基于时滞模型的ATM网络拥塞控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来的计算机网络将是一种能够提供多种不同服务,以支持多种不同应用需求,有着集成支持能力的高速分组交换网络。ATM网络正是支持这种综合业务数字网络的关键技术之一,已被国际电信联盟作为一项典型传输技术加以推广。在ATM网络中,信息流的拥塞及信息的丢失是影响网络业务服务质量的主要原因。为了充分提高ATM网络的性能和服务质量,设计一个高效的拥塞控制系统是一个关键问题。本文正是以此为出发点,将控制理论引入到网络通讯中,解决可控流-ABR业务的拥塞控制问题。
    本文首先从ATM网络通信基础知识开始,介绍了ATM网络基本原理和ABR业务的反馈机理。给出了一般通讯网络的数字化模型,并且基于Per-flow缓存网络模型,建立了ABR流量反馈控制模型。通过把ABR可用带宽当作系统干扰,在单纯的Smith拥塞控制的基础上,设计出前馈干扰补偿系统,使得队列长度稳定在的初始值之下,提高了链路的利用率。
    传输时延是影响网络拥塞控制算法的稳定性和性能的一个重要参数。Smith预估补偿是解决纯时延问题的有效工具,但其对预估模型的误差十分敏感。本文基于Per-flow缓存网络模型,提出3种鲁棒Smith预估拥塞控制器。在瓶颈交换机中同时存在不可控流的条件下,通过调整系统参数,使得网络在最糟糕的时延估计情况下,仍然能够保证服务质量和稳定运行。
    但是多通道共享同一瓶颈交换机的网络模型是不可避免的。本文在假设网络模型下提出了两种鲁棒Smith拥塞控制器。运用小增益定理解决鲁棒稳定性问题,在每个虚路径的往返时延都同时在预估值上下发生变化的情况下,使得交换机中的队列长度能够稳定在给定值,而且抖动都很小。
    最后,我们把网络拓扑结构模型更加复杂化:假设回路往返时延和虚通道个数随时间变化,提出一种较简单的比例拥塞控制器。最终定理的证明和仿真研究都表明,所设计的拥塞控制器可以保证系统“分段”稳定和网络服务质量。
Future computer networks will become a high speed packed switched network that will be able to provide various service so as to support a wide range of network applications. ATM is just one of the key technologies that support the Integrated Service Digital Network (ISDN), which is adopted as a typical technique by the International Telecommunication Union (ITU) and is spread. But congestion of the traffic and the loss of data are main reasons that affect the quality of service. Design of an effective congestion control scheme is critical to the enhancements of the network performance. The paper is based on it and the control theory is introduced to solve the congestion of controllable flow.
    The paper begins with the foundation of ATM network, and introduces the basic work principle of networks and the feedback mechanism. Then, the normal data networks model is given and ABR feedback control model is set up based on per-flow buffer model. The feedforward disturbance compensation system based on pure Smith congestion control is designed, which regards the ABR bandwidth as the system disturbance. The queue length can be controlled beneath the threshold value and the link utilization is improved.
    Propagation delays could have an adverse impact on the stability and performance of congestion control algorithm in high-speed ATM networks. Smith principle is a good scheme for overcoming pure time-delay,but it is very sensitive to model estimation error. Therefore the pure Smith controller can't stable the networks. Three robust Smith congestion controllers based on per-flow buffer model are designed. By regulating the parameters, the QoS (quality of service) of ABR flow could be improved on the condition that there exits uncontrolled traffic flow in the bottlenecked switch, which can guarantee the stability of the networks.
    But the networks topology model that multiple VCs (virtue circuits) sharing the same bottlenecked switch is popular. Two kinds of robust Smith congestion controllers are proposed under this assumed networks model.
    
    Employing the small gain theory can solve the problem of robust stability. Then, when the RTT (Round-trip time) of every VC fluctuates around the estimated value, the steady value of queue could track the specified expected value and the oscillation is very small.
    In the final, the structure of networks topology is assumed more complex: the RTT and the numbers of VC is changed with time. Based on this assumed networks, a simple proportion congestion controller is designed. At last, by proving the theorem and the simulations, the proposed congestion controllers can guarantee the "piece-wise" stable and the QoS.
引文
1 ATM Forum Traffic Management Specification. Version 4.0. 1999: 4-8
    2 R. Jain. Congestion Control and Traffic Management in ATM Networks: Recent Advances and A Survey. Computer Networks and ISDN Systems, 1996,28: 1723-1728
    3 L. Roberts, Closed-Loop Rate-Based Traffic Management. ATM Forum/94-0438R2
    4 R. Jain, S. Kalyanaraman, and R. Goyal, et al. The ERICA Switch Algorithm for ABR Traffic Management in ATM Networks. IEEE/ACM Transactions on Networking, 2000,8(1): 87-98
    5 A. Arulambalam, X. Q. Chen and N. Ansari. Allocating Fair Rates for Available Bit Rate Service in ATM Networks. IEEE Communications, 1996,34(11): 92-101
    6 N. Golmie, Y. Chang and D. Su. NIST ER Switch Mechanism: An Example. ATM Forum/95-0695
    7 A. Charny, D. Clark and R. Jain. Congestion Control with Explicit Rate Indication. Proc. ICC'95, 1995: 1954-1963
    8 Y. Afek, Y. Mansour and Z. Ostfeld. Phantom: A Simple and Effective Flow Control Scheme. Proceedings of the ACM SIGCOMM, 1996: 169-182
    9 C. E. Rohrs, J. Melsa, and D. Schultz. Linear Control Systems. McGraw-Hill, 1993: 54-57
    10 C. E. Rohrs, R. A. Berry. A Linear Control Approach to Explicit Rate Feedback in ATM Networks. In: Proc. of IEEE INFOCOM'97, Kobe, Japan, 1997: 277-282
    11 A. Kolarov, G. Ramamurthy. A Control-Theoretic Approach to The Design of Closed-Loop Rate-Based Flow Control for High Speed ATM Networks. In: Proc. of IEEE INFOCOM'97, Kobe, Japan, 1997: 293-301
    12 L. Benmohamed, S. M. Meekov. Feedback Control of Congestion in Packet Switching Networks: The Case of A Single Congested Node. IEEE/ACM Transactions on Networking, 1993,1: 693-707
    13 A. Kolarov, G. Ramamurthy. An Implementation Study of Dual Proportional-plus-Derivative Controller for Explicit Rate Based ABR Service. In: Proc. of IEEE ATM'97, 1997: 368-380
    L. Benmohamed, Y. T. Wang. A Control-Theoretic ABR Explicit Rate Algorithm for ATM Switches with Per-VC Queuing. In: Proc. of IEEE INFOCM'98, San Francisco,
    
    14 CA, 1998: 183-191
    15 K. J. Astrom, B. Wittenmark. Computer-Controlled Systems, Prentice Hall, 1990: 125-128
    16 S. C. Liew, D. C. Tse.. A Control-Theoretic Approach to Adapting VBR Compressed Video for Transport Over A CBR Communications Channel. IEEE/ACM Transactions On Networking, 1998,6(1): 42-55
    17 B. C. Kuo. Automatic Control Systems. Sixth Edition. NJ: Prentice Hall, 1991: 58-64
    18 C. E. Rohrs, R.A. Berry and J. Stephen O'Halek. A Control Engineer's Look at ATM Congestion Avoidance. Computer Communication, 1996,19: 226-234
    19 Y. Zhao, S. Q. Li and S. Sigarto. A Linear Dynamic Model for Design of Stable Explicit-Rate ABR Control Schemes. In: Proc. of EEE INFOCOM'97, Kobe, Japan, 1997: 283-292
    20 E. Altman, T. Basar and R. Srikant. Robust Rate Control for ABR Sources. In: Proc. of IEEE INFOCM'98, San Francisco, CA, 1998: 166-173
    21 A. Pitsillides, Y. A. Sekercioglu and G. Ramamurthy. Effective Control of Traffic Flow in ATM Networks Using Fuzzy Explicit Rate Marking (FERM). IEEE JSAC, 1997,15(2): 209-225
    22 I. Habib, A. Tarraf and T. Saadawi. A Neural Network Controller for Congest Control in ATM Multiplexers. Computer Networks and ISDN Systems, 1997,29(3): 325-334
    23 Y. C. Liu, C. Douligeris. Rate Regulation with Feedback Controller in ATM Networks-A Neural Network Approach. IEEE JSAC, 1997,15(2): 200-208
    24 J. Aweya, L. O. Barbosa. Neuro-Controller for Buffer Overload Control in Packet Switch. IEE Proc. Commun., 1998,145(4): 227-233
    25 L. D. Chou, J. L. Wu. Bandwidth Allocation of Virtual Paths Using Neural Network-Based Genetic Algorithms. IEE Proc. Commun., 1998,145(1): 33-39
    26 Othmar Kyas. ATM网络技术. 辛再甫, 于雪梅, 陈达观. 北京:中国水利水电出版社, 1998: 30-32.
    27 马丁.德.普瑞克. 异步传递方式宽带ISDN技术. 程时端, 刘斌. 北京:人民邮电出版社, 1999: 81-82
    28 汪齐贤, 冯玉珉. 异步转移模式——ATM技术及应用. 北京:中国铁道出版社, 1998: 8-14
    29 王喆. B-ISDN与ATM基础理论及应用. 北京:中国铁道出版社, 2001: 106-181
    30 陈锡生. ATM交换技术. 北京:人民邮电出版社, 2000: 3-11
    
    
    31 Uyless BLACK. ATM 宽带网络. 吕良双, 梁进, 武岩. 北京: 清华大学出版社, 2000: 150-152
    32 ATM Forum Traffic Management Specification. Version 4.0. 1999: 45-48
    33 S. Kamolphiwong, A. E. Karbowiak and H. Mehrpour. Flow Control in ATM Networks: A Survey. Computer Communications, 1998, (21): 951-968
    34 Z. Fan. New Trends in ATM Networks: A Research View. Computer Communications, 1999, (22): 499-515
    35 金以慧. 过程控制. 北京: 清华大学出版社, 1993: 25-27
    36 S. Mascolo. Congestion Control in High-Speed Communication Networks Using The Smith's Principle. Automatic, 1999,35(12): 1921-1935
    37 S. Mascolo, D. Cavendish and M. Gerla. ATM Rate-Based Congestion Control Using A Smith Predictor. Performance Evaluation, 1997,31(1): 51-56
    38 C. Song, S. Lee and S. Kang. A Simple, Scalable and Stable Explicit Rate Allocation Algorithm for MAX-MIN Flow Control with Minimum Rate Guarantee. IEEE/ACM Transactions on Networking, 2001,9(3): 322-335
    39 A. Kolarov, G. Ramamurthy. A Control-Theoretic Approach to the Design of An Explicit Rate Controller for ABR Service. IEEE/ACM Transactions on networking, 1999,7(5): 741-753
    40 Orhan Cagri Imer, Sonia Compans and Tamer Basar, et al. Available Bit Rate Congestion Control in ATM Networks. IEEE Control Systems Magazine, 2001: 38-56
    41 王文博, 张金文. OPNET Modeler 与网络仿真. 北京: 人民邮电出版社, 2003: 275-288
    42 周克敏, J. C. Doyle and K. Glover. 鲁棒与最优控制. 北京: 国防工业出版社, 2002: 250-252
    43 王征, 谈大龙, 王向东. 网络控制系统稳定性研究. 控制与决策, 2002,17(Suppl.): 802-804
    44 F. Gomez-Stern, J. M. Fornes and F. R. Rubio. Dead-Time Compensation for ABR Traffic Control over ATM Networks. Control Engineering Practice, 2002,10(5): 481-491
    45 S. Mascolo. Smith's Principle for Congestion Control in High-Speed Data Networks. IEEE Transactions on Automatic Control, 2000,45(2): 358-364
    46 Xiaolin Zhang, Jieyi Wu. A Novel Explicit Rate Flow Control Mechanism in ATM Networks. IEEE CDC, 2001: 1576-1580
    
    
    47 H. ?zbay, S. Kalyanaraman and A. ìftar. On Rate-Based Congestion Control in High- Speed Networks: Design of An Based Flow Controller for Single Bottleneck. American Control Conference, Philadelphia, PA, 1998: 2376-2380
    48 张孝林, 吴介一, 朱正强,等. ATM网络中面ABR服务的一种流量控制机制. 电子学报, 2002,30(4): 503-507
    49 S. Jagannathan, J. Talluri. Adaptive Predictive Congestion Control of High-Speed ATM Networks. IEEE Transactions on Broadcasting, 2002,48(2): 129-139
    50 K. P. Laberteaux, C. E. Rohrs and P. J. Antsaklis. A Practical Controller for Explicit Rate Congestion Control. IEEE Transactions on Automatic Control, 2002,47(6): 960-978
    51 P. F. Quet, A. Banu. and I. Attug. Rate-Based Flow Controllers for Communication Networks in The Presence of Uncertain Time-Varying Multiple Time-Delays. Automatic, 2002,38(6): 917-928
    52 F. Gómez-Stern, J. M. Fornés and F. R. Rubio. Dead-Time Compensation for ABR Traffic Control over ATM Networks. Control Engineering Practice, 2002,10(5): 481-491
    53 A. Pitsillides, J. Lambert. Adaptive Congestion Control in ATM Base Networks: Quality of Service and High Utilization. Computer Communications, 1997,20(14): 1239-1258
    54 谭连生, 伊敏. 计算机高速网络的拥塞控制: 一种基于速率的PI方法. 电子学报, 2002,30(8): 1138-1141
    55 K. P. Laberteaux, C. E. Rohrs and P. J. Antsaklis. An Adaptive Inverse Controller for Explicit Rate Congestion with Guaranteed Stability and Fairness. International Journal of Control, 2003,76(1): 24-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700