慢病毒载体介导FGF4-BFGF基因修饰骨髓间充质干细胞治疗大鼠心肌梗死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究建立大鼠骨髓间充质干细胞(Bone-derived mesenchymal stem cells, BMSCs)体外分离、培养、传代及诱导分化的实验方法;构建携带促分泌信号肽FGF4碱性成纤维细胞生长因子(Basic fibroblast growth factor, BFGF)和增强型绿色荧光蛋白(Enhanced green fluorescent protein, EGFP)的慢病毒载体(Lentivirus vector, LVs);观察FGF4-BFGF&EGFP融合基因重组慢病毒载体修饰BMSCs修复大鼠心肌梗死(Myocardial infarction, MI)的作用及其相关机制,期望为心肌梗死的治疗提供新思路,探索一条新途径。
     方法:BMSCs体外分离、培养、传代及诱导分化:取SD大鼠股骨、胫骨,用低糖型DMEM细胞培养基反复冲洗骨髓腔,将冲洗液移入培养瓶培养,以贴壁筛选法分离、培养、传代扩增BMSCs,显微镜观察细胞的形态变化和生长分化情况,并收集第三代(P3)细胞进行流氏细胞仪技术鉴定;以携带EGFP的pGC-FU慢病毒载体系统作为基因转导的媒介,采用In-Fusion技术构建携带促分泌信号肽FGF4的BFGF基因重组慢病毒载体,通过聚合酶链反应(Polymerase chain reaction, PCR)、酶切和测序的方式鉴定所构建的载体;在脂质体Lipofectamine 2000作用下转染293T细胞,以实时荧光定量PCR(Real-time quantitative PCR, RT Q-PCR)检测慢病毒滴度,荧光表达、酶联免疫吸附试验(Enzyme linked immunosorbent assay, ELISA)确定最佳感染复数(Multiplicity of infection, MOI)及BFGF蛋白表达分泌水平;采用冠状动脉结扎法建立大鼠心肌梗死模型。120只大鼠随机均分为假手术组(Sham组)、溶剂对照组(Vehic组)、空载慢病毒组(EGFP/BMSCs组)、BFGF重组慢病毒组(BFGF/BMSCs组)和FGF4-BFGF4/BMSCs重组慢病毒组(FGF4-BFGF/BMSCs组),每组24只,按术后3天、7天、14天、28天均分为4个亚组,在心肌梗死模型建立后30-60min,分别以100ul 1×PBS溶液或2×106/只的细胞数散在注入相应实验动物局部心肌组织梗死区。伊红-苏木素(Hematoxylin Eosin, HE)染色观察细胞移植后心肌病理变化;应用激光共聚焦扫描显微镜(Laser scanning confocal microscope, LSCM)观察移植细胞存活及其分化;采用Western-blot检测各实验组大鼠心肌组织梗死区BFGF蛋白表达,免疫组织化学方法(Immunohistochemistry, IHC)检测VIII因子阳性表达;运用Western blot、Real Time Q-PCR分别检测凋亡调控基因BCL-2、BAX mRNA与蛋白表达,原位缺口末端标记法(TdT-mediated dUTP nick end labeling , TUNEL)检测凋亡指数变化;使用IHC检测MMP-9、TIMP-1蛋白表达;麦松(Masson)染色检测细胞移植后28天心肌组织梗死区胶原纤维改变,并行数字高帧频超声心动图检查,观察心功能状况。
     结果:原代培养的BMSCs 24小时内贴壁并伸展成多角形、梭形,前3天为相对抑制期,其后细胞增殖速度逐渐加快,呈对数形式,7天左右至平台期,细胞覆盖率达90%左右,约在2周内传至第3代时可到106个数量级细胞,能够满足细胞移植数量的需要,应用流式细胞仪检测BMSCs的标志,显示CD29、CD44、CD90阳性,而CD34、CD45阴性,符合BMSCs特征;采用In-Fusion技术构建FGF4-BFGF重组慢病毒,经PCR、酶切及测序鉴定完全正确,转染293T细胞能够正确表达,滴度为1×108TU/ml,慢病毒感染BMSCs最佳MOI值为10,且FGF4-BFGF重组慢病毒感染BMSCs能高效表达分泌BFGF。在心肌梗死模型建立后第3、7、14、28日,与Sham组对比,FGF4-BFGF/BMSCs组的心肌组织病理改变均明显轻于其他各组,且在冠脉结扎后第28日存活移植细胞的数量显著高于其他各组(P﹤0.05),但除少许移植细胞与宿主心肌细胞融合外未见明显分化为心肌样细胞的现象。此外,与Vehic组、EGFP/BMSCs组、BFGF/BMSCs组相比,FGF4-BFGF/BMSCs组心肌组织梗死区BFGF、BCL-2、TIMP-1表达上调,BAX、MMP-9水平下降,微血管密度明显增多,凋亡指数显著减少,差异均有统计学意义(P﹤0.05)。移植后第28天,FGF4-BFGF/BMSCs组心肌组织梗死区胶原纤维减少,心肌细胞增多,左室壁厚度增厚,心功能接近Sham组,较其他各组显著改善(P﹤0.05)。
     结论:采用贴壁筛选法可分离获得高纯度的BMSCs,该细胞体外增殖快,具有多项分化能力,是移植治疗心梗的良好种子细胞;In-Fusion技术构建的FGF4-BFGF&EGFP融合基因重组慢病毒载体能高效表达及分泌BFGF蛋白;其修饰大鼠BMSCs可促进新生血管生成,抗心肌细胞凋亡,抑制左室重塑,从多途径发挥作用而改善大鼠心肌梗死后心功能。
Objective This study was to establish the experimental method for isolating, culturing, proliferating and inducing rat bone marrow mesenchymal stem cells (BMSCs) in vitro, to construct portable FGF4 signal peptide for promoting secretion of basic fibroblast growth factor (BFGF) and to enhance green fluorescent protein (EGFP) of the lentiviral vector (LVs); to observe FGF4-BFGF & EGFP fusion gene recombinant lentiviral vector-modified BMSCs for repairing myocardial infarction (MI) and its related mechanism.
     Methods The method for isolating, cultivating, proliferating and inducing BMSCs: Bone marrow was taken out from the bilateral femora and tibiae, and cultured with L-DMEM culture solution in culture bottles. MSCs were isolated and purified by the wall-adhering method. The morphology and graph of every generation were observed under the phase-contrast microscope. And the third-generation (P3) cells were collected to assay by the flow cytometry technical appraisal. The pGC-FU lentiviral vector that carries the EGFP was chosen as a medium of gene transduction system. In-Fusion technology was adopted to construct the promoted secretion of FGF4 signal peptide and BFGF gene recombinant lentiviral vector, which was identified by the polymerase chain reaction (PCR), enzyme digestion and sequencing.. The 293T cells were transfected through the liposome Lipofectamine 2000. The lentiviral titer was detected by real-time fluorescence quantitative PCR (RT Q-PCR). The optimum infection plural (MOI) and the secretion of BFGF protein expression level were determined by expression of fluorescence and enzyme linked immunosorbent assay (ELISA). The rat model of myocardial infarction was set up by the coronary artery ligation . The 120 rats were randomly divided into sham operation group (Sham group), solvent control group (Vehic group), no-load lentiviral group (EGFP / BMSCs group), BFGF fusion gene lentivirus group (BFGF / BMSCs) and FGF4 - BFGF4 fusion gene lentivirus group (FGF4-BFGF/BMSCs group). The 24 rats of each group were divided into four sub-groups on the 3rd d, 7th d, 14th d, and 28th d after the operation. The local myocardial infarct area of the corresponding experimental animals was injected with 100ul 1×PBS solution or 2×106 cells after the model of myocardial infarction was set up for 30 - 60min. The Yihong - hematoxylin (Hematoxylin Eosin, HE) staining was used to observe the myocardial pathological changes after transplantation, and the laser scanning confocal microscope (LSCM) was used to observe the transplanted cell survival and differentiation. Western-blot was adopted to detect the infracted myocardial tissue BFGF protein expression of the experimental rats, and immunohistochemistry (IHC) was adopted to detect the positive expression of Factor VIII. Western-blot and Real Time Q-PCR were adopted to detect the apoptosis regulatory genes Bcl - 2, Bax mRNA and protein expression. In situ nick end labeling (TdT-mediated dUTP nick end labeling, TUNEL) was adopted to detect apoptotic index Detect Change. IHC was adopted to detect the protein expression of MMP-9, TIMP-1. Masson staining was adopted to detect the myocardial collagen fiber changes, and parallel digital high frame rate echocardiography was adopted to observe the conditions of cardiac function of the experimental rats after 28 days of the cell transplantation.
     Results Primary cultured BMSCs adhered to and stretched into polygon or spindle within 24 hours. The first 3 days was the relative inhibition period, and then the cell proliferation accelerated gradually in a pattern of logarithm and reached the period of plateau by Day 7 or so, with a 90% cell coverage. The number of P3 BMSCs can reach 106 2 weeks later, and that can satisfy the required number of cell transplantation. The signs of BMSCs with positive CD29, CD44, CD90 and negative CD34, CD45 were detected by the flow cytometry, and that is consisted with the characteristics of BMSCs. In-Fusion technology was adopted to construct the FGF4-BFGF fusion gene recombinant lentiviral vector. The lentiviral vector was identified entirely correct by PCR, enzyme digestion and sequencing, and the transfected 293T cells were identified to express correctly. The optimum MOI of BMSCs was 10 with the 1×10~8TU/ml lentiviral titer. BMSCs infected by FGF4-BFGF fusion gene recombinant lentiviral vector can express and secrete BFGF protein efficiently. Compared with Sham group, the myocardial tissue pathological changes were significantly lighter in the FGF4-BFGF/BMSCs group than in other groups, on the 3rd d, 7th d, 14th d, 28th d after the myocardial infarction model was set up. The survival number of transplanted cells was significantly larger in this group (P <0.05) than in other groups on the 28th d of the coronary ligation, but there were few cardiomyocyte-like cells visible except some transplanted cells with the host myocardial cell fusion. In addition, BFGF, Bcl-2, TIMP-1 were up-regulated, whereas Bax MMP-9 levels were decreased; the microvessel density was noticeably increased, whereas the apoptotic index was significantly reduced in the myocardial infarct areas of Vehic group, EGFP / BMSCs group, BFGF / BMSCs group, and FGF4-BFGF/BMSCs Group. These changes were of statistical significance (P <0.05). Compared with the other groups, collagen fibers in the myocardial infarct area decreased, myocardial cells increased and the left ventricular wall was thickened in FGF4-BFGF/BMSCs group. The cardiac function was significantly improved on the 28th d after transplantation (P <0.05), close to that of the shame group.
     Conclusion Highly purified BMSCs can be separated by adherent Screening method. BMSCs proliferate quickly in vitro. Due to their differentiations, BMSCs are good seed cells for treating myocardial infarction through transplantation. In-Fusion technology can be adopted to construct the FGF4-BFGF & EGFP fusion gene recombinant lentiviral vector, which can express and secrete BFGF protein efficiently. The modified BMSCs improve the rat cardiac function after myocardial infarction via angiogenesis promotion, anti-cardiomyocyte apoptosis and ventricular remodeling inhibition.
引文
[1] Sailam V, Karalis DG, Agarwal A, et al. Prevalence of emerging cardiovascular risk factors in younger individuals with a family history of premature coronary heart disease and low Framingham risk score. Clin Cardiol [J]. 2008, 31(11):542-545.
    [2]孟庆义主编.急性心肌梗死[M].北京:科学技术文献出版社, 2005.4,1.
    [3]卫生部心血管病防治研究中心.中国心血管病报告2005 [M].北京:中国大百科全书出版社,2006.1,131.
    [4] Salam AM. Selective aldosterone blockadewith eplerenone in patients with congestive heart failure. Expert Opin Invest Drugs. 2003,12:1423-1427.
    [5] Uren NG, Schwarzacher SP, Metz JA, et al. Predictors and outcomes of stent thrombosis: an intravascular ultrasound registry [J]. Eur Heart J. 2002,23(2):124-32.
    [6] TOMITA S, MICKLE D A, WEISEL R D, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation [J]. Thorac Cardiovasc Surg. 2002.123(6):1132-1140.
    [7]朱志勇,周庆国,魏毅东,等.骨髓间质干细胞静脉移植治疗大鼠急性心肌梗死的实验研究[J].临床心血管病杂志. 2006,22(3):161-163.
    [8] Krause DS. Plasticity of marrow-derived stem cells [J]. Gene Ther. 2002, 9(11):754-758.
    [9] Meirelles Lda S, Nardi NB. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization [J]. Br J Haematol. 2003(4), 123:702-711.
    [10] Van der Bogt KE, Schrepfer S, Yu J, et al. Comparison of transplantation of adipose tissue and bone marrow-derived mesenchymal stem cells in the infarcted heart [J]. Transplantation. 2009,87(5):642-652.
    [11] Toma C, Pittenger MF, Cahill KS et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart [J]. Circulation. 2002,105(1):93-98.
    [12] Tang YL, Tang Y, Zhang YC, et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector [J]. J Am Coll Cardiol. 2005,46(7):1339-1350.
    [13] Urbanek K, RotaM, Cascapera S, et al. Cardiac stem cells possess growth factor receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long term survival [J]. Circ Res.2005, 97(7):615-617.
    [14] Kucia M. Cells expressing early cardiac markers reside in the bonemarrow and are mobilized into the peripheralblood after myocardial infarction [J]. Circ Res. 2004,95(12):1191-1199.
    [15] Zhang C, Yang J, Feng J, et al. Short-term administration of basic fibroblast growth factor enhances coronary collateral development without exacerbating atherosclerosis and balloon injury-induced vasoproliferation in atherosclerotic rabbits with acute myocardial infarction [J]. J Lab Clin Med. 2002,140(2):119-125
    [16] Iwai-Kanai E, Hasegawa K, Fujita M, et al. Basic fibroblast growth factor protects cardiac myocytes from iNOS-mediated apoptosis [J]. J Cell Physiol. 2002,190(1):54-62
    [17] Grines C, Rubanyi GM, Kleiman NS, et al. Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease [J]. Am J Cardiol. 2003,92(9B):24N-31N.
    [18] Schierling W, Troidl K, Troidl C, et al. The Role of Angiogenic Growth Factors in Arteriogenesis [J]. J Vasc Res. 2009,46(4):365-374.
    [19] Abdul Rahman H, Manzor NF, Tan GC, et al. Upregulation of SOX-2, FZD9, Nestin, OCT-4 and FGF-4 expression in human chorion derived-stem cells after angiogenic induction [J]. Med J Malaysia. 2008,63(Suppl A):57-58.
    [20] Yayon A, Klagsbrun M. Autocrine regulation of cell growth and transformation by basic fibroblast growth factor [J]. Cancer Metastasis Rev. 1990,9(3):191-202.
    [21] Sohn YD, Lim HJ, Hwang KC, et al. A novel recombinant basic fibroblast growth factor and its secretion [J]. Biochem Biophys Res Commun. 2001,284(4):931-936.
    [22] Gao MH, Lai NC, Hammond HK. Signal peptide increases the efficacy of angiogenic gene transfer for treatment of myocardial ischemia [J]. Hum Gene Ther. 2005,16(9):1058-1064.
    [23] Cohnheim, J. Ueber Entzundung and Eiterung [J]. Arch Path Anat Physiol Med. 1867,40:1-79
    [24] Friedenstein AJ,Petrakova KV,Kurolesova AI.Heterotopic transplants of bone marrow.Analysis of precursor cells for osteogenic and hematopoietic tissues [J].Trans-platation. 1968,6(2):230-247.
    [25] Hassink RJ,Goumans MJ,Mummery CL,et al.Human stem cells shape the future of cardiac regeneration research[J]. Int J Cardiol. 2004,95(Suppl1):S20-S22.
    [26] Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics [J]. Circ Res. 2004,95(1):9-20.
    [27] Biondi-Zoccai GG, Abbate A, Vasaturo F, et al. Increased apoptosis in remote non-infarcted myocardium in multivessel coronary disease [J]. Int J Cardiol. 2004,94(1):105-10.
    [28]陈绍良.急性心肌梗死细胞再生治疗进展[J].临床内科杂志. 2007,24(1): 5-6.
    [29]赵蓓,吴岩.骨髓干细胞治疗心肌梗死临床应用现状与前景[J].中国组织工程研究与临床康复. 2008, 12(3):551-554
    [30]温铭杰,刘冰,孙丽翠人,等. VEGF和bFGF基因联合治疗大鼠急性心肌梗死[J].首都医科大学学报. 2006,27(5):627-630
    [31] Mackay AM, Beck SC, Murphy JM, et al.Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow [J]. Tissue Eng. 1998, 4(4):415-428.
    [32] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science. 1999,284(5411):143-147.
    [33] Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow [J]. Nature. 2002,418(6893):41-49.
    [34] Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinicaluses [J]. Exp Hematol. 2000,28(8):875-884.
    [35] Majumdar MK, Thiede MA, Mosca JD, Moorman M, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells [J] . J Cell Physiol. 1998,176(1):57-66.
    [36] Javazon EH, Colter DC, Schwarz EJ, et al. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells [J]. Stem Cells. 2001,19(3):219-25.
    [37] Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody STRO-1 [J]. Blood. 1991,78(1):55-62.
    [38] Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow [J]. Proc Natl Acad Sci U S A. 2000, 97(7):3213-8.
    [39] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997, 276(5309):71-74.
    [40] Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons [J]. J Neurosci Res. 2000, 61(4):364-370.
    [41] Wakitani S, Saito T, Caplan AI.Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacy tidine [J]. Muscle Nerve. 1995, 18(12):1417-1426.
    [42] Muraki K, HiroseM, KotobukiN, et al1 Technical report: assessment of viability and osteogenic ability of human mesenchymal stem cells after being stored in suspension for clinical transplantation [J]. Tissue Eng. 2006,12(6): 1711-1719
    [43] Francis DJ, Parish CR, McGarry M, et al. Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation [J]. Circ Res. 2003,92(8):70-77
    [44] Laham RJ, Chronos NA, Pike M, et al. Intracoronary basic fibroblastgrowth factor ( FGF-2) in patients with severe ischemic heart disease , results of a phaseI open-label dose escalation study [J]. J Am Coll Cardiol, 2000,36 (7):2132-2139
    [45]邵耕,胡大一,主编.现代冠心病[M].北京:北京大学医学出版社. 2006. 8,950-954
    [46] Patsone G, Pasquale EB, Maher PA. Different mambrane of the fibro blast growth factor receptor family are specific to distinct cell typesi the developing chicken embryo [J]. Dev Biol,1993,155(1):107-123.
    [47] Hamada J, Cavanaugh PC, Lotan O. Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for metastasis [J]. Br J Cancer. 1992,66(2):349-354
    [48] Allouche M, Bikfalvi A. The role of fibroblast growth factor-2 (FGF-2) in hematopoiesis [J]. Prog Growth Factor Res. 1995,6(1):35-48.
    [49] Henry TD, Grines CL, Watkins MW, et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol. 2007, 50(11):1038-1046.
    [50] Crystal RG. Transfer of genes to humans: early lessons and obstacles to success [J]. Science. 1995,270(5235):404-410.
    [51] Dani SU.The challenge of vector development in gene therapy [J]. Braz J Med Biol Res. 1999,32(2):133-145.
    [52] Bai Y, Soda Y, Izawa K, et al. Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector [J]. Gene Ther. 2003,10(17):1446-1457.
    [53] Ruitenberg MJ, Plant GW, Christensen CL, et al. Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord [J]. Gene Ther. 2002,9(2):135-146.
    [54] Hendriks WT, Ruitenberg MJ, Blits B, et al. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord [J]. Prog Brain Res, 2004,146:451-476.
    [55] Tenenbaum L,Lehtonen E,Monahan PE.Evaluation of risks related to the use of adeno-associated virus-based vectors [J]. Curr Gene Ther. 2003,3(6):545-565.
    [56] Yoshimitsu M, Sato T, Tao K, et al. Bioluminescent imaging of a markingtransgene and correction of Fabry mice by neonatal injection of recombinant lentiviral vectors [J]. Proc Natl Acad Sci U S A. 2004,101(48):16909-16914.
    [57] Oka M , Chang L J , Costantini F, et al. Lentiviral vector mediated gene transfer in embryonic stem cells [J]. Methods Mol Biol. 2006,329:273-281.
    [58] Frankel AD, Young JA. HIV-Ⅰ:fifteen proteins and an RNA [J]. Annu Rev Biochem,1998,67:1-25
    [59] Kafri T, van Praag H, Ouyang L, et al. A packaging cell line for lentivirus vectors [J]. J Virol. 1999,73(1):576-584
    [60] Reiser J, Lai Z, Zhang XY, et al. Development of multigeneand regulated lentivirus vectors [J]. J Virol. 2000,74(22):10589-10599
    [61] Lois C, Hong EJ, Pease S S, et al. Germline transmission and tissue specific expression of transgenes delivered by lentiviral vectors [J]. Science, 2002, 295 (5556):868-872
    [62]宫明,李旭.报告基因[J].生命的化学. 2000,20(3):126-127
    [63] Gerdes HH, Kaether C. Greenfluorescent protein: application incellbiology [J]. FEBS Lett. 1996,389:44-47.
    [64] Ward WW. Biochemical and physical properties of green fluorescent protein [J]. Methods Biochem Anal. 2006,47:39-65.
    [65] Heim R, Cubitt AB, Tsien RY. Improved green fluorescence [J]. Nature. 1995,373(6516):663-664.
    [66] Rae F, WoodsK, Sasmono T, et al. Characterisation and trophic functionsM of murine embryonic macrophages based upon the use of a Csf1r EGFP transgene reporter [J]. Dev Biol. 2007,308(1):232-246.
    [67] Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase [J]. Science. 1988,239(4839):487-491.
    [68] Kubista M, Andrade JM, Bengtsson M, et al. The real-time polymerase chain reaction [J]. Mol Aspects Med. 2006,27(2-3):95-125.
    [69] Marchuk D, Drumm M, Saulino A, et al. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products [J]. NucleicAcids Res. 1991,19(5):1154.
    [70] Ichihara Y, Kurosawa Y. Construction of new T vectors for direct cloning of PCR products. Gene. 1993,130(1):153-154.
    [71] Tsang TC, Harris DT, Akporiaye ET, et al. Simple method for adapting DNA fragments and PCR products to all of the commonly used restriction sites [J]. Biotechniques. 1996,20(1):51-52.
    [72] Walhout AJ, Temple GF, Brasch MA, et al. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes [J]. Methods Enzymol. 2000,328:575-592.
    [73] Klock HE, White A, Koesema E, et al. Methods and results for semi-automated cloning using integrated robotics [J]. J Struct Funct Genomics. 2005,6(2-3):89-94.
    [74]张蓓,沈立松.实时荧光定量PCR的研究进展及其应用.国外医学临床生物化学与检验学分册. 2003,24(6):327-329.
    [75] Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell. 2000,101(2) :173-185.
    [76] McMahon JM, Conroy S, Lyons M, et al. Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev. 2006,15(1):87-96.
    [77] Zhang XY, La Russa VF, Reiser J. Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol. 2004,78(3):1219-1229.
    [78] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro [J]. J Clin Invest. 1999,103(5):697-705.
    [79] Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages [J]. J Thorac Cardiovasc Surg. 2000,120(5):999-1005.
    [80] Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium [J]. Nature. 2001,410(6829):701-705.
    [81] Strauer BE, Brehm M, Zeus T, et al. Intracoronaryhuman autologous stem cells transp lntation for myocardial regeneration following myoca- rdial infarction [J]. Dtsch Med Wochenscher. 2001,126 (34-35):932-938
    [82] Christof stamm, BerndW estphal, Hans2D ieter Kleine, et al. Autologous bone marrow stem cell transplantation for myocardial regeneration. Lancet 2003,361 (9351):45-46
    [83]汪进益,范慧敏,刘中民,等.细胞移植研究大鼠心肌梗死动物模型的建立.实验动物与比较医学. 2007,27(3):149-153
    [84] Jin X, Chen YC, Liu WQ, et al. Estradiol promote myocardial angiogenesis in a rat model of acute myocardial infarction through estrogen receptors [J]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2008,39(3):398-401.
    [85] Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft cell death and antideath strategies [J]. J Mol Cell Cardiol. 2001,33(5): 907-921.
    [86] Li W, Ma N, Ong LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function [J]. Stem cell. 2007,25(5):2118-2127
    [87] Chedarwy EC, Wang JS, Nguyen DM, et al. Ineoproration and integration of implanted myogenicnad stem cells into native myoeardial fibers:anatomic basis for functional improvements [J]. J Thorac Cardiovase Surg. 2002,124(3):584-590.
    [88] Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial [J]. Lancet. 2004,363(9411):751-756
    [89] Vulliet PR, Greeley M, Halloran SM, et al. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs.Lancet. 2004, 363 (9411): 783-784.
    [90] Schuster MD, Kocher AA, Seki T, et al. Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration [J]. Am J PhysiolHeart Circ Physiol. 2004,287(2):H525-H532.
    [91] Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction [J]. Eur Heart J. 2006,27(9):1114-1122.
    [92] Zhang G, Wang X, Wang Z, et al. A PEGylated fibrin patch for mesenchymal stem cell delivery [J]. Tissue Eng. 2006,12(1):9-19.
    [93] Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003,361(9351):45-46.
    [94]贾敏,卢沛琦,冯若,等.骨髓间充质干细胞不同移植方法对急性心肌梗死心功能的改善作用比较[J].中国组织工程研究与临床康复. 2007, 11(11):03-18
    [95] Strauer BE,Brehm M, Zeus T, et al. Repairof infarctedmyocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans [J]. Circulation. 2002,106(11):1913-1918.
    [96] Jinjun LU, Gengshan LI, Guosheng LI,et al. Antologous trnasplantation of bone marrow mononuelear cells imporves hert function atfer myocardial inafrction [J]. Actaphamracologica.sinica. 2004,25(8):876-886.
    [97] Ma J, Ge J,BittiraB, et al. Time course ofmyocardial stromal cell2derived factor expression and beneficial effects of intravenously administered bone marrow stem cells in ratswith experimentalmyocardial infarction [J]. Basic Res Cardiol. 2005,100(3):217-223.
    [98]曹丰,贾国良,牛丽丽,等.移植时机对骨髓间充质干细胞修复梗死心肌的影响[J].第四军医大学学报, 2005,26(1):22-27
    [99] Zhnag M, Methot D, PoPPa V, et al. Cardiomyoeyte gratfing for cardiac repair: gratf cell death and anti-death strategies [J]. J Mol Cell Cardiol. 2001,33(5):907-921.
    [100] Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologousporcine bonemarrow stromal cell transplantation [J]. J Thorac Cardiovasc Surg. 2002,123( 6):1132-1140.
    [101] Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrowcells improves damaged heart function [J]. Circulation. 1999,100[19 suppl]: II247-II256.
    [102] BittiraB, Kuang JQ, Al-Khaldi A, et al. In vitro preprogramming of marrow stromal cells for myocardial regeneration [J]. Ann Thorac Surg. 2002,74(4):1154-1160
    [103] Phillips BW, Belmonte N, Vernochet C, et al. Compactin enhances BMSCs osteogenesis in murine embryonic stem cells [J]. Biochem Biophys Res Commun. 2001,284(2):478-484.
    [104] Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J]. Nature. 2003,425(6961):968–973.
    [105] Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion [J]. Nature. 2002,416(6880):542–545.
    [106] Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA. 2003,100(21): 12313–12318.
    [107]芦丽莉,陈吉田,刘艳波,等.地塞米松在大鼠时对心肌细胞保护作用的实验研究[J].中国现代医学杂志. 2006,16(3):398-403.
    [108] STACEY L HOUSE, KEVIN BRANCH, GILBERT NEWMAN, et al. Cardioprotection induced by cardiac-specific over expressionof fibroblast growth factor-2 is mediated by the MAPK cascade [J]. Am J Physiol Heart Circ Physiol. 2005,289(22):2167-2175.
    [109] Zhao ZQ, Velez DA, Wang NP, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion [J]. Apoptosis. 2001,6(4): 279-290
    [110]姜志胜,符民桂,赵文,等.碱性成纤维细胞生长因子拮抗大鼠心肌细胞缺氧/复氧损伤的机制[J].北京医科大学学报. 2000,32(2):134-137.
    [111] Wang Yiyang, Ahmad Nauman, Maqsood AW, et al. Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis [J]. Journal of Molecular and Cellular Cardiology. 2004,37(5):1041-1052.
    [112] Romanic AM, Burns-Kurtis CL, Gout B, et al. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit [J]. Life Sci. 2001,68(7):799-814.
    [113] Etoh T, Joffs C, Desehxnaps AM, et al. Myoeardi and intesrtitial martix metalloporteinase activity after acute myocardial infraction in pigs [J]. Am J Phyiol Heart Circ Physiol. 2001,281(3):H987-H994.
    [114] Rohde EL, Duehnnae A, Aorryo LH, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice [J]. Circulation. 1999,99(23):3063-70.
    [115] Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction [J]. J Clin Invest. 2000, 106(1):55-62.
    [116] Heymans S, Luttun A, Nuyens D,et al. Inhibition of plasminogen activators or matrix metalloproteinase prevents cardiac rupture but impaires therapeutic angiogenesis and causes cardiac failure [J]. Nat Med. 1999,5(10):1135-1142.
    [117] Hirogata S,Kusachi S,Murakami M,et al.Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction [J]. Heart. 1997,78(3):278-284.
    [118] Romanic AM, Burns-Kurtis CL, Gout B, et al. Matrix metallo proteinase expression in cardiae myocytes following myoeardial infaretion in the rabbit [J]. Life Sei. 2001,68(7):799-814.
    [119] Creemers EE, Davis JN, Parkhurst AM, et al. Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice [J]. Am J Physiol Heart Circ Physiol. 2003,284(1):H364- H371.
    [120] Yarbrough WM, Mukherjee R, Brinsa TA, et al. Matrix metalloproteinase inhibition modifies left ventricular remodeling after myocardial infarction in pigs [J]. J Thorac Cardiovasc Surg. 2003,125(3):602-610.
    01.Jeon O, Hwang KC, Yoo KJ, et al. Combined sustained delivery of basic fibroblast growth factor and administration of granulocyte colony-stimulating factor: synergistic effect on angiogenesis in mouse ischemic limbs[J]. J Endovasc Ther. 2006 ,13(2):175-181
    02.Levin EG, Sikora L, Ding L, et al. Supp ression of tumor growth and angiogenesis in vivo by a truncated form of 24 - kd fibroblast growth factor ( FGF) - 2[J]. Am J Pathol, 2004, 164 (4): 1183 - 1190
    03.Nakae M, Kamiya H, Naruse K, Horio N, et al. Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats[J].Diabetes. 2006 ,55(5):1470-1477
    04.Hsuan SL, Klintworth HM, Xia Z. Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways[J].J Neurosci. 2006 ,26(17):4481-4491
    05.Khnykin D, Troen G, Berner JM, Delabie J. The expression of fibroblast growth factors and their receptors in Hodgkin's lymphoma[J]. J Pathol. 2006 ;208(3):431-438.
    06.Chua CC, Rahimi N, Forsten-Williams K, et al. Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2[J]. Circ Res. 2004 ,94(3):316-323
    07.Banai S , Shweiki D , Pinson A , et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischemia :implication for coronary angiogenesis[J]. Cardiovasc Res , 1994 ,28 (8):1176-1179
    08.Cuevas P , Barrios V , Gimenez2Gallego G, et al. Serum levels of basic fibroblast growth factor in acute myocardial infarction[J]. Eur J Med Res ,1997 , 2 (7) : 282– 284
    09.Zhang C, Yang J, Feng J, et al. Short-term administration of basic fibroblastgrowth factor enhances coronary collateral development without exacerbating atherosclerosis and balloon injury-induced vasoproliferation in atherosclerotic rabbits with acute myocardial infarction[J]. J Lab Clin Med. 2002 ,140(2):119-125
    10.Iwai-Kanai E, Hasegawa K, Fujita M, et al. Basic fibroblast growth factor protects cardiac myocytes from iNOS-mediated apoptosis[J]. J Cell Physiol. 2002 ,190(1):54-62
    11.Kawasuji M , Nagamine H , Ikeda M , et al. Therapeutic angiogenesis with intramyocardial administration of basic fibroblast growth factor[J]. Ann Thorac Surg , 2000 , 69 (4):1155-1161
    12.Iwakura A, Fujita M, Kataoka K, et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model[J]. Heart Vessels. 2003 ,18(2):93-99
    13.Nakajima H, Sakakibara Y, Tambara K, et al. Therapeutic angiogenesis by the controlled release of basic fibroblast growth factor for ischemic limb and heart injury: toward safety and minimal invasiveness[J].J Artif Organs. 2004;7(2):58-61
    14.Shao ZQ, Takaji K, Katayama Y, et al. Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model [J]. Circ J. 2006 Apr;70(4):471-4777
    15.Udelson J E , Dilsizian V , Laham RJ, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease[J]. Circulation ,2000 ,102 (4):1605-1610
    16.Laham RJ, Chronos NA, Pike M, et al. Intracoronary basic fibroblastgrowth factor ( FGF-2) in patients with severe ischemic heart disease , results of a phase I open-label dose escalation study[J]. J Am Coll Cardiol ,2000 ,36 (7) :2132-2139
    17.Hao X, Mansson-Broberg A, Gustafsson T, et al. Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction[J].Biochem Biophys Res Commun. 2004 ,315(4):1058-1063
    18.Cao R, Eriksson A, Kubo H, et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, andpermeability[J]. Circ Res. 2004 ,94(5):664-670
    19.Francis DJ, Parish CR, McGarry M, et al. Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation[J]. Circ Res. 2003 ,92(8):70-77
    20.Biswas SS, Hughes GC, Scarborough JE, et al. Intramyocardial and intracoronary basic fibroblast growth factor in porcine hibernating myocardium: a comparative study [J]. J Thorac Cardiovasc Surg. 2004 ,127(1):34-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700