P系统优化算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P系统(膜计算)是一种从生物细胞、组织和器官的结构与功能中抽象出来的新的并行分布式计算模型。受生物细胞结构及其它生命活动的启发,基于已有的研究成果,本文对P系统优化算法及应用进行了深入的研究。本文的主要研究成果如下:
     (1)提出了一种嵌套式膜结构P系统优化算法。该算法采用嵌套式膜结构,各层膜内的对象在交流规则的作用下由内向外进化,设计了自噬规则、自适应变异规则以及部分迁移规则使得算法能够随着优化进程进行动态调整对象集分布、改善算法的全局搜索性能。通过对典型无约束测试函数的寻优计算,验证了该算法具有收敛速度快,精度高等优点。将该算法用于求解质子交换膜燃料电池建模的参数估计问题,结果表明所建模型能有效反映实际系统的非线性特性。
     (2)提出了一种具有扩张收缩膜结构的混合P系统优化算法。该算法的P系统膜结构采用扩张和收缩机制来增强算法的全局勘探和局部开采能力,所设计的实数量子更新规则通过利用当前进程中的最优个体对其余个体进行引导,以提高算法的收敛速度。通过对典型测试函数的寻优计算表明该算法较DNA-GA和GA有更高的搜索效率和精度。将该算法用于求解炼油厂FCCU反应-再生过程模型参数估计问题,结果验证了所提算法的有效性。
     (3)提出了一种DNA分子操作的P系统优化算法。该算法采用嵌套式膜结构和已有的交流、选择等规则,结合DNA重排规则和重组规则,设计易位、复制、反转、交叉等规则来提高对象集的多样性,增强算法的抗欺骗能力。DNA定点诱变规则中的动态互补变异机制和可变增益使得算法的全局勘探和局部搜索随着搜索进程的继续而动态变化,提高了算法的可靠性和搜索精度。通过对典型测试函数的寻优计算验证了该算法的有效性。将该算法用于具有多峰误差表面特性的ⅡR数字滤波器设计,结果表明该算法得到的滤波器的频幅响应更加接近理想状态。
     (4)提出了一种基于Box密度分配策略的多目标P系统优化算法。该算法采用动态膜结构和选择、交流、交叉、自适应变异规则;基于Pareto支配关系和Box密度分配策略对目标空问中拥挤度大的区域内对象进行引导,使得算法最终所得到的多目标Pareto解集在非支配边界上分布更加均匀。通过对典型多目标优化函数进行寻优求解,结果验证了该算法的最终非支配解集达到或接近真实Pareto前沿,而且分布相对均匀,可有效地用于求解多目标优化问题。
P systems (also known as membrane computing) are presented originally as a distributed and parallel computational model that is abstracted from the structure and functioning of living cells, tissues or organs. Based on the fruits of existing membrane computing, inspired by the cells'structure and other behaviors of life, this dissertation discusses series of methodologies and their applications in addressing the process modeling and parameter estimation problems which possess great nonlinearity and deception. The contributions and innovations of this dissertation are as follows:
     (1) A P systems based optimization algorithm with nested membrane structure is proposed. In this algorithm, the nested membrane and new rules such as autophagy rule, adaptive mutation rule and partial migration rule are designed to help algorithm to adjust its population distribution with procedure, avoid premature and to improve the algorithm's global convergence performance. Studies on some typical unconstrained benchmark functions indicate that the proposed algorithm possess great reliability, fast convergence speed and searching accuracy. The algorithm is also used to solve the parameter estimation problems of proton exchange membrane fuel cell modeling, and the results show that those models established by the proposed method can reflect the nonlinear external dynamic property of the practical systems.
     (2) A P systems based hybrid optimization algorithm with expansion and contraction mechanism (PHOA) is proposed. In PHOA, the expansion of the search space makes the proposed algorithm realize exploration and the dynamic contraction of search space makes it realize exploitation. The real-coded quantum update rules make full use of the current best solution and guide the rest mutating toward the potential global optimum, which accelerate the algorithm's convergence speed. Studies on some benchmark functions show that the proposed scheme outperforms DNA based genetic algorithm (DNA-GA) and standard genetic algorithm (SGA) both in search efficiency and accuracy. With the parameters obtained by this algorithm, the discrete transfer function matrix model of FCCU reactor-regenerator in an oil refinery is established. The results validate the effectiveness of the proposed approach.
     (3) DNA molecular operation based P systems optimization algorithm (DNA-PSOA) is proposed. Combining with the nested membrane structure and the traditional communication rule and selection rule, the proposed DNA rearrangement and recombination rules are designed to improve the distribution of object set and strengthened the algorithm's abilities of anti-premature. The dynamic complementary mutation mechanism and variable gain in site-directed mutagenesis rule make this algorithm realize dynamic shift from exploration and exploitation in the whole processes. Numerical experiments validate the effectiveness of the proposed algorithm. Then the algorithm is applied to design the llR digital filters that possess multimodal error surface property. The results and comparison with others show that the proposed method can obtain better filters with close-to-ideal amplitude responses.
     (4) A box-density-distribution-strategy based multi-objective P systems optimization algorithm (Box-MPSOA) is proposed. In the framework of P systems, the dynamic membrane structure is adopted to changing in the number of targets in multi-objective optimization problems. The rules such as selecting, communication, crossover and adaptive mutation used in the Box-MPSOA make the algorithm converge faster. Based on Pareto domination, box-density-distributing-strategy redistribute the individuals which are located in the high-density box, so that the distribution of final Pareto solution set will be more uniform on the nondominated solution set front. Benchmark multi-objective optimization problems are tested to validate the proposed algorithm. Simulation results show that the final non-dominated solution set obtained by Box-MPSOA reaches or is close to the true Pareto front with good diversity. It can be concluded that the proposed algorithm is capable to solve the multi-objective optimization problems efficiently.
引文
[1]Edgar T.F., Himmelblau D.M., Lasdon L.S., Optimization of chemical process [M].2nd Edition, McGraw-Hill, Singapore,2001.
    [2]李育超.基于实际应力状态的土质边坡稳定分析研究[D].杭州:浙江大学博士论文,2006.
    [3]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [4]汪镭,康琦,吴启迪.自然计算-----人工智能的有效实施模式[M].人工智能:回顾与展望.北京:科学出版社,2006.
    [5]Holland J.H. Outline for a logical theory of adaptive systems[J]. Journal of the ACM,1962,9(3):297-314.
    [6]Bosworth J., Foo N., Zeigler B.P., Comparison of genetic algorithm with conjugate gradient methods[J]. NASA Contractor Reports, n CR-2093,1972.
    [7]KirkPatriek S., Gelatt J.C.D., Vecchi M.P., Optimization by simulated annealing[J]. Science,1983,220(4):671-680.
    [8]Smith W.E., Paxman R.G., Barrett H.H., Application of simulated annealing to coded-aperture design and tomographic reconstruction [J]. IEEE Transactions on Nuclear Science,1984, NS-32(1):758-761.
    [9]Glover F., Tabu Search-Part I ORSA[J]. Journal on Computing,1989,1(3): 190-206.
    [10]Glover F., Tabu Search-Part II ORSA[J]. Journal on Computing,1990,2(1): 4-32.
    [11]Wikipedia, Mathematical optimization[EB/OL]. http://en.wikipedia.org/wiki/Optim-ization(mathematics), Dec,2012.
    [12]黄红选,韩继业.数学规划[M].北京:清华大学出版社,2006.
    [13]Kennedy J., Eberhart R.C., Particle swarm optimization[C]. In Proceedings of the IEEE International Conference on Neural Networks,1995:1942-1948.
    [14]Hepper F. Grenander U., A stochastic nonlinear model for coordinated bird flocks[M]. In Krasner S Ed. The Ubiquity of Chaos, AAAS Publications, Washington DC,1990.
    [15]Henkel C.V., Back T., Kok J.N., Rozenberg G., Spaink H.P., DNA computing of solutions to knapsack problems[J]. Biosystems,2007,88(1-2):156-162.
    [16]Garcia-arnau M., Manrique D., Rodriguez-paton A., Sosik P., A P system and a constructive membrane-inspired DNA algorithm for solving the Maximum Clique Problem[J]. Biosystems,2007,90(3):687-697.
    [17]Tao J.L., Wang N., DNA computing based RNA Genetic Algorithm with Applications in Parameter Estimation of Chemical Engineering Processes[J]. Computers & Chemical Engineering., In Press, Accepted Manuscript:162.
    [18]Yin Z.X., Cui J.Z., Yang Y., Ma Y., Job shop scheduling problem based on DNA computing[J]. Journal of Systems Engineering and Electronics.2006,17(3): 654-659.
    [19]黄亮.膜计算优化方法研究[D].浙江大学,杭州:浙江大学博士学位论文,2007.
    [20]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2007.
    [21]赵进慧.膜计算仿生优化方法及应用研究[D].浙江大学,杭州:浙江大学博士学位论文,2010.
    [22]http://ipkc.fimmu.com/ipswx/WebApplication1/iingp/weihui/upload/mojiegou.i pg.
    [23]庄孝惠.细胞学[M].北京:中国大百科全书出版社,1988.
    [24]Paun G., From cells to computers:computing with membranes (P systems)[J]. Biosystems,2001,59(3):139-158.
    [25]Paun G., Perez-Jimenez M.J., Membrane computing:brief introduction, recent result and applications[J]. Biosystems.2006,85(1):11-22.
    [26]陈俊伟.基于膜计算优化方法的控制系统设计研究[D].浙江大学,杭州:浙江大学硕士学位论文,2008.
    [27]张葛祥,潘林强.自然计算的新分支----膜计算[J].计算机学报,2010,33(2):208-214.
    [28]Paun G., Computing with membranes[J]. Journal of Computer and System Science,2000,61(1):108-143.
    [29]Bianco L., Membrane models of biological systems[D].Universita'a degliStudi di verina. Italy,2007.
    [30]Paun A., paun G., The power of communication:P systems with symport/antiport[J], New Generation Computing,2002,20(3):295-305.
    [31]Paun G., P system with active membranes:attacking NP-complete problems[J]. Journal of Automata, Languages and Combinatorics archive,2001,6(1):75-90.
    [32]Krishna S.N., Paun G., P systems with mobile membranes[M]. Natural Computing,2005,4(3):255-274.
    [33]Huang L., Wang N., Zhao J.H., Multiobjective optimization for controller design[J]. Acta Automatica Sinica,2008,34(4):472-477.
    [34]Huang L., Sun L., Wang N., Jin X.M. Multiobjective Optimization of Simulated Moving Bed by Tissue P System[J], Chinese Journal of Chemical Engineering, 2007,15(5):683-690.
    [35]闫海珍.激励神经P系统的改进及自动机模型的建立[D].华中科技大学,武汉:华中科技大学硕士学位论文,2007.
    [36]张兴义,曾湘祥,潘林强,罗斌.脉冲神经膜系统求解任意两个自然数的乘积[J].计算机学报,32(12):2362-2372.
    [37]Diaz-Pernil D., Gutierrez-Naranjo M.A., Perez-Jimenez M.J., Riscos-Nunez A., A linear-time tissue P system based solution for the 3-coloring problem[J]. Electronic Notes in Theoretical Computer Science,2007,171 (2):81-93.
    [38]Annadurai S., Kalyani T., Dare V.R., Thomas D.G., P systems generating ISO-Picture languages[J]. Process in Natural Science,2008,18(5):617-622.
    [39]Madhu M., Studies of P systems as a model of cellular computing[D], Indian Institute of Technology Madras, India,2003.
    [40]Pan L.Q., Martin-vide C. Further remark, on P systems with active membranes and two polarizations[J]. Journal of Parallel and Distributed Computing.2006, 66(6):867-872.
    [41]Pan L.Q., Martin-vide, Solving multidimensional 0-1 knapsack problem by P systems with input and active membranes[J], Journal of parallel and Distributed Computing,2005,65(12):1578-1584.
    [42]Ibarra O.H., On determinism versus nondeterminism in P systems[J]. Theoretical Computer Science,2005,344(2-3):120-133.
    [43]Ibarra O.H., Paun A., Paun G., Rodriguez-Paton A., Sosik P., Wcodworth S., Normal forms for spiking neural P systems[J]. Theoretical Computer Science, 2007,372(2-3):196-217.
    [44]Alhazov A. P systems without multiplicities of symbol-objects[J]. Information Processing Letters,2006,100(3):124-129.
    [45]Martin-vide C, Paun G, Pazos J, Rodriguez-Paton A., Tissue P systems[J]. Theoretical Computer Science,2003,296(2):295-326.
    [46]Gutierrez-naranjo M.A, Perez-jimenez M.J., Romero-campero F.J., A uniform solution to SAT using membrane creation[J]. Theoretical Computer Science Computing and the Natural Sciences,2007,371(1-2):54-61.
    [47]Paun G, Suzuki Y, Tanaka H, Yokomori T., On the power of membrane division in P systems[J]. Theoretical Computer Science, Words, Languages and Combinatorics,2004,324(1):61-85.
    [48]Martin-vide C., Paun G., Rozenberg G., Membrane systems with carriers[J]. Theoretical Computer Science,2002.270(1-2):779-796.
    [49]Freund R., Martin-vide C., Paun G., From regulated rewriting to computing with membranes:collapsing hierarchies[J]. Theoretical Computer Science,2004, 312:143-188.
    [50]Dassow J., Paun G., On the power of membrane computing[J]. Journal of Universal Computer Science,1999,5(2):33-49.
    [51]Freund R., Paun C., Perez-jimenez M J. Tissue P systems with channel states[J]. Theoretical Computer Science Insightful Theory,2005,330(1):101-116.
    [52]Freund R., Kari L., Oswald M., Sosik P., Computationally universal P systems without priorities:two catalysts are sufficient[J]. Theoretical Computer Science, 2005,330(2):251-266.
    [53]Freund R., Paun A., Membrane systems with symport/antiport rules: universality results[J]. Lecture Notes in Computer Science, 2002,2597:270-287.
    [54]Krishna S.N., Languages of P systems:Computability and Complexity[D]. Madras,India:Indian Institute of Technology,2001.
    [55]Yang S.P., Wang N., A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model[J]. International Journal of Hydrogen Energy,2012,37(10):8465-8476.
    [56]Cordon-franco A., Sancho-caparrini F. A note on complexity measures for probabilistic P systems[J]. Journal of Universal Computer Science,2004,10(5): 559-539.
    [57]Sosik P., Rodriguez-paton A., Membrane computing and complexity theory:A characterization of PSPACE[J], Journal of Computer and System Sciences, 2007,73(1):137-152.
    [58]Nishida T.Y., Nishida T Y.An application of P system:a new algorithm for NP-complete optimization problems[C], Proceedings of 8th World Multi-conference on Systems, Cybernetics and Informations,2004:109-112.
    [59]Mutyam M. Rewriting P systems:improved hierarchies[J], Theoretical Computer Science,2005,334(1-3):161-175.
    [60]Paun A., paun G., Rozenberg G., Computing by communication in networks of membranes[J]. International Journal of Foundations of Computer Science,2002, 13(6):779-798.
    [61]Busi N., Using well-structured transition systems to decide divergence for catalytic P systems[J], Theoretical Computer Science,2007,372(2-3):125-135.
    [62]Paun G., Membrane computing[M], Fundamentals of Computation Theory, Proceedings,2003:2751,284-295.
    [63]Bernardini F., Gheorghe M., Krasnogor N., Muniyandi R.C, Perez-Jimenez M.J., Romero-Campero R.J., On P systems as a modelling tool for biological systems[J], Membrane Computing:Lecture Notes in Computer Science,2006, 3850:114-133.
    [64]Paun G., Perez-jimenez M.J., Fourth brainstorming week on membrane computing[J], Theoretical Computer Science,2007,372(2-3):123-124.
    [65]Zhang X.Y., Luo B., Fang X.Y., Pan L.Q., Sequential spiking neural P systems with exhaustive use of rules[J], Biosystems,2012,108(1-3):52-62.
    [66]Niu Y.Y., Pan L.Q., Perez-Jimenez M.J., Solving Common Algorithmic Problem by Recognizer Tissue P Systems[J], Romanian Journal of Information Science and Technology,2012,15(1):33-49.
    [67]Muniyandi R.C., Zin A.M., Modeling Hormone-induced Calcium Oscillations in Liver Cell with Membrane Computing[J], Romanian Journal of Information Science and Technology,2012, 15(1):63-76.
    [68]Lonescu M., Paun G., Perez-Jimenez M.J., Rodriguez-Paton A., Spiking Neural P Systems with Several Types of Spikes[J], International Journal of Computers Communications & Control,2011,6(4):648-656.
    [69]Buiu C., Arsene O., Cipu C., Patrascua M., A software tool for modeling and simulation of numerical Psystems[J], Biosystems,2011,103(3):442-447.
    [70]Zhao J.H., Wang N., A bio-inspired algorithm based on membrane computing and its application to gasoline blending scheduling[J], Computers & Chemical Engineering,2011,35(2):272-283.
    [71]Zhao J.H., Wang N., Hybrid Optimization Method Based on Membrane Computing[J], Industrial & Engineering Chemistry Research,2011, 50(3):1691-1704.
    [72]Zhang X.Y., Wang S., Niu Y.Y., Pan L.Q., Tissue P systems with cell separation: attacking the partition problem[J], Science China-information Sciences,2011, 54(2):293-304.
    [73]Niu Y.Y., Pan L.Q., Perez-Jimenez M.J., Font M.R., A tissue P systems based uniform solution to tripartite matching problem[J], Fundamenta Informaticae, 2011,109(2):179-188.
    [74]Jiang J., Zhang X.Y., Zhang Z., A uniform solution to subset sum by tissue P systems with cell separation[J], Journal of Computational and Theoretical Nanoscience,2010,7(8):1507-1513.
    [75]Sosik P., Special issue prague international workshop on membrane computing preface[J], International Journal of Foundations of Computer Science,2009, 20(3):379-380.
    [76]Colomer M.A., Perez-Hurtado 1., Perez-Jimenez M.J., Riscos-Nunez A., Comparing simulation algorithms for multienvironment probabilistic P systems over a standard virtual ecosystem[J], Natural Computing,2012,11 (3):369-379.
    [77]Vitale A., Mauri G., Zandron C., Simulation of a bounded symport/antiport P system with Brane calculi[J], Biosystems,2008,91(3):558-571.
    [78]付杰.受膜计算启发的优化算法研究[D].浙江大学,杭州:浙江大学硕士学位论文,2010.
    [79]Popa B.D., Membrane systems with limited parallelism[D]. Louisiana Tech University,2006.
    [80]Franco G., Jonoska N., Osborn B., Plaas A., Knee joint injury and repair modeled by membrane systems[J]. BioSystems,2008,91(3):473-488.
    [81]Csuhaj-Varju E., Paun C., Vaszil C., Grammar systems versus membrane computing:the case of CD grammar systems[J]. Fundamenta Informaticae, 2007,76(3):271-292.
    [82]Ciobanu G., Paun G., Perez-Jimenez M.J., Applications of membrane computing[M], Berlin:Springer-Verlag,2005.
    [83]Nishida T.Y., membrane algorithms:Approximate algorithms for NP-complete optimization problems[J], Applications of Membrane Computing,2006, part 3:303-314.
    [84]Huang L., Wang N., An optimization algorithm inspired by membrane computing[J], Advances in Natural Computation-Lecture Notes in Computer Science,2006,4222:49-52.
    [85]Huang L., He X.X., Wang N., Xie Y., P system based multi-objective optimization algorithm[J], Progress in Natural Science,2007,17(4):458-465.
    [86]Zhang G.X., Gheorghe M., Wu C.Z., A quantum-inspired evolutionary algorithm based on P systems for knapsack problem[J], Fundamenta Informaticae,2008,87:93-116.
    [87]Zhang G.X., Cheng J.X., Gheorghe M., A membrane-inspired approximate algorithm for traveling salesman problems[J], Romanian Journal of Information Science and Technology,2011,14(1):3-19.
    [88]Liu, C.X., Zhang, G.X., Liu, H.W., Gheorghe, M., Ipate, F., An improved membrane algorithm for solving time-frequency atom decomposition[C].10th International Workshop on Membrane Computing, Cairo, EGYPT, Aug.24-27, 2009.
    [89]Zhang, G.X., Liu, C.X., Gheorghe, M., Ipate, F., Solving Satisfiability Problems with Membrane Algorithms [C].4th International Conference on Bio-Inspired Computing, Beijing, PEOPLES R CHINA, Oct.16-19,2009.
    [90]Leporati A., Pagani D., A membrane algorithm for the min storage problem[J]. Membrane computing-Lecture notes in computer science,2006,4361:443-462.
    [91]Buiu C., Vasile C., Arsene O., Development of membrane controllers for mobile robots. Information Sciences,2012,187(15):33-51.
    [92]Shintani T., Klionsky D.J., Autophagy in health and disease:a double-edged sword[J], Science,2004,306(5698):990-995.
    [93]Levine B., Eating oneself and uninvited guests:autophagy-related pathways in cellular defense[J], Cell,2005,120(2):159-162.
    [94]Lleo A., Invernizzi P., Selmi C., Coppel R.L., Alpini G., Podda M., Mackay I.R., Gershwin M.E., Autophagy:highlighting a novel player in the autoimmunity scenario[J], Journal of Autoimmunity,2007,29(2-3):61-68.
    [95]Yu L., Alva A., Su H., Dutt P., Freundt E., Welsh S., Baehrecke E.H., Lenardo M.J., Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8[J], Science,2004,304(5676):1500-1502.
    [96]Shimizu S., Kanaseki T., Mizushima N., Mizuta T., Arakawa-Kobayashi S., Thompson C.B., Tsujimoto Y., Role of Bcl-2 family proteins in a nonapoptotic programmed cell death dependent on autophagy genes[J], Nature Cell Biology, 2004,6(12):1221-1228.
    [97]Lum J.J., Bauer D.E., Kong M., Harris M.H., Li C., Lindsten T., Thompson C.B., Growth factor regulation of autophagy and cell survival in the absence of apoptosis[J], Cell,2005,120(2):237-248.
    [98]Gozuacik D., Kimchi A., Autophagy as a cell death and tumor suppressor mechanism[J], Oncogene,2004,23(16):2891-906.
    [99]Zhou F., Zhang G.X., Rong H.N., Cheng J.X., Gheorghe M., Ipate F., Lefticaru R., A particle swarm optimization based on P systems[C],6th International Conference on Natural Computation (ICNC),2010,6:3003-3007.
    [100]Chen X., Wang N., A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction[J], Chemical Engineering Journal,2009, 150(2-3):527-535.
    [101]Ren Z.W., San Y., Chen J.F., Hybrid simplex-improved genetic algorithm for global numerical optimization. Acta Automatica Sinica,2007,33:91-96.
    [102]Mo Z.J., Zhu X.J., Wei L.Y., Cao G.Y., Parameter optimization for a PEMFC model with a hybrid genetic algorithm[J], International Journal of Energy Research,2006,30(8):585-597.
    [103]Rouss V., Charon W., Multi-input and multi-output neural model of the mechanical nonlinear behavior of a PEM fuel cell system[J], Journal of Power Sources,2008,175(1):1-17.
    [104]Barbir F, Yazici S., Status and development of PEM fuel cell technology[J], International Journal of Energy Research,2008,32(5):369-378.
    [105]Cleghom S.J.C., Ren X., Springer T.E., Wilson M.S., Zawodzinski C. Zawodzinski T.A., Gottesfeld S., PEM fuel cells for transportation and stationary power generation applications[J], International Journal of Hydrogen Energy,1997.22(12):1137-1144.
    [106]Mock P., Schmid S.A., Fuel cells for automotive powertrains-a techno-economic assessment[J], Journal of Power Sources,2009, 190(1):133-140.
    [107]Correa J.M., Farret F.A., Canha L.N., Simoes M.G., An electrochemical-based fuel-cell model suitable for electrical engineering automation approach[J]. IEEE Transactions on Industrial Electronics,2004.51(5):1103-1112.
    [108]Correa J.M., Farret F.A., Popov V.A., Simoes M.G., Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells[J], IEEE Transactions on Energy Conversion,2005,20(1):211-218.
    [109]Kadjo A.J.J., Brault P., Caillard A., Coutanceau C., Gamier J.P., Martemianov S., Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation[J], Journal of Power Sources,2007,172(2):613-622.
    [110]Park S.K., Choe S.Y., Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects[J], Journal of Power Sources,2008,179(2):660-672.
    [111]Zhang Y., Zhou B.. Modeling and control of a portable proton exchange membrane fuel cell-battery power system[J], Journal of Power Sources,2011, 196(20):8413-8423.
    [112]Mann R.F., Amphlett J.C., Hooper M.A.I., Jensen H.M., Peppley B.A., Roberge P.R., Development and application of a generalized steady-state electrochemical model for a PEM fuel cell[J], Journal of Power Sources,2000,86(1-2):173-180.
    [113]Amphlett J.C., Baumert R.M., Mann R.F., Peppley B.A., Roberge P.R., Harris T.J., Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell[J], Journal of Electrochemical Society,1995,142(1):1-15.
    [114]Ye M.Y., Wang X.D., Xu Y.S., Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization[J], International Journal of Hydrogen Energy,2009,34(2):981-989.
    [115]Outeiro M.T., Chibante R., Carvalho A.S., de Almeida A.T., A parameter optimized model of a proton exchange membrane fuel cell including temperature effects[J], Journal of Power Sources,2008,185(2):952-960.
    [116]Huang S.R., Wu C.C., Lin C.Y., Chen H.T., Parameter optimization of the biohydrogen real time power generation system using differential evolution algorithm[J], International Journal of Hydrogen Energy,2010, 35(13):6629-6633.
    [117]Zhong Z.D., Zhu X.J., Cao G.Y., Modeling a PEMFC by a support vector machine[J], Journal of Power Sources,2006,160(1):293-298.
    [118]Ohenoja M., Leiviska K., Validation of genetic algorithm results in a fuel cell model[J], International Journal of Hydrogen Energy,2010, 35(22):12618-12625.
    [119]Zhong Z.D., Zhu X.J., Cao G.Y., Shi J.H., A hybrid multi-variable experimental model for a PEMFC[J], Journal of Power Sources,2007,164(2):746-751.
    [120]Askarzadeh A., Rezazadeh A., Optimization of PEMFC model parameters with a modified particle swarm optimization[J], International Journal of Energy Research,2011,35(14):1258-1265.
    [121]Dai C.H., Chen W.R., Zhu Y.F., Seeker optimization algorithm for digital IIR filter design[J], IEEE Transactions on Industrial Electronics,2010, 57(5):1710-1718.
    [122]Santi E., Franzoni D., Monti A., Patterson D., Ponci F., Barry N., A fuel cell based domestic uninterruptible power supply[C],17th Annual IEEE Applied Power Electronics Conference and Exposition,2002,1:605-613.
    [123]Linga P., AI-Saifi N., Englezos P., Comparison of the Luus-Jaakola optimization and Gauss-Newton methods for parameter estimation in ordinary differential equation models[J], Industrial & Engineering Chemistry Research, 2006,45(13):4716-4725.
    [124]Ardenghi J.I., Maciel M.C., Verdiell A.B., A trust-region-approach for solving a parameter estimation problem from the biotechnology area[J], Applied Numerical Mathematics,2003,47(3-4):281-294.
    [125]Simon L.L., Nagy Z.K., Hungerbuhler K., Model based control of a liquid swelling constrained batch reactor subject to recipe uncertainties[J], Chemical Engineering Journal,2009,153(1-3):151-158.
    [126]Mahmoodi S., Poshtan J., Jahed-Motlagh M.R., Montazeri A., Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model[J], Chemical Engineering Journal,2009,146(3):328-337.
    [127]李士勇,李盼池.求解连续空间优化问题的量子粒子群算法[J],量子电子学报,2007,24(5):569-574.
    [128]Han K.H., Quantum-inspired evolutionary algorithm[D], Ph.D. dissertation, Korea Advanced Institute of Science and Technology,2003.
    [129]Jiao L.C., Li Y.Y., Gong M.G., Zhang X.R., Quantum-inspired immune clonal algorithm for global optimization[J], IEEE Transactions on Systems Man and Cybernetics, Part B:Cybernetics,2008,38(5):1234-1253.
    [130]Long G.L., Li Y.S., Zhang W.L., Niu L., Phase matching in quantum searching[J], Physics Letters A,1999,262(1):27-34.
    [131]Hey T., Quantum computing:an introduction[J], Computing & Control Engineering Journal,1999,10(3):105-112.
    [132]Yang S.H., Wang X.Z., Mcgreavy C., A multivariable coordinated control system based on predictive control strategy for FCC Reactor-Regenerator system[J], Chemical Engineering Science,1996,51(11):2977-2982.
    [133]唐志诚,季东,张海涛等.元素改性对分子筛催化裂化性能的调变作用[J].分子催化,2010,24(3):274-280.
    [134]Azeem M.F., Ahmad N., Hanmandlu M., Fuzzy modeling of fluidized catalytic cracking unit[J], Applied Soft Computing,2007,7(1):298-324.
    [135]Wang K.T., Wang N., A protein inspired RNA genetic algorithm for parameter estimation in hydrocracking of heavy oil[J], Chemical Engineering Journal, 2011,167(1):228-239.
    [136]Clark DP.(著)/胡珏,刘文颖译.分子生物学Molecular Biology Understanding the Genetic Revolution[M].(?)京:科学出版社,2007.
    [137]Buchner M., Janjarasjitt S., Detection and visualization of tandem repeats in DNA sequences[J], IEEE transactions on Signal Processing,2003, 51(9):2280-2287.
    [138]Tsai J.T., Chou J.H., Liu T.K., Optimal design of digital IIR filters by using hybrid Taguchi genetic algorithm[J], IEEE Transactions on Industrial Electronics,2006,53(3):867-879.
    [139]Leung Y.W., Wang Y., An orthogonal genetic algorithm with quantization for global numerical optimization[J], IEEE Transactions on Evolutionary Computation,2001,5(1):41-53.
    [140]Tsai J.T., Liu T.K., Chou J.H., Hybrid Taguchi-genetic algorithm for global numerical optimization[J], IEEE Transactions on Evolutionary Computation, 2004,8(4):365-377.
    [141]Tsai J.T., Chou J.H., Liu T.K., Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm[J], IEEE Transactions on Neural Networks,2006, 17(1):69-80.
    [142]Tang K.S., Man K.F., Kwong S., Liu Z.F, Design and optimization of IIR filter structure using hierarchical genetic algorithms[J], IEEE Transactions on Industrial Electronics,1998,45(3):481-487.
    [143]Deczky A.G., Synthesis of recursive digital filters using minimum p-error criterion[J], IEEE Transactions on Audio and Electroacoustics,1972, AU20(4):257-263.
    [144]Marven C., Ewers G., A Simple Approach to Digital Signal Processing[M], New York:Wiley,1997.
    [145]Cortelazzo G., Lightner M.R., Simultaneous design in both magnitude and group-delay of IIR and FIR filters based on multiple criterion optimization[J], IEEE Transactions on Acoustics Speech and Signal Processing,1984, 32(5):949-967.
    [146]程佩青.数字信号处理教程[M].北京:清华大学出版社,2001。
    [147]陆克中,吴璞,王汝传.基于粒子群优化算法的自适应ⅡR滤波器设计[J].计算机工程与设计,2007,28(13):3186-3188.
    [148]Lu W.S., Antoniou A., Two-dimensional digital filters[M], New York:Marcel Dekker,1992.
    [149]Tsai J.T., Ho W.H., Chou J.H., Design of two-dimensional IIR digital structure-specified filters by using an improved genetic algorithm[J], Expert System and Application,2009,36(3):6928-6934.
    [150]Yang Y.H., Lee J.H., Design of 2-D recursive digital filters using nonsymmetric half-plane allpass filters[J], IEEE Transactions on Signal Processing,2007, 55(12):5604-5618.
    [151]Chen S., Istepanian R.H., Luk B.L., Digital IIR filter design using adaptive simulated annealing [J], Digital Signal Processing,2001,11(3):241-251.
    [152]Pan S.T., Design of robust D-stable IIR filters using genetic algorithms with embedded stability criterion[J], IEEE Transactions on Signal Processing,2009, 57(8):3008-3016.
    [153]Menon V., Spruston N., Kath W.L., A state-mutating genetic algorithm to design ion-channel models[J], proceedings of The National Academy of Sciences of The United States of America,2009,106(39):16829-16834.
    [154]Qin A.K., Huang V.L., Suganthan P.N., Differential evolution algorithm with strategy adaptation for global numerical optimization[J], IEEE Transactions on Evolutionary Computation,2009,13(2):398-417.
    [155]Sun J., Fang W., Xu W.B., A quantum-behaved particle swarm optimization with diversity-guided mutation for the design of two-dimensional IIR digital filters[J], IEEE Transactions on Circuits and Systems-II:Express Briefs,2010, 57(2):141-145.
    [156]De Jong K.A., An analysis of the behavior of a class of genetic adaptive systems[D], Ph.D. Dissertation, University of Michigan.1975.
    [157]Mastorakis N.E., Gonos I.F.. Swamy M.N.S., Design of two-dimensional recursive filters using genetic algorithms[J] IEEE Transactions on Circuits and Systems-I,2003,50(5):634-639.
    [158]Gonos I.F.. Virirakis L.I., Mastorakis N.E., Swamy M.N.S., Evolutionary design of 2-dimensional recursive filters via the computer language GENETICA[J], IEEE Transactions on Circuits and Systems-II:Express Briefs,2006, 53(4):254-258.
    [159]Das S., Konar A., Chakraborty U.K., An efficient evolutionary algorithm applied to the design of two-dimensional IIR filters[C], Genetic and Evolutionary Computation Conference, Washington, DC,2005, 1(2):2157-2163.
    [160]Mladenov V.M., Mastorakis N.E., Design of two-dimensional recursive filters by using neural networks[J], IEEE Transactions on Neural Networks,2001, 12(3):585-590.
    [161]刘鎏.多目标优化进化算法及应用研究[D].天津:天津大学博士学位论文,2010.
    [162]Siinivas N., Deb K., Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248.
    [163]Deb K., Pratap A., Agarwal S., A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation,2002,6(2): 182-197.
    [164]Deb K. Multi-objective optimization using evolutionary algorithms[M]. John Wiley & Sons, UK,2001.
    [165]Goldberg D.E., Richardson J., Genetic algorithm with sharing for multimodal function optimization[C]. In Proceedings of the 2th International Conference on Genetic Algorithms, Lawrence Erlbaum Associates,1987:41-49.
    [166]张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173.
    [167]Ho S.Y., Shu L.S., Chen J.H., Intelligent evolutionary algorithms for large parameter optimization problems[J]. IEEE Trans on Evolutionary Computation, 2004,8(6):522-541.
    [168]Knowles J.D., Come D.W., Approximating the nondominated front using the Pareto archived evolutionary strategy[J], Evolutionary Computation,2000,8(2): 149-172.
    [169]Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms:Empirical results[J]. Evolutionary Computation,2000,8(2): 173-195.
    [170]王辉,钱锋.基于拥挤度和变异的动态微粒群多目标优化算法[J].控制与决策,2008,23(11):1238-1242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700