经硝酸处理的羽毛可用于选择性吸附污水中的总铬。
A concern for the environment is driving research into environmentally friendly materials as replacements for part of synthetic materials.While much current research focuses on cellulose,we highlight that feather keratin should also be considered.It is renewable,commercially abundant, consistent quality,and has guaranteed supply.In this dissertation,the modification and application of feathers were investigated.
     1.The generation,configuration,structure and composition of feathers were reviewed.IR, Raman and x-ray diffraction are mainly used to characterize the structure of feathers,and optical microscope and electron microscope are also used.The applications of feathers were discussed. Feathers were firstly used for filled heat insulation materials and used for spin and weave in recent research.Most research focused on the hydrolysis of feather,including acid hydrolysis,base hydrolysis and acid or base hydrolysis in the presence of oxidant or reducer.Superheated water and sub-critical water were also used to hydrolyze feather.Many research focused on the hydrolysis of feather using bio-method currently;however,most of them focused on finding and culturing keratin hydrolyzing enzyme and keratin degrading bacteria.Feather can be used to prepare fiber-reinforced polymer.Feathers are also used to adsorb organic molecules and heavy metal ions.
     2.The dissolution and regeneration of the waste feather in an ionic liquid of 1-butyl-3-methylimi-dazolium chloride([BMIM]Cl) were demonstrated for preparing feather based particles.The crystallinity of the regenerated feathers(RF) decreases and the content ofβ-sheet is 31.71%,which is clearly lower than the raw feather(47.19%).The surface property of feather changed from hydrophobicity to hydrophilicity after regenerated from[BMIM]Cl as indicated by the change of the water contact angle from 138 to 76°.RF shows an excellent efficiency for removing Cr(Ⅵ) ions in water.The stress and strain of the film made from feather can be significantly improved by adding a small amount of poly(vinyl alcohol)(PVA) as an additive.The hydroxyl groups in the molecule of PVA can form hydrogen bonds with the groups of amino and carboxyl in keratin chains of the feathers.On the contrary,in the case of polyvinyl butyral(PVB) as an additive, most oxygen atoms in PVB molecules are existed as butyral,and the butyl are hydrophobic,while keratin chains of feathers are hydrophilic.Thus,the film of adding PVB shows a poor mechanical property due to the weaker interaction between PVB and keratin chains.This work demonstrated a new application of the ionic liquid for dissolving feather and a renewable application of waste feather.
     3.Feather was chemically treated by several methods.(1) Feather was treated with a range of concentrations of NaOH aqueous solutions.(2) Feather was cross-linking modified with epichlorohydrin(Epi) in NaOH aqueous solution(EpiF),and(3) Feather was modified with ethylenediamine(EA) in NaOH aqueous solution by cross-linking with Epi(EAEpiF).The structure and properties of chemically treated feather were investigated by FT-IR,XRD,SEM,elemental analysis and water contact angle measurements.When feather is treated in NaOH aqueous solution, the reactions occurred on the surface rather than in the interior of feather,and keratin fragments exfoliate from the feather surface layer by layer,and then dissolve in aqueous solution.Feather treated with NaOH are similar in structure and properties to raw feather,and shows relatively low sorption capacity for removal of Cr(Ⅵ) ions from water,but higher capacity than that of raw feather and the sorption is physical adsorption.NaOH treated feather shows an excellent capacity of removing Cu(Ⅱ) ion from water,however,it is also physical adsorption.EpiF shows excellent capacity for adsorbing low concentrations of Cr(Ⅵ) ions,while low sorption capacity for Cu(Ⅱ) in water.EAEpiF is hydrophilic and shows 90%efficiency for removing Cr(Ⅵ) ions in the concentration ranges 10~80 ppm,the sorption maybe chemisorption;However,EAEpiF shows low sorption capacity of adsorption Cu(Ⅱ) ion.
     4.Titanium dioxide/feathers composite materials were prepared by using feather as raw materials,Ti(O-nBu)_4 as precursor and ethanol as solvent.The influence of the pretreated reagent concentration of NaOH and the Ti(O-nBu)_4 concentration on the modification rate of TiO_2 had been investigated,and the optimum reaction conditions were obtained.Feather was firstly treated with 0.1 mol·L~(-1) of NaOH aqueous solution,then reacted with 1.5%of Ti(O-nBu)_4 ethanol solution at 78℃for 24 h.The XRD results demonstrated that the TiO_2 in composite material was amorphous phase. SEM indicated that the TiO_2 in composite material is a nanometer lay.The composite material does not show any photocatalytic activities;the possible reason is that the TiO_2 is not in crystallization phase.
     5.Titanium dioxide/feathers composite material was prepared using sol-gel method.The XRD results demonstrated that the TiO_2 in composite material was anatase.The photocatalytic activities of composite were investigated by using Ponceau 4R and Butyl rhodamine B as model pollutes.The results demonstrated that composite material shows excellent capacity of removing Ponceau 4R with 80%efficiency for removing of Ponceau 4R.The composite material shows excellent capacity of adsorbing anionic dye,the uptake of Poncean 4R can reach 0.27 g·g~(-1),and the sorption is chemisorption.The composite material shows poor capacity for adsorption of Butyl rhodamine B. The composite material can be easily recovered by filtration for the fiber property of feather.
     6.The structure and property of acid treated feather were investigated by using different prescription of nitric acid,acetic acid and ethanol.Parts of amino group of keratin were changed to cation after treated with nitric acid.Nitric acid treated feather(NF) shows excellent sorption capacity of adsorbing Ponceau 4R,the sorption is chemisorption.However,NF shows low sorption capacity of adsorbing cationic dye Butyl rhodamine B,however the interactions between feather and Butyl rhodamine B are very strong,the sorption is chemisorption.NF shows excellent adsorption capacity of adsorbing anionic Cr(Ⅵ) with a possible strong interaction of electrostatic attraction,and the sorption is chemisorption.NF also can adsorb Cr(Ⅲ) ion with a relatively weak interaction,although it is a cation metal ion,and the sorption is physical adsorption.However,for Cu(Ⅱ),Mn(Ⅱ) and Co(Ⅱ) ions,NF did not show any adsorption.Therefore,NF can be used as a material for selective adsorption of total Cr from wastewater.
引文
[1]王强.鸟类羽毛的起源[J].生物进化,2008,(1):41-44.
    [2]古脊椎所.我国学者在近期出版的《自然》撰文:羽毛演化过程需重新评价[EB/OL].http://www.bjb.cas.cn/kytd/kjdt/200603170008.html,2009-03-02.
    [3]Schroeder W A,Kay L M,Lewis B,et al.The Amino Acid Composition of Certain Morphologically Distinct Parts of White Turkey Feathers,and of Goose Feather Barbs and Goose Down[J].J.Am.Chem.Soc.,1955,77(14):3901-3908.
    [4]孙中武,葛学亮,邹红菲,等.鹤、鹳羽毛角蛋白氨基酸分析与应用[J].林业科学,2008,144(13):102-106.
    [5]完美耐飞的羽毛(上)[EB/OL].http://www.petmi.cn/gsn/31421.html,2008-07-02.
    [6]赵耀明,杨崇岭,蔡婷等.羽毛纤维的结构、性能及应用[J].针织工业,2007,(2):20-23.
    [7]关丽涛,杨崇岭,赵耀明.羽毛纤维的耐化学试剂性能[J].纺织学报,2008,29(4):27-31.
    [8]杨崇岭,赵耀明,刘立进.天然纺织材料--羽毛纤维的形态结构[J].纺织导报,2005,(3):56-59.
    [9]费荣梅,田秀华.大鸨羽毛微观结构研究[J].东北林业大学学报,2002,30(1):40-43.
    [10]Barone J R,Arikan O.Composting and Biodegradation of Thermally Processed Feather Keratin Polymer[J].Polym.Degrad.Stabil.,2007,92:859-867.
    [11]Yin J,Rastogi S,Terry A E,et al.Self-organization of Oligopeptides Obtained on Dissolution of Feather Keratins in Superheated Water.[J].Biomacromolecules,2007,8:800-806.
    [12]Yu P,McKinnon J J,Christensen C R,et al.Using Synchrotron-Based FT-IR Microspectroscopy to Reveal Chemical Features of Feather Protein Secondary Structure:Comparison with Other Feed Protein Sources[J].J.Agile.Food.Chem.,2004,52(24):7353-7361.
    [13]Marinkovic N S,Huang R,Bromberg P,et al.Center for Synchrotron Biosciences' U2B Beamline:an International Resource for Biological Infrared Spectroscopy[J].J.Synchrotron.Radiat.,2002,9:189-197.
    [14]Akhtar W,Edwards H G M.Fourier-transform Raman Spectroscopy of Mammalian and Avian Keratotic Biopolymers[J].Spectrochim.Acta.A.,1997,53:81-90.
    [15]Bear R S.X-Ray Diffraction Studies on Protein Fibers.Ⅱ.Feather Rachis,Porcupine Quill Tip and Clam Muscle[J].J.Am.Chem.Soc.,1944,66:2043-2050.
    [16]Schor R,Krimm S.Studies on the Structure of Feather Keratin Ⅰ.X-ray Diffraction Studies and Other Experimental Data[J].Biophys.J.,1961,(1):467-487.
    [17]Athamneh A I,Griffin M,Whaley M,et al.Conformational Changes and Molecular Mobility in Plasticized Proteins[J].Biomacromolecules,2008,9:3181-3187.
    [18]Aluigi A,Zoccola M,Vineis C,et al.Study on the Structure and Properties of Wool Keratin Regenerated from Formic Acid[J].Int.J.Biol.Macromol.,2007,41:266-273.
    [19]Xie H,Li S,Zhang S.Ionic Liquids as Novel Solvents for the Dissolution and Blending of Wool Keratin Fibers[J].Green.Chem.,2005,7:606-608.
    [20]夏永林.羽毛蛋白的提取及其提取物特性分析[J].国外丝绸,2007,(2):16-20.
    [21]董云哲,周作伸.羽毛羽绒加工工艺国外丝绸[J].农业与技术,2008,128(11):126-131.
    [22]张立文.一种可纺羽绒、羽丝混纺材料及其加工方法:中国,ZL01114806.3[P].2002-01-23.
    [23]赵耀明,杨崇岭,蔡婷,等.羽毛纤维的结构、性能及应用[J].针织工业,2007,(2):20-23.
    [24]刘伟时,刘维锦.羽毛纤维织物的退浆研究[J].化纤与纺织技术,2006,(4):1-5.
    [25]温秉娥,黄文伟.羽毛绒织物退浆和防扎防刺工艺研究[J].化纤与纺织技术,2006.3:18-23.
    [26]王利伟,俞镇慌.羽毛纤维与化纤混合非织造絮片服用性能研究[J].产业用纺织品,2005,177(6):32-35.
    [27]北京市饲料科学研究所情报资料室.羽毛粉及其利用[J].饲料研究,1978,(1):79.
    [28]吴华昌,黄鸣,邓静,李主全.羽毛水解生产复合氨基酸的研究.四川轻化工学院学报,2001,14(4):38-40.
    [29]蔡婷,赵耀明,杨崇岭.羽毛角蛋白溶液的制备及研究[J].印染助剂,2007,24(6):20-23.
    [30]柳伟平,卢荣,张粉艳,等.羽毛降解的反应条件研究[J].皮革化工,2007,24(5):13-16.
    [31]徐清海,明霞.由鸡羽毛制备复合氨基酸铁复合物方法[J].沈阳农业大学学报,2001,32(1):51-53.
    [32]黄耀威,陈忻,赖兴华,等.用羽毛提取混合氨基酸.佛山科学技术学院学报:自然科学版[J],1999,17(4):41-43.
    [33]王家宏,冯贵颖,呼世斌,等.利用羽毛蛋白制备复合氨基酸的工艺研究[J].西北农林科技大学学报:自然科学版,2003,31:106-112.
    [34]朱宪,杨磊,赵亮,等.近临界水中羽毛水解制备氨基酸的工艺优化研究[J].高校化学工程学报,2008,22(6):1033-1036.
    [35]Cheng H,Zhu X,Zhu C,et al.Hydrolysis Technology of Biomass Waste to Produce Amino Acids in Sub-Critical Water[J].Bioresource Technol,2008,99:3337-3341.
    [36]尹国强,崔英德,陈循军.水溶性羽毛蛋白的制备与化学改性[J].精细化工,2008,25(7):676-680.
    [37]魏俊发,李闻欣,石先莹,等.畜禽毛角蛋白基复合薄膜及其制备方法:中国,200810018281.8[P].2008-10-15.
    [38]傅伟,阮晖,刘婧,等.羽毛的生物降解及其酶学性质的研究[J].科技通报,2008,24(3):320-324.
    [39]王岳峰,余荣台,汪涛.羽毛角蛋白酶摇瓶发酵及其生化特性的研究[J].江西中医学院学报,2004,16(3):65-66.
    [40]谭盈盈,冯继勤,郑平.拟青霉菌株Z-1降解羽毛角蛋白特性的研究[J].浙江大学学报:农业与生命科学版,2005,31(1):82-87.
    [41]董荣斌,张玲,朱晓飞,等.耐热链霉菌B221降解羽毛角蛋白的固体发酵条件研究[J].江苏农业科学,2007,(6):249-267.
    [42]黄林,熊智强,蔡华静,等.链霉菌降解角蛋白的生化机制研究[J].微生物学通报,2006,33(4):36-42.
    [43]Khardenavis A A,Kapley A,Purohit H J.Processing of Poultry Feathers by Alkaline Keratin Hydrolyzing Enzyme from Serratia Sp.HPC 1383[J].Waste Manage,2009,29:1409-1415.
    [44]Lucas F S,Broennimann O,Febbraro I,et al.High Diversity among Feather-Degrading Bacteria from a Dry Meadow Soil[J].Microb.Ecol.,2003,45:282-290.
    [45]Chao Y,Xie F,Yang J,et al.Screening for a New Streptomyces Strain Capable of Efficient Keratin Degradation[J].J.Environ.Sci.,2007,19:1125-1128.
    [46]Syed D G,Lee J C,Li W,et al.Production,Characterization and Application of Keratinase from Streptomyces Gulbargensis[J].Bioresource.Technol.,2009,100:1868-1871.
    [47]Bertsch A,Coello N A Biotechnological Process for Treatment and Recycling Poultry Feathers as a Feed Ingredient[J].Bioresource.Technol.,2005,96:1703-1708.
    [48]Grazziotin A,Pimentel F A,Sangali S,et al.Production of Feather Protein Hydrolysate by Keratinolytic Bacterium Vibrio sp.kr2[J].Bioresource.Technol.,2007,98:3172-3175.
    [49]Wang J,Swaisgood H E,Shih J C H.Production and Characterization of Bio-Immobilized Keratinase in Proteolysis and Keratinolysis[J].Enzyme.Microb.Tech.,2003,32:812-819.
    [50]Dweib M A,Hu B,Donnell A O,et al.All Natural Composite Sandwich Beams for Structural Applications[J].Compos.Struct.,2004,63:147-157.
    [51]Barone J R.Polyethylene/Keratin Fiber Composites with Varying Polyethylene Crystallinity[J].Compos.Part A-Appl.S.,2005,36:1518-1524.
    [52]Barone J R,Schmidt W F.Polyethylene Reinforced with Keratin Fibers Obtained from Chicken Feathers[J].Compos.Sci.Technol.,2005,65:173-181.
    [53]Barone J R,Schmidt W F,Liebner C F E.Compounding and Molding of Polyethylene Composites Reinforced with Keratin Feather Fiber[J].Compos.Sci.Technol.,2005,65:683-692.
    [54]Bullions T A,Hoffman D,Gillespie R A,et al.Contributions of Feather Fibers and Various Cellulose Fibers to the Mechanical Properties of Polypropylene Matrix Composites[J].Compos.Sci.Technol.,2006,66:102-114.
    [55]Martinez-Hernandez A L,Velasco-Santos C,Icaza M,et al.Mechanical Properties Evaluation of New Composites with Protein Biofibers Reinforcing Poly(Methyl Methacrylate)[J].Polymer,2005,46:8233-8238.
    [56]Martinez-Hernandez A L,Velasco-Santos C,Icaza M,et al.Dynamical-Mechanical and Thermal Analysis of Polymeric Composites Reinforced with Keratin Biofibers from Chicken Feathers[J].Compos.Part.B-Eng.,2007,38:405-410.
    [57]Endo R,Kamei K,Iida I,et al.Dimensional Stability of Waterlogged Wood Treated with Hydrolyzed Feather Keratin[J].J.Archaeol.Sci.,2008,35:1240-1246.
    [58]Gupta V K,Mittal A,Kurup L,et al.Adsorption of a Hazardous Dye,Erythrosine,over Hen Feathers[J].J.Colloid.Interf.Sci.,2006,304:52-57.
    [59]Mittal A.Adsorption Kinetics of Removal of a Toxic Dye,Malachite Green,from Wastewater by Using Hen Feathers[J].J.Hazard.Mater.B,2006.,133:196-202.
    [60]Mittal A.Use of Hen Feathers as Potential Adsorbent for the Removal of a Hazardous Dye,Brilliant Blue FCF,from Wastewater[J].J.Hazard.Mater.B.,2006,128:233-239.
    [61]Mittal A,Kurup L,Mittal J.Freundlich and Langmuir Adsorption Isotherms and Kinetics for the Removal of Tartrazine from Aqueous Solutions Using Hen Feathers[J].J.Hazard.Mater.,2007,146:243-248.
    [62]Teixeira M C,Ciminelli V S T.Development of a Biosorbent for Arsenite:Structural Modeling Based on X-Ray Spectroscopy[J].Environ.Sci.Technol.,2005,39:895-900.
    [63]Banat F,Al-Asheh S,Al-Rousan D.Comparison between Different Keratin-composed Biosorbents for the Removal of Heavy Metal Ions from Aqueous Solutions[J].Adsorpt.Sci.Technol.,2002,20:393-416.
    [64]Al-Asheh S,Banat F,Al-Rousan D.Adsorption of Copper,Zinc and Nickel Ions from Single and Binary Metal Ion Mixtures on to Chicken Feathers[J].Adsorpt.Sci.Technol.,2002,20:849-864.
    [65]Al-Asheh S,Banat F,Al-Rousan D.Beneficial Reuse of Chicken Feathers in Removal of Heavy Metals from Wastewater[J].J.Clean.Prod.,2003,11:321-326.
    [66]赵雪辉,赵东滨,费兆福,王乐夫.离子液体的功能化及其应用[J].中国科学B:化学,2006,36(3):181-196.
    [67]Binnemans K.Ionic Liquid Crystals[J].Chem.Rev.,2005,105:4148-4204.
    [68]Rantwijk F,Sheldon R A.Biocatalysis in Ionic Liquids[J].Chem.Rev.,2007,107: 2757-2785.
    [69]Parvulescu V I,Hardacre C.Catalysis in Ionic Liquids[J].Chem.Rev.,2007,107:2615-2665.
    [70]Ranke J,Stolte S,St(o|¨)rmann R,et al.Design of Sustainable Chemical Products-The Example of Ionic Liquids[J].Chem.Rev.,2007,107:2183-2206.
    [71]Biswas A,Shogren R L,Stevenson D G,et al.Ionic liquids as solvents for biopolymers:Acylation of Starch and Zein Protein[J].Carbohyd.Polym.,2006,66:546-550.
    [72]Stevenson D G,Biswas A,Jane J,et al.Changes in Structure and Properties of Starch of Four Botanical Sources Dispersed in the Ionic Liquid,1-Butyl-3-Methylimidazolium Chloride[J].Carbohyd.Polym.,2007,67:21-31.
    [73]Swatloski R P,Spear S K,Holbrey J D,et al.Dissolution of Cellose with Ionic Liquids[J].J.Am.Chem.Soc.,2002,124(18):4974-4975.
    [74]Wu J,Zhang J,Zhang H,et al.Homogeneous Acetylation of Cellulose in a New Ionic Liquid[J].Biomacromolecules,2004,5(2):266-268.
    [75]Phillips D M,Drummy L F,Conrady D G,et al.Dissolution and Regeneration of Bombyx Mori Silk Fibroin Using Ionic Liquids[J].J.Am.Chem.Soc.,2004,126(44):14350-14351.
    [76]Xie H,Li S,Zhang S.Ionic Liquids as Novel Solvents for the Dissolution and Blending of Wool Keratin Fibers[J].Green chem.,2005,7:606-608.
    [77]Goormaghtigh E,Cabiaux V,Ruysschaert J-M.Secondary Structure and Dosage of Soluble and Membrane Proteins by Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy on Hydrated Films[J].Eur.J.Biochem.,1990,193:409-420.
    [78]Giles C H,Macewan T H,Nakhwa S N,et al.Studies in Adsorption.Part Ⅸ.A System of Classification of Solution Adsorption Isotherms,and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids[J].J.Chem.Soc.,1960,3973-3993.
    [79]近藤精一,石川郁夫,安部郁夫著,李国希译.吸附科学(原著第二版)[M].北京:化学工业出版社,2006:120-123.
    [80]Sa(?) A,Tuzen M.Biosorption of Total Chromium from Aqueous Solution by Red Algae(Ceramium Virgatum):Equilibrium,Kinetic and Thermodynamic Studies[J] J.Hazard.Mater.,2008,160:349-355.
    [81]Lodeiro P,Barriada J L,Herrero R,M E.et al.The Marine Macroalga Cystoseira Baccata as Biosorbent for Cadmium(Ⅱ) and Lead(Ⅱ) Removal:Kinetic and Equilibrium Studies[J].Environ.Pollut.,2006,142:264-273.
    [82]DeMerlis C C,Schoneker D R.Review of the Oral Toxicity of Polyvinyl Alcohol (PVA)[J].Food.Chem.Toxicol.,2003,41:319-326.
    [83]Barnhart J.Chromium Chemistry and Implications for Environmental Fate and Toxicity[J].J.Soil Contam.,1997,6:561-568.
    [84]Kotass J,Stasicka Z.Chromium Occurrence in the Environment and Methods of Its Speciation[J].Environ.Pollut.,2000,107:263-283.
    [85]Mishra A K,Mohanty B.Acute Toxicity Impacts of Hexavalent Chromium on Behavior and Histopathology of Gill,Kidney and Liver of the Freshwater Fish,Channa Punctatus(Bloch)[J].Environ.Toxicol.Phar.,2008,26:136-141.
    [86]Langard S.One Hundred Years of Chromium and Cancer:A Review of Epidemiological Evidence and Selected Case Reports[J].Am.J.Ind.Med.,1990,17:189-215.
    [87]Ishikawa Y,Nakagawa K,Satoh Y,et al.Characteristics of Chromate Workers'Cancers,Chromium Lung Deposition and Precancerous Lesions:An Autopsy Study[J].Br.J.Cancer,1994,70:160-166.
    [88]Gioaechino M D,Petrarca C,Perrone A,et al.Autophagy as an Ultrastructural Marker of Heavy Metal Toxicity in Human Cord Blood Hematopoietic Stem Cells[J].Sci.Total Environ.,2008,392:50-58.
    [89]Qin G,McGuire M J,Blute N K,et al.Hexavalent Chromium Removal by Reduction with Ferrous Sulfate,Coagulation,and Filtration:A Pilot-Scale Study[J].Environ.Sci.Technol.,2005,39:6321-6327.
    [90]Eary L E,Rai D.Chromate Removal from Aqueous Wastes by Reduction with Ferrous Ion[J].Environ.Sci.Technol.,1988,22:972-977.
    [91]Deng B,Stone A T.Surface-Catalyzed Chromium(Ⅵ) Reduction:The TiO_2-CrⅥ- Mandelic Acid System[J].Environ.Sci.Technol.,1996,30:463-472.
    [92]Wittbrodt P R,Palmer C D.Reduction of Cr(Ⅵ) in the Presence of Excess Soil Fulvic Acid[J].Environ.Sci.Technol.1995,29:255-263.
    [93]Wielinga B,Mizuba M M,Hansel C M,et al.Iron Promoted Reduction of Chromate by Dissimilatory Iron-Reducing Bacteria[J].Environ.Sci.Technol., 2001,35:522-527.
    [94]Sa(?) A,Tuzen M,Soylak M.Adsorption of Pb(Ⅱ) and Cr(Ⅲ) from Aqueous Solution on Celtek Clay[J].J.Hazard.Mater B.,2007,144,41-46.
    [95]Sa(?) A,Tuzen M.Biosorption of Pb(Ⅱ) and Cd(Ⅱ) from Aqueous Solution Using Green Alga(Ulva Lactuca) Biomass[J].J.Hazard.Mater.,2008,152:302-308.
    [96]Uluozlu O D,Sari A,Tuzen M,et al.Biosorption of Pb(Ⅱ) and Cr(Ⅲ) from Aqueous Solution by Lichen(Pannelina Tiliaceae) Biomass[J].Bioresource.Technol.,2008,99:2972-2980.
    [97]Tunali S,Kiran I,Akar T.Chromium(Ⅵ) Biosorption Characteristics of Neurospora Crassa Fungal Biomass[J].Miner.Eng.,2005,18:681-689.
    [98]新华网.什么是可持续发展[EB/OL].http://news.xinhuanet.com/ziliao/2002-08/21/content_533048.htm,2009-03-20.
    [99]新华网.中国21世纪初可持续发展行动纲要[EB/OL].http://news.xinhuanet.com /newscenter/2003-07/24/content_992452_2.htm,2003-07-24
    [100]简报第三期.江西省城镇污水处理设施建设专题工作简报[EB/OL].http://www.jiangxi.gov.cn/ztbd/wscl/gzjb/200805/t20080528_12443.htm,2008-05-28.
    [101]Zhao J,Wu T,Wu K,et al.Photoassisted Degradation of Dye Pollutants.3.Degradation of the Cationic dye Rhodamine B in Aqueous Anionic Surfactant/TiO_2 Dispersions under Visible Light Irradiation:Evidence for the Need of Substrate Adsorption on TiO_2 Particles[J].Environ.Sci.Technol.,1998,32:2394-2400.
    [102]Palmisano G,Gutierrez M C,Ferrer M L,et al.TiO_2/Ormosil Thin Films Doped with Phthalocyanine Dyes:New Photocatalytic Devices Activated by Solar Light[J].J.Phys.Chem.C.,2008,112:2667-2670.
    [103]Daoud W A,Xin J H.Nucleation and Growth of Anatase Crystallites on Cotton Fabrics at Low Temperatures.J.Am.Soc.,2004,87(5):953-955.
    [104]Qi K,Daoud W A,Xin J H,et al.Self-Cleaning Cotton.J.Mater.Chem.,2006,16,4567-4574.
    [105]李蕊,赵景联,孙亚萍.超声协同TiO_2光催化降解酸性大红染料的研究[J].应用化工,2006,35(6):416-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700