崇明东滩湿地芦苇与互花米草种群间关系格局与影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
崇明东滩湿地是国际重要湿地,为一些珍稀濒危水鸟提供越冬场所。同时,由于其特殊的地理位置和生境状况,容易遭受外来种的入侵。花米草就是入侵崇明东滩湿地的外来植物种之一。互花米草为禾本科米草属植物,原产于大西洋沿岸。最初引种东滩的目的是为了促淤造陆。但后来,在东滩东部与北部,互花米草大面积扩散并不断排挤本地种海三棱藨草,占领了整个低潮位与大部分中潮位。与此同时,人工大面积的围垦活动造成高潮位的部分植被消失,尤其是与互花米草竞争能力相当的本地种芦苇的扩散也受到了人为因素的严重干扰。在这样的背景下,互花米草在短短几十年时间内成为入侵崇明东滩的害草,严重影响了当地生物多样性以及生态系统的平衡,一些水鸟也因此失去了赖以生存的生境。
     芦苇为崇明东滩湿地的优势种之一,具有很强的无性繁殖能力与竞争能力,适合生长在潮间带滩涂上。有研究表明芦苇与互花米草的竞争能力不相上下,一旦某一个种占领了空白生态位,另一个种就很难再入侵。因此,为了有效控制互花米草的蔓延,利用芦苇生物替代互花米草是比较有效的一种生物治理方法。这种方法既不会造成化学污染,也不会引起天敌入侵,同时节约人力物力。更重要的是,一旦成功将不仅有助于提高生物多样性,还可以优化潮间带植被格局、形成更为稳定的潮间带生态系统。基于上述背景,本论文研究了崇明东滩湿地沿潮位梯度芦苇与互花米草种群间关系格局并探讨了相关影响因素。论文得出的主要结果如下:
     (1)芦苇与互花米草均为目前崇明东滩湿地的优势植物,二者的重要值总体而言相差不大。具体来说,互花米草在多度上占优势,芦苇在高度上占优势;芦苇在潮位较高的区域处于优势地位,互花米草在潮位较低的区域处于优势地位,在潮间带中部广阔的区域两种植物镶嵌分布。研究区植被大体上有四种斑块:芦苇斑块、互花米草斑块、两种植物混生斑块以及空白斑块(其中有时混有极少量其他植物),沿潮位梯度植物斑块的种类与面积有很大差异。通过计算不同斑块的景观水平格局指数,发现:芦苇种群的斑块密度和边缘密度均显著大于互花米草种群,表明芦苇种群的破碎化程度要比互花米草种群高;芦苇种群斑块、互花米草种群斑块和空白斑块的聚集度都较大,连通度指数接近100;三类斑块在1500m×100m尺度斑块水平上结构较为紧凑、连通性较强。景观形状指数为6.59,表明东滩植被景观水平上的形状并不复杂。从种群地上部分年龄结构来看,芦苇与互花米草均在潮位梯度相对较高的区域为增长型结构,而在潮位梯度相对较低的区域为稳定型的结构,说明低潮位受潮水淹没频繁,不利于幼苗的常年萌发。
     (2)芦苇与互花米草采取了不同的竞争策略适应潮间带多变的生境。首先,芦苇与互花米草均为克隆植物,在克隆构型上有所差异:芦苇倾向于游击型结构、互花米草则倾向于密集型或混合型结构。克隆构型的差异决定了二者对于土壤水分与营养吸收能力上的差异。其次,本文从表观生长能力、繁殖能力和潜在生长能力三个方面分别比较了芦苇与互花米草的竞争能力。对于表观生长能力来说,互花米草的平均相对生长率远远高于芦苇,然而芦苇在生长末期达到的最大高度比互花米草要高,这说明芦苇具有较大的高度变异能力。芦苇总生物量一般显著高于互花米草,这是因为芦苇地下根茎较粗壮,有利于生物量积累。从芦苇与互花米草的繁殖能力来比较,互花米草的有性繁殖能力较高,芦苇的无性繁殖能力较高。芦苇占据生境的方式主要是通过粗大的根茎进行拓展,而互花米草则主要通过无性繁殖获得更多的植株、提高植株密度以及通过有性繁殖占领新领地而开拓生境。从潜在生长能力上来看,互花米草的净光合速率以及最大光合效率高于芦苇,而芦苇的光化学效率高于互花米草。芦苇可溶性糖含量以及营养元素N、P含量均显著高于互花米草。
     (3)芦苇与互花米草的竞争能力不同。通过单混生群落调查与野外移除试验研究,我们发现,芦苇与互花米草的种间关系既有促进的一面,又有竞争的一面。单混生群落实验研究的结果表明:对于平均高度和生物量来说,目标种对邻居种存在的反应随着潮位梯度的不同而不同。在相对高、低潮位,邻居种的存在刺激了目标种的生长表现,而在相对中潮位,邻居种的存在抑制了目标种的生长表现。另外,竞争也有利于植物的繁殖,在邻居种存在的样方内,互花米草与芦苇的萌发率均较大。其中,利用平均高度作为响应指标计算两种植物的三种竞争指数,发现两种植物的种间关系为竞争关系。而利用其他参数作为响应指标计算两种植物的竞争指数,发现两种植物的种间关系为互利关系。在野外移除试验研究中,选择相对生长率(RGR)与每天新产生的幼苗数(TNT)两个指标作为测定竞争指数的响应参数。当以RGR为参数时,在相对高潮位与相对中潮位,互花米草的绝对竞争强度(ACI)与相对邻里效应指数(RNE)均为负值,而芦苇的绝对竞争强度(ACI)与相对邻里效应指数(RNE)均为正值。在相对低潮位,芦苇与互花米草的绝对竞争强度(ACI)与相对邻里效应指数(RNE)均为正值,表明二者彼此竞争。随着潮位梯度的下降(从高潮位到低潮位),互花米草的竞争力指数(Ⅰ)值由负变正,芦苇的Ⅰ值均为正且逐渐减小。说明随着潮位梯度的下降,芦苇对互花米草的竞争力逐渐降低。另外,在三个潮位芦苇对互花米草均有拥挤度效应(Dr),其中,在相对中潮位效应值最高。而互花米草对芦苇在相对高、低潮位时具有拥挤度效应,在相对中潮位时不具有拥挤度效应。当以TNT为参数时,在相对高、中潮位,芦苇与互花米草对彼此的竞争效应均为负值,说明二者的种间关系为互利的。在相对低潮位,互花米草对芦苇是有利的,而芦苇对互花米草是竞争的。随着潮位梯度的下降(由高潮位到低潮位),芦苇的Ⅰ值由负变正,说明芦苇对互花米草的竞争力逐渐增强;互花米草的Ⅰ值均为负且绝对值大小在中潮位时最低,说明互花米草对芦苇没有竞争力。在三个潮位,互花米草与芦苇对彼此均具有拥挤度效应,且在相对高、中潮位,芦苇对互花米草的拥挤度效应较高:在相对低潮位,互花米草对芦苇的拥挤度效应较高。总之,芦苇与互花米草的种间关系大多数情况是互利的,而当芦苇与互花米草的种间关系为竞争时,互花米草总的竞争效应高于芦苇。芦苇与互花米草竞争效应指数的方向与竞争力指数的方向一致,拥挤度效应只能影响竞争指数的大小。
     (4)人为干扰对于芦苇和互花米草的生长具有强烈的影响。本文分析了刈割后两种植物的补偿生长效应。发现:芦苇对于重度刈割后的补偿生长能力不如互花米草。芦苇在被全部刈割与刈割1/2高度后,高度、密度与生物量值均降为0,说明刈割后的三个月,芦苇再没有重新萌发和生长。然而互花米草在全部处理后,都重新萌发和生长。但对于1/2密度刈割干扰下,芦苇的补偿能力强于互花米草,不仅从单株高度、生物量水平上进行恢复,在群体水平(密度)上也得到了补偿。这说明适当的稀疏处理有助于芦苇种群的扩散。然而,在崇明东滩,大面积围垦与冬季牲畜啃食常常给芦苇的生长造成不可恢复的干扰,而这对互花米草的影响却并不大,这也是目前互花米草在崇明东滩大肆蔓延的重要因素之一。
     (5)芦苇与互花米草共存于崇明东滩,二者共存的原因很多,例如更新生态位的不同,但归根结底是由它们彼此间存在一定程度的互利作用和不同的适应策略来决定的。从芦苇与互花米草的总体特征来看,互花米草的生存策略更倾向于r对策者,芦苇的生存策略更倾向于K对策者。按照Grime的植物生活史策略,在崇明东滩,芦苇倾向于竞争对策,而互花米草倾向于杂草对策。由于在多数情况下,互花米草对于芦苇表现出一定的促进作用,而芦苇对于互花米草具有竞争作用,因此,对于二者在崇明东滩的分布,在完全排除人为干扰因素的情况下,随着潮滩持续淤涨,芦苇的面积可能会出现增大的趋势,而互花米草分布位置则可能从现有位置下移,并且在潮间带中部区域两种植物共存的局面依然会持续。
Dongtan wetland of Chongming is one of famous wetlands of the world. It provides a wintering place for some rare and endangered waterfowl. At the same time, it is easy to be invaded by alien species owing to its special location and habitat conditions. Spartina alterniflora Loisel (Smooth cordgrass) is one of the invaders spreading in this area. Smooth cordgrass is native to Atlantic coast, which belongs to Poaceae. It was introduced to Dongtan wetland for siltation and epeirogenic purpose, but then it spread rapidly. Smooth cordgrass continued to outcompete the native specie Scirpus mariqueter and occupied the whole low tidal zone and the majority of middle tidal zone, especially in the north and east parts of Dongtan wetland. At the meantime, reclamation activities resulted in disappearance of large area of vegetation at high tide habitat. In this process, the spreading of Phragmites australis (Cav.) Trin.ex Steud (Common reed) as a native grass with similar competitive ability to smooth cordgrass was seriously disturbed. Therefore, smooth cordgrass invaded Dongtan wetland easily and spread quickly in the decades, which influenced the biodiversity and balance of Dongtan native ecosystems. As a result, some waterfowl also lost their habitats.
     Common reed is a native dominant species in Dongtan wetland, and it has strong asexual reproductive capability and competitive ability. Common reed is adaptive to grow in the intertidal mudflat. Some results showed the competitive ability between common reed and smooth cordgrass is similar; once one species occupied a habitat, another one can't intrude again. Thus, it might be an efficient biological method to control smooth cordgrass using common reed replacing smooth cordgrass. This way might have lots of advantages, for example, avoiding chemical pollution, unnecessary introduction of natural enemy and saving manpower and resources. More importantly, it would be helpful for improving biological diversity, optimizing intertidal vegetation pattern and forming stable ecosystem. Based on these backgrounds, this thesis studied the interspecific relationships between common reed and smooth cordgrass along tidal gradient in Dongtan wetland, and discussed some related factors. The main results were as follows:
     (1) Smooth cordgrass and common reed are both dominant species of Dongtan wetland presently. In general, the important values of the species were similar. Concretely, smooth cordgrass was advantageous in abundance, and common reed was advantageous in height. Common reed dominated in the high tidal zones, and smooth grass dominated in the low tidal zone. In the middle tidal zone, the two species formed a mosaic pattern. In general, there were four patches of vegetation in the study area:Reed patches, Spartina patches, blank patches (sometimes mixing with very few other plants) and two plants mixed patches. The types and areas of patches were different along with tidal gradients. Results showed that:the patch density and edge density of reed population were greater than those of Spartina, suggesting that the degree of fragmentation of reed population was greater than that of Spartina. The aggregation degrees of reed, Spartina and blank patches were larger, connectivity indices were close to100, indicating that the structures of three types of patches at1500×100m2scale were compact, and connectivity was strong. Landscape shape index was only6.59, indicating that the shape of the landscape level was not complicated. The aboveground age structures of common reed and smooth cordgrass showed increasing type in relatively high tidal zones, and a stable type in relatively low tidal zones.
     (2) Common reed and smooth cordgrass took different competitive strategies to adapt to the different habitats. Common reed and smooth cordgrass are both clonal plants. Clonal architectures of the two species were different:common reed tended to be guerilla type, and smooth cordgrass, the phalanx or mixed type, which determined the difference in acquisition of soil water and nutrient between the two species. This article compared the competitive abilities of smooth cordgrass and common reed from three aspects:the apparent growth capacity, reproductive capacity and the potential growth capacity. The mean relative growth rate of smooth cordgrass was much higher than that of commom reed. However the maximum height reached by common reed at the end of growing period was greater than that of smooth cordgrass, indicating that the height growth variability of common reed was greater than that of smooth cordgrass. The biomass of common reed was generally significantly higher than that of smooth cordgrass, because reed rhizome was coarse, accumulating a large amount of biomass. Comparing the propagation characteristics of common reed and smooth cordgrass, we found that common reed occupied habitats mainly through coarse rhizomes, while smooth cordgrasss mainly through anchoring more ramets by means of asexual reproduction, and increasing plant density and exploring new habitats by means of sexual reproduction. The net photosynthetic rate and the maximum photosynthetic efficiency of smooth cordgrass were higher than those of common reed. However, the photochemical efficiency of common reed was higher than that of smooth cordgrass. The soluble sugar contents or N and P contents of common reed were higher than those of smooth cordgrass.
     (3) The competitive abilities of common reed and smooth cordgrass were different. Through surveying single-or mix-species community and field removal experiment, we found that the relationship between common reed and smooth cordgrass were facilitative or competitive. Surveying single-or mix-species community showed that:for the average height and biomass, the reaction of the target species to the presence of neighbors differed with tidal gradient. In the high and low tidal zones, the presence of neighbors stimulated the growth of target species, while in the middle tidal zones; the presence of the neighbor species inhibited the growth performance of the target species. Competition was also conducive to the reproduction of plants. Germination rates of common reed and smooth cordgrass were greater in neighbors presence quadrats. In the field removal experiments, we selected relative growth rate (RGR) and the number of seedlings daily produced (TNT) as response parameters to measure the competitive intensity index. In the high and middle tidal zones, the presence of smooth cordgrass facilitated the growth of common reed, but the presence of common reed inhabited the growth of smooth cordgrass when RGR as a parameter, but in the low tidal zone, the absolute competitive intensity (ACI) and relative neighborhood effect index (RNE) of common reed and smooth cordgrass were positive, which represented both competing with each other. Along the tidal gradients (from high to low tidal zone), competitiveness index (Ⅰ) values of smooth cordgrass were from negative to positive; competitiveness index (Ⅰ) values of common reed were positive and decrease with tidal gradient. When taking TNT as a parameter, the existence of smooth cordgrass facilitated the growth of common reed in all three tidal zones, and the presence of common reed inhabited the growth of smooth cordgrass. With tidal gradient decreased (from the high to low tidal zone), I values of common reed were from negative to positive. I values of smooth cordgrass was negative, and the absolute value of I for smooth cordgrass was lowest in the middle tidal zone, In all the three tidal zones, there are crowding effects (Dr) between smooth cordgrass and common reed. In high and middle tidal zone, the crowding effects of common reed on smooth cordgrass were higher than that of smooth cordgrass on common reed. In low tidal zone, the crowding effects of smooth cordgrass on common reed were relatively higher. Overall, interspecific interactions of the two species were mutually beneficial in most cases, and when the relationship is competitive, the total competitive effects of smooth cordgrass were higher than the overall competitive effects of common reed. The direction of the RNE of smooth cordgrass and common reed was consistent with the direction of the I value, the Dr can only affect the size of the RNE.
     (4) Anthropogenic interference strongly influenced on the growth of common reed and smooth cordgrass. We analyzed the compensatory growth effects of the two species after mowing, and found that:the compensatory growth capacity of common reed afte r severe mowing was not as good as that of smooth cordgrass. While being mowed entirely or at1/2height, the height, density and biomass of common reed reduced to0, indicating that three months after mowing, common reeds did not regerminate and grow. However, in all of the treatments, smooth cordgrass regerminated and grew, but for1/2density-mowing treatment, the compensative ability of common reed was stronger than that of smooth cordgrass, in which it not only recovered from single plant level, but also from population level.
     (5) Common reed and smooth cordgrass coexisted in Dongtan wetland for many reasons, such as different regeneration niche, but ultimately it is because that they are mutually beneficial to each other to some extent and they played different roles in the habitat with different adaptation strategies. According to the general characteristics of common reed and smooth cordgrass, smooth cordgrass tended to be a r-strategist, and common reed, a K-strategist. According to the Grime classification on the plant life history strategies, in Dongtan wetland, common reed tended to be a competitor, while smooth cordgrass, a weed. In most cases, smooth cordgrass showed the facilitation effects to common reed to some extend, while the latter showed competitive effects to the former. If without the anthropogenic disturbance, along process of the tidal siltation, the area of common reed would gradually increase, while the position of smooth cordgrass would move downward. They would still coexist in the middle intertidal zone.
引文
Andreu J and Vila M. Native plant community response to alien plant invasion and removal[J]. Manag.Biolog.Invasions,2011,2:81-90.
    Artigas F and Pechmann I C. Balloon imagery verification of remotely sensed phragmites australis expansion in an urban estuary of New Jersey, USA[J]. Landscape and Urban Planning,2010,95(3):105-112.
    Barger N N D,Antonio C M,Ghneim T,et al. Constraints to colonization and growth of the African grass, Melinis minutiflora in a Venezuelan savanna[J]. Plant Ecology,2003,167 (1):31-43.
    Bertness M D. Zonation of spartina patens and spartina alterniflora in New England Salt Marsh[J]. Ecology,1991,72(1):138-148.
    Bertness M D. Interspecific interactions among high marsh perennials in a New England Salt Marsh[J]. Ecology,1991,72(1):125-137.
    Bertness M D, Gough L and Shumway S W. Salt Tolerances and the Distribution of Fugitive Salt Marsh Plants[J]. Ecology,1992,73(5):1842-1851.
    Bertness M D and Leonard G H. The role of positive interavtions in communities: lessons from intertidal habitats[J]. Ecology,1997,78(7):1976-1989.
    Brewer J S and Cralle S P. Phosphorus addition reduces invasion of longleaf pine savanna (Southeastern USA) by a non-indigenousgrass (Imperata cylindrica)[J]. Plant Ecology,2003,167(2):237-245.
    Brian R M and Raymond W L. Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica[J]. Aquatic Botany 2002,74(2):109-120.
    Caitlin M C,Brian R S,Sarah L B,et al. Physical and biotic drivers of plant distribution across estuarine salinity gradients[J]. Ecology,2004,85(9):2539-2549.
    Callaway J C and Josselyn M N. The introduction and spread of smooth cordgrass(Spartina alterniflora) in south San Francisco Bay[J]. Estuaries,1992,15(2):218-226.
    Campbell B D and Grime J P. An Experimental test of plant strategy theory[J]. Ecology,1992,73(1):15-29.
    Collins A R. Implications of plant diversity and soil chemicalproperties for Cogongrass (Imperata cylindrical) invasion innorthwest Florida[D], Florida:University of Florida,2005,77.
    Connolly J,Wayne P and Bazzaz F A. Interspecific competition in plants:how well do current methods answer fundamental questions? [J]. The American Naturalist,2001,157(2):107-125.
    Crawley M J. The population dynamics of plants. In:Hassell M P, May R M, eds. Population Regulation and Dynamics[C], London:Royal Society,1990,3-18.
    David L M. Biological invasions:Lessons for ecology[J]. Trends in ecology&Evolution,1993,8(4):133-137.
    Davis M A,Bier L,Bushelle E,et al. Non-indigenous grasses impede woody succession[J]. Plant Ecology,2005,178(2):249-264.
    Duda J J,Freeman D C,Emlen J M,et al. Differences in native soilecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus[J], Biology and Fertility of Soils.2003,38(2):72-77.
    Emery N C,Ewanchuk P J and Bertness M D. Competition and salt-marsh plant zonation:stress tolerators may be dominant competitors[J]. Ecology,2001,82(9):2471-2485.
    Fagan W F,Lewis M A,Neubert M G,et al. Invasion theory and biological control[J]. Ecology Letters,2002,5(1):148-157.
    Feng Y L,Auge H and Ebeling S K. Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species[J]. Oecologia,2007,153(3):501-510.
    Feng Y L,Fu G L and Zheng Y L. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogenallocation and use efficiencies between invasive and noninvasive alien congeners[J]. Planta,2008,228(3): 383-390.
    Gao Y,Tang L and Wang J Q. Clipping at early florescence is more efficient for controlling the invasive plant Spartina alterniflora[J].Ecological Research,2009,24(5):1033-1041.
    Gedan K B,Silliman B R and Bertness M D. Centuries of Human-Driven Change in Salt Marsh Ecosystems[J]. The Annual Review of Marine Science,2009,1:117-141.
    Gerry A K and Wilson S D. The influence of initial size on the competitive responses of six plant species[J]. Ecology,1995,76(1):272-279.
    Goldberg D E and Fleetwood L. Competitive effect and response in four annual plants[J]. Journal of Ecology,1987,75(4):1131-1143.
    Goldberg D E and Landa K. Competitive effect and response:hierarchies and correlated traits in the early stages of competition[J]. Journal of Ecology,1991,79(4):1013-1030.
    Goldberg D and Scheiner S M. ANOVA and ANCOVA:field competition experiments. In:S. M. Scheiner and J.Gurevitch, eds. Design and analysis of ecological experiments[C]. New York:Chapman and Hall Publishers,1993.
    Goldberg D and Novoplansky A. On the relative importance of competition on unproductive environments[J]. Journal of Ecology,1997,85(4):409-418.
    Grace J B. On the measurement of plant competition intensity[J]. Ecology,1995,76(1):305-308.
    Grevstad F S,Strong D R,Garcia-Rossi D,et al. Biological control of spartina alterniflora, Willapa Bay, Washington using the planthopper Prokelisia marginata:agent specificity and early results[J]. Biological Control,2003,27(1): 32-42.
    Grime J P. Competitive exclusion in herbaceous vegetation[J]. Nature,1973,242(5396): 344-347.
    Grime J P. Plant strategies and vegetation processes[M]. London:Wiley,1979.
    Hastings A,Hall R G and Taylor C M.A. Simple approach to optimal control of invasive species[J]. Theoretical Population Biology,2006,70(4):431-435.
    Howard R J and Rafferty P S. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern gulf of Mexico, USA[J]. Environmental and Experimental Botany,2006,56(3):301-313.
    Howard T G,Gurevitch J,Hyatt L,et al. Forest invasibility incommunities in southeastern New York [J]. Biological Invasions,2004,6(4):393-410.
    Jiang L F,Luo Y P,Chen J K,et al. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China[J]. Estuarine, Coastal and Shelf Science,2009,81(1):74-82.
    Keddy P A. Competitive hierarchies and centrifugal organization in plant communities, in:Grace J B andTilman D, eds. Perspectives on plant competition[C]. San Diego:Academic Press,1990.
    Keddy P,Fraser L H and Wisheu I C.A. Comparative approach to examine competitive response of 48 wetland plant species[J]. Journal of vegetation science,1998,9(6):777-786.
    Kelly C K,Bowler M G,Pybus O,et al. Phylogeny, niches and relative abundance in natural communities[J]. Harvey Ecology,2008,89(4):962-970.
    Landin M C. Growth habits and other considerations of smooth cordgrass, Spartina alternniflora[R]. Washington Sea Grant Program,University of Washington, Seattle,1991.
    Maricle B R and Lee R W. Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica[J]. Aquatic Botany,2002,74(2):109-120.
    Markham J H and Chanway C P. Measruing plant neighbour effects[J]. Functional ecology,1996,(10):548-549.
    Meisner A,Boer W D,Hol G,et al. No Paradox for Invasive Plants[J]. Science,2009,325(5942):814.
    Mendelssohn I A and Postek M T. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel[J]. American Journal of Botany, 1982,69(6):904-912.
    Meyer D L, Johnson J M and Gill J W. Comparison of nekton use of Phragmites australis and Spartina alterniflora marshes in the Chesapeake Bay, USA[J]. Marine Ecology Progress Seiries,2001,209:71-84.
    Michael W L,William C K and Daniel L C. Relationships of salt-marsh plant distributions to tidal levels in connecticut, USA[J]. Environmental Management,1987,11(1):61-68.
    Mozdzer T J,Zieman J C and McGlathery K J. Nitrogen uptake by native and invasive temperate coastal macrophytes:importance of dissolved organic nitrogen[J]. stuaries and Coasts,2010,33(3):784-797.
    Pathikonda S,Ackleh A S and Mopper S. Invasion, disturbance, and competition: Modeling the fate of coastal plant populations[J]. Conservation Biology,2008,23(1):164-173.
    Proffitt C E,Travis S E and Edwards K R. Genotype and elevation influence spartina alterniflora colonization and growth in a created salt marsh[J]. Ecological Applications,2003,13(1):180-192.
    Quan W M,Han J D,Shen A L,et al. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China[J]. Marine Environmental Research,2007,64(1):21-37.
    Reader R J,Wilson S D,Belcher J W,et al. Plant competition in relation to neighbor biomass:an intercontinental study with POA pratensis[J]. Ecology 1994,75(6):1753-1760.
    Rickey M A and Anderson R C. Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata[J]. Journal of Applied Ecology,2004,41(5):888-896.
    Rout M E and Callaway R M. An invasive plant paradox[J]. Science,2009,324(5928):734-735.
    Sayce K. Introduced cordgrass (Spartina alterniflora L.) in saltmarshes and tidelands of Willapa Bay, Washington. Scientific Report (No.87053) to U.S. Fish Wildl. Serv., Res. Rep., Willapa National Wildlife Refuge[R], Ilwaco, Washington State, USA,1988,70.
    Schamp B S and Aarssen L W. The role of plant species size in invasibility:a field experiment[J]. Oecologia,2010,162(4):995-1004.
    Scott D W and Paul A K. Species competitive ability and position along a Natural stress disturbance gradient[J]. Ecology,1986,67(5):1236-1242.
    Shea M L,Warren R S and Niering W A. The ecotype-ecophene status of varying height forms of Spartina alteniflora[J]. Bulletin of Ecological Society of America,1972,53(20):15-16.
    Silander J A and Antonovics J. Analysis of interspecific competition in coastal plant community—a perturbation experiment[J]. Nature,1982,298:557-560.
    Smart R M. Distribution and environmental control of productivity and growth form of Spartina alterniflora (Loisel.)[A]. In:Sen D N,Rajpurohit KS eds. Tasks for Vegetation Science [C]. The Hague:Dr W. Junk Publishers,1982,127-142.
    Suding K N,LeJeune K D and Seastedt T R. Competitive impacts and responses of an invasive weed:dependencies on nitrogen and phosphorus availability [J]. Oecologia,2004,141(3):526-535.
    Serag M S. Ecology and biomass of Phragmites australis (Cav) Trin Ex Steud in the north-eastern region of the Nile Delta, Egypt[J]. Ecoscience,1996,3(4):473-482.
    Tilman D. Resource competition and community structure[M]. Princeton:Princeton University Press,1982.
    Tilman D. The resource-ratio hypothesis of plant succession[J]. American naturalist,1985,125(6):827-852.
    Tilman D. Plant strategies and the dynamics and structure of plant communities[M]. Princetonr:Princeton University Press,1988.
    Turkington R,Klein E and Chanway C P. Interaction effects of nutrients and disturbance:an experimental test of plant strategy theory[J]. Ecology,1993,74(3):863-878.
    Tyler A C,Lambrinos J G and Grosholz E D. Nitrogen inputs promote the spreed of an invasive marsh grass[J]. Ecological applications,2007,17(7):1886-1898.
    Vasquez E A,Glenn E P,Guntenspergen G R,et al. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaseae) along a salinity gradient[J]. American Journal of Botany,2006,93(12):1784-1790.
    Vile D,Shipley B and Gamier E. Structural Equation Model To Intergrate Changes In Functional Strategies During Old-Field Succession[J]. Ecological Society of America,2006,87(2):504-517.
    Wang Q,Wang C H,Zhao B,et al. Effects of growing conditions on the growth of and interactions between salt marsh plants:implications for invasibility of habitats[J]. Biological Invasions,2006,8(7):1547-1580.
    Wecker M S,Alcock T,Bennett K.Using GIS to integrate biological control into the integrated weed management program for Spartina alterniflora in Willapa Bay, Washington[A]. In:Cullen J M,Briese D T,Kriticos D J,et al eds. Proceedings of the XI International Symposium on Biological Control of Weeds[C]. The Canberra:CSIRO entomology publisher,2004,457-464.
    Weisner S E B and Strand J A. Rhizome architecture in Phragmites australis in relation to water depth:Implications for within-plant oxygen transport distances[J]. Folia Geobotanica & Phytotaxonomica,1996,31(1):91-97.
    Wildova R,Gough L,Herben T,et al. Architectural and growth traits differ in effects on performance of clonal plants:an analysis using a field-parameterized simulation model[J]. Oikos,2007,116(5):836-852.
    Wilson M V. Measuring the components of competition along productivity gradients[J]. ournal of ecology,2007,95(2):301-308.
    Wilson S D and Tilman D. Competitive responses ofeight old-field plant species in four environments[J]. Ecology,1995,76(4):1169-1180.
    Windham L. Microscale spatial distribution of phragmites australis (common reed) invasion into spartina patens (salt hay)-dominated communities in brackish tidal marsh[J]. Biological Invasions,1999,1(2-3):137-148.
    Wolfe L M. Why alien invaders succeed:support for the escape-from-enemy hypothesis[J]. The American Naturalist,2002,160(6):705-711.
    Wu Y T,Wang C H, Zhang X D,et al. Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets[J]. Biological Invasions,2009,11(3):635-649.
    Xiao Y,Tang J B,Qing H,et al. Clonal integration enhances flood tolerance of Spartina alterniflora daughter ramets[J]. Aquatic Botany,2010,92(1):9-13.
    Zedler J B. Causes and consequences of invasive plants in wetlands:opportunities, opportunists, and outcomes[J]. Critical Reviews in Plant Sciences,2004,223(5):431-452.
    Zhao Y J,Qing H,Zhao C J,et al. Phenotypic plasticity of Spartina alterniflora and Phragmites australis in response to nitrogen addition and intraspecific competition[J]. Hydrobiologia,2010,637(1):143-155.
    Zurlini G,Petrosillo I,Jones K B,et al. Towards the planning and design of disturbance patterns across scales to counter biological invasions[J]. Journal of Environmental Management,2013,128:192-203.
    巴雷,王德利,曹勇宏.刈割对羊草和全叶马兰生长与种间关系的影响[J].草地学报2005,13(4):278-312.
    鲍芳,石福臣.互花米草与芦苇耐盐生理特征的比较分析[J].植物研究,2007,27(4):421-427.
    陈国奇,郭水良,印丽萍.外来入侵种植物学性状和环境因子间关系的典范对应分析[J].浙江大学学报(农业与生命科学版),2008,34(5):571-577.
    陈慧丽,李玉娟,李博等.外来植物入侵对土壤生物多样性和生态系统过程的影响[J].生物多样性,2005,13(6):555-565.
    陈敏,陈亚宁,李卫红等.不同地下水埋深柽柳、芦苇的生理响应[J].干旱区地理,2009,32(1):72-80.
    陈阳,王贺,郗金标等.盐渍生境下两种生态型芦苇的形态结构及矿质元素分布[J].土壤学报,2010,47(2):334-340.
    陈中义,李博,陈加宽.米草属植物入侵的生态后果及管理对策[J].生物多样性,2004,12(2):280-289.
    陈中义,李博,陈家宽.互花米草与海三棱藨草的生长特征和相对竞争能力[J].生物多样性,2005,13(2):130-136.
    慈维顺.芦苇的应用[J].天津农林科技,2011,(2):35-37.
    崔保山,赵欣胜,杨志峰等.黄河三角洲芦苇种群特征对水深环境梯度的响应[J].生态学报,2006,26(5):1533-1541.
    邓自发,安树青,智颖飚等.外来种互花米草入侵模式与爆发机制[J].生态学报,2006,26(8):2678-2686.
    杜峰,梁宗锁,胡莉娟.植物竞争研究综述[J].生态学杂志,2004,23(4):157-163.
    樊江文,钟华平,梁飚等.在不同压力和干扰条件下黑麦草和其它6种植物的竞争研究[J].植物生态学报,2003,27(4):522-530.
    冯玉龙,廖志勇,张茹等.外来入侵植物对环境梯度和天敌逃逸的适应进化[J].生物多样性,2009,17(4):340-352.
    高建华,杨桂山,欧维新.互花米草引种对苏北潮滩湿地TOC、TN和TP分布的影响[J].地理研究,2007,26(4):799-808.
    高贤明,庄平.外来种引入途径及其入侵特性[A].中国生物多样性保护与研究进展--《第五届全国生物多样性保护与持续利用研讨会论文摘要集[C].北京:《中国学术期刊(光盘版)》电子杂志社,2002,248-258.
    高云芳.长江口盐沼湿地植物多样性及分布格局——以九段沙和崇明东滩为例[D],上海:上海师范大学,2009,75.
    耿宇鹏,张文驹,李博等.表型可塑性与外来植物的入侵能力[J].生物多样性,2004,12(4):447-455.
    古志钦.入侵植物互花米草对长期淹水措施的生理生态学响应[D],上海:华东师范大学,2009,63.
    古志钦,张利权,袁琳.互花米草与芦苇光合色素含量对淹水措施的响应[J].应用生态学报,2009,20(10):2365-2369.
    郭敏.外来物种入侵对生物多样性的影响[J].农家之友,2009,(2):15-16.
    郭云文,陈莉丽,卢百灵等.我国对互花米草的研究进展[J].草业与畜牧,2009,(9):1-6.
    韩照祥,朱惠娟,张文辉等.不同地区不同尺度下栓皮栎种群的空间分布格局[J].西北植物学报,2005,25(6):1216-1221.
    何彦龙,李秀珍,马志刚等.崇明东滩盐沼植被成带性对土壤因子的响应[J].生态学报,2010,30(18):4910-4927.
    贺宝根,王初,周乃晟等.长江河口崇明东滩周期性淹水区域水流的基本特征浅析[J].地球科学进展,2008,23(3):276-283.
    贾国栋,余新晓,邓文平等.北京山区典型流域不同海拔椴树种群的空间点格局分析[J].生态环境学报,2011,20(6-7):996-1002.
    蒋智林,刘万学,万方浩等.植物竞争能力测度方法及其应用评价[J].生态学杂 志,2008,27(6):985-992.
    康勤书.长江口湿地沉积元素生物地球化学特征——以崇明东滩为例[D].上海:华东师范大学,2003,82.
    兰国玉,雷瑞德.植物种群空间分布格局研究方法概述[J].西北林学院学报,2003,18(2):17-21.
    李博.生态学[M].北京:高等教育出版社,2000.
    李博.植物竞争-作物与杂草相互作用的实验研究[M].北京:高等教育出版社:海德堡:斯普林格出版社,2001.
    李富荣,陈俊勤,陈沐荣等.互花米草防治研究进展[J].生态环境,2007,16(6):1795-1800.
    李贺鹏.外来入侵植物互花米草控制的生态学研究[D],上海:华东师范大学2007,77.
    李文良,张小平,郝朝运等.湘鄂皖连香树种群的年龄结构和点格局分析[J].生态学报,2009,29(6):3221-3230.
    李旭,谢永宏,黄继山等.湿地植被格局成因研究进展[J].湿地科学,2009,7(3):280-288.
    李蕴,肖宜安,王春香等.北美车前和车前的生长特征与相对竞争能力[J].生态学杂志,2008,27(4):514-518.
    李振宇,解焱.中国外来入侵种[M].北京:中国林业出版社,2002.
    梁霞,张利权,赵广琦.芦苇与外来植物互花米草在不同C02浓度下的光合特性比较[J].生态学报,2006,26(3):842-848.
    刘建,黄建华,余振希等.大米草的防除初探[J].海洋通报,2000,19(5):68-72.
    刘建,杜文琴,马丽娜等.大米草人工败育技术研究[J].农业环境科学,2005,24(4):45-47.
    刘建,庄志鸿,蔡宣梅.米草净对海区浮游生物影响的研究[J].中国环境科学,2004,24(6):722-724.
    刘明智.现代生态学研究进展——以生物入侵为例[J].贵阳学院院报(自然科学 版),2011,6(1):31-37.
    刘清玉.近40年来长江口崇明东滩沉积记录与环境过程研究[D],上海:华东师范大学,2004,95.
    刘玉锁.放牧对荒漠草原植物补偿性生长的影响[D],宁夏:宁夏大学,2008,45.
    陆霞梅,周长芳,安树青.植物的表型可塑性、异速生长以及入侵能力[J].生态学杂志,2007,26(9):1438-1444.
    卢志军.中国西南地区植物群落的可入侵性与紫茎泽兰的入侵[D],北京:中国科学院植物研究所,2005,95.
    马俊改.互花米草在滨海滩涂的无性繁殖与生态适应性研究[D],天津:南开大学,2011,94.
    毛志宏,朱教君.干扰对植物群落物种组成及多样性的影响[J].生态学报,2006,26(8):2695-2701.
    梅雪英,张修峰.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化[J].应用生态学报,2007,18(4):933-936.
    牛红榜.外来植物紫茎泽兰入侵的土壤微生物学机制[D],上海:中国科学院上海冶金研究所,2000,100.
    潘瑞炽,王小青,李娘辉.植物生理学[M].北京:高等教育出版社(第六版),2008.
    潘宇.芦苇与互花米草种群沿潮位梯度的镶嵌分布格局及其与生境关系研究[D],上海:华东师范大学,2012,68.
    平原,张利权.物理措施控制互花米草的长期效果研究[J].海洋环境科学,2010,29(1):32-35.
    钦佩,经美德,张正仁等.美国互花米草Spartina alterniflora三个生态类型的种子耐盐萌发试验[J].南京大学学报(增刊),1985,237-246.
    钦佩,王光.一种生物替代控制外来种互花米草的方法:中国,200510094602.9.2006-03-08.
    秦卫华,王智,蒋明康.互花米草对长江口两个湿地自然保护区的入侵[J].杂草科学,2004,(4):15-16.
    覃盈盈,蒋潇潇,李峰等.互花米草在不同生境中的形态可塑性与生物量分配[J].海洋环境科学,2009,28(6):657-667.
    全为民,李春鞠.崇明东滩湿地营养盐与重金属的分布与累积[J].生态学报,2006,26(10):3324-3331.
    沈永明,杨劲松,曾华等.我国对外来物种互花米草的研究进展与展望[J].海洋环境科学,2008,27(4):391-396.
    石福臣,鲍芳.盐和温度胁迫对外来种互花米草生理生态特性的影响[J].生态学报,2007,27(7):2733-2741.
    史刚荣,马成仓.外来植物成功入侵的生物学特征[J].应用生态学报,2006,17(4):727-732.
    宋明华,董鸣.群落中克隆植物的重要性[J].生态学报,2002,22(11):1960-1967.
    宋永昌.植被生态学[M].上海:华东师范大学出版社,2001.
    苏爱玲,徐广平,段吉闯等.祁连山金露梅灌丛草甸群落结构及主要种群的点格局分析[J].西北植物学报,2010,30(6):1231-1239.
    孙书存,朱旭斌,吕超群.外来种米草的生态功能评价与控制[J].生态学杂志,2004,23(3):93-98.
    孙振华,高俊,赵仁泉.崇明东滩候鸟自然保护区的滩涂植被[J].上海环境科学,1992,11(3):22-25.
    唐国玲,沈禄恒,翁伟花等.无瓣海桑对互花米草的生态控制效果[J].华南农业大学学报,2007,28(1):10-13.
    汤孟平,周国模,施拥军等.天目山常绿阔叶林优势种群及其空间分布格局[J].植物生态学报,2006,30(5):743-752.
    万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策[J].生物多样性,2002,10(1):119-125.
    汪承焕.环境变异对崇明东滩优势盐沼植物生长、分布与种间竞争的影响[D],上海:复旦大学,2009,160.
    王东启.长江口滨岸潮滩沉积物反硝化作用及N20的排放和吸收[D],上海:华东师 范大学,2006,175.
    王立群,刘清玉,何小勤.崇明东滩沉积物有机碳的分布及影响因素[J].海洋地质动态,2004,20(8):30-32.
    王平,王天慧,周道玮等.植物地上竞争与地下竞争研究进展[J].生态学报,2007,27(8):3489-3499.
    王卿.长江口盐沼植物群落分布动态及互花米草入侵的影响[D],上海:复旦大学,2007,205.
    王卿,安树青,马志军等.入侵植物互花米草--生物学生态学及管理植物[J].分类学报,2006,44(5):559-588.
    王蔚,张凯,汝少国.米草生物入侵现状及防治技术研究进展[J].海洋科学,2003,27(7):38-42.
    肖强,郑海雷,陈瑶等.盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J].生态学杂志,2005,24(4):373-376.
    肖德荣.长江河口盐沼湿地外来物种互花米草扩散方式与机理研究[D],上海:华东师范大学,2010,89.
    肖强,郑海霞,叶文景等.水淹对互花米草生长及生理的影响[J].生态学杂志,2005,24(9):1025-1028.
    谢红霞.长江口潮滩芦苇与互花米草中重金属累积的比较研究[D],上海:华东师范大学,2000,79.
    许曼丽,朱志红,李英年等.高寒矮嵩草草甸4种主要植物补偿生长变化与耐牧性比较研究[J].中国农学通报,2012,28(20):7-16.
    徐炳声.上海植物志[M].上海:上海科学技术文献出版社,1998.
    徐汝梅.集合种群生态学:结构、动态与保育[R].北京师范大学”现代生态学讲座”系列,2005,184.
    闫芊,陆健健,何文珊.崇明东滩湿地高等植被演替特征[J].应用生态学报,2007,18(5):1097-1101.
    闫芊.崇明东滩湿地植被的自然演替[D],上海:华东师范大学,2006,67.
    闫小玲.观赏植物引种与外来入侵种研究[J].园艺与种苗,2012,(8):41-45.
    闫兴富,曹敏.更新生态位及物种共存研究进展[J].福建林业科技,2007,34(4):248-252.
    于兴军,于丹,卢志军等.一个可能的植物入侵机制:入侵种通过改变入侵地土壤微生物群落影响本地种的生长[J].科学通报,2005,50(9):896-903.
    于砚民.长江口地区湿地生态环境调查与保护对策[J].首都师范大学学报(自然科学版),2000,21(3):81-87.
    袁连奇,张利权.调控淹水对互花米草生理影响的研究[J].海洋与湖沼,2010,41(2):175-179.
    袁琳,张利权,肖德荣等.刈割与水位调节集成技术控制互花米草[J].生态学报,2008,28(11):5723-5730.
    苑泽宁,石福臣.盐胁迫对互花米草种子萌发及胚生长的影响[J].云南植物研究,2008,30(2):227-231.
    张东.崇明东滩互花米草的无性扩散与相对竞争力[D],上海:华东师范大学,2006,55.
    张桂花,彭少麟,李光义等.外来入侵植物与地下生态系统相互影响的研究进展[J].中国农学通报,2009,25(14):246-251.
    张巧,郝建锋.外来物种入侵机制的研究进展[J].贵州农业科学,2011,39(6):94-98.
    张士萍.崇明东滩不同类型湿地土壤生物活性差异性分析及其相关性研究[D],上海:同济大学,2008,63.
    张淑萍,王仁卿,张治国等.黄河下游湿地芦苇形态变异研究[J].植物生态学报,2003,27(1):78-85.
    张彤.崇明东滩景观格局与动态变化[D],上海:华东师范大学,2004,68.
    张亦默,王卿,卢蒙等.中国东部沿海互花米草种群生活史特征的纬度变异与可塑性[J].生物多样性,2008,16(5):462-469.
    张运春,苏智先,高贤明.克隆植物的特性及研究进展[J].四川师范学院学报(自然科学版),2001,22(4):338-343.
    赵成章,高福元,石福习等.高寒退化草地甘肃臭草种群分布格局及其对土壤水分的响应[J].生态学报,2011,31(22):6688-6695.
    赵成章,高福元,王小鹏等.黑河上游高寒退化草地狼毒种群小尺度点格局分析[J].植物生态学报,2010,34(11):1319-1326.
    赵聪蛟,邓自发,周长芳等.氮水平和竞争对互花米草与芦苇叶特征的影响[J].植物生态学报,2008,32(2):392-401.
    赵广琦.崇明东滩湿地生态系统健康评价和芦苇与互花米草入侵的光合生理比较研究[D],上海:华东师范大学,2005,65.
    赵广琦,李贺鹏.上海地区外来植物互花米草的入侵现状与治理探讨[J].园林科技,2008,(1):37-42.
    赵可夫,冯立田,张圣强.黄河三角洲不同生态型芦苇对盐度适应生理的研究Ⅱ.不同生态型芦苇的光合气体交换特点[J].生态学报,2000,20(5):796-799.
    赵威,王征宏.植物的补偿性生长[J].生物学通报,2008,43(3):12-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700