TNF-α拮抗肽缓释微球及其长循环纳米粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤坏死因子α(tumor necrosis factor alpha, TNF-α)在类风湿关节炎、内毒性休克等疾病发生和发展中起重要作用,并导致较高死亡率。前期研究表明,TNF-α拮抗肽(Tumor Necrosis Factor alpha Blocking Peptide ,TNF-BP)生物效应明确,有可能成为抗TNF相关疾病的新型肽类药物。但是,TNF-BP稳定性差、生物半衰期短,难以直接应用于临床。本文分别以乳酸-羟基乙酸共聚物(poly (lactide-co–glycolic acid) , PLGA )和PEG修饰的PLGA ( polyethyleneglycol-modified poly ( d,l-lactide-co-glycolide),PEG-PLGA )为载体材料,制备了载TNF-BP的PLGA长效缓释微球和载TNF-BP的PEG-PLGA长循环纳米粒,为TNF-BP临床应用提供实验依据。主要开展了以下工作:
     (1)研究了载TNF-BP的PLGA长效缓释微球。以TNF-BP为药物,PLGA为载体,通过二次乳化法制备了TNF-BP长效缓释微球,并对所制得的微球进行了表征评价。为了筛选配方的最佳条件,在单因素考察的基础上,通过正交表L16(45)的设计试验,考察了不同因素水平对微球载药量和包封率的影响。采用光学显微镜、扫描电子显微镜、激光散射仪等技术对PLGA微球进行了表征。
     对制备的微球采用冷冻干燥技术制备TNF-BP长效缓释微球的冻干粉。通过冷冻干燥工艺的研究,评价了葡萄糖、蔗糖和甘露醇3种多元醇对微球冷冻干燥的影响。
     对制备的载药微球进行体外释药研究,并对释药行为进行药物释放数学模型拟合。
     (2)研究了载TNF-BP的PEG-PLGA长循环纳米粒。以TNF-BP为药物,PEG-PLGA为载体,通过溶剂挥发法制备具有长循环效能的TNF-BP长循环纳米粒,并对所制得的纳米粒进行了表征评价。为了筛选配方的最佳条件,考察了不同因素对纳米粒粒径及粒径分布的影响。采用透射电子显微镜、激光散射仪等技术对PEG-PLGA纳米粒进行了表征。
     对制备的纳米粒进行体外释药研究,并对释药行为进行了药物释放数学模型拟合。
     对制备的载药纳米粒进行了初步生物学效应的研究,采用流式细胞仪检测了腹腔巨噬细胞对PEG-PLGA纳米粒的吞噬作用,同时采用Western-blot研究了纳米粒对TNF-BP的保护作用。
     通过以上研究获得了以下结果:
     (1)通过二次乳化法,采用优化后的工艺制备所得PLGA微球,平均粒径为(10.23±0.03)μm,平均载药量为(13.39±0.29)%,平均药物包封率为(83.54±0.24%)。
     (2)冷冻干燥对微球的形态和结构都会产生较大影响,因此必须加入冻干保护剂。在葡萄糖、蔗糖和甘露醇3种多元醇冻干保护剂中,3%的甘露醇具有较好的效果。
     (3)TNF-BP微球具有良好的缓释效果,其体外释药行为符合双相动力学模型方程,回归方程为: Q = ?0 .010+38.856·(1-e~(-t/0.496))+27.96·(1-e~(-t/50.004))。
     (4)通过溶剂挥发法采用优化后的工艺制备所得PEG-PLGA纳米粒,平均粒径为(80.8±0.6) nm;粒径分布为(0.073±0.034);平均Zeta电位为(-17.90±1.00) mV;平均载药量为(1.22±0.15%);平均药物包封率为(56.10±7.49)%。
     (5)PEG-PLGA纳米粒体外释药24 h时,累计释放达到71.85%,表现出TNF-BP纳米粒释放效率极高,对于内毒素性休克引发的急性肺损伤具有极为重要的意义。纳米粒的体外释药符合双相动力学模型方程,回归方程为: Q = 0 .008+36.710·(1-e~(-t/0.134))+34.705·(1-e~(-t/2.580))。
     (6)制备的PEG修饰的载药纳米粒能有效避免吞噬,达到长循环的目的,此外,长循环纳米粒对载附的药物TNF-BP具有很高的保护作用。
Tumor Necrosis Factor alpha blocking peptide (TNF-BP), a cycle-seven-peptide, which was shown to be capable to block the biological activities of TNF-α, can protect the joint from inflammol/Latory damage induced by rheumatoid arthritis and reduce the damage from Acute Lung Trauma induced by Endotoxic Shock. The major problem for the application of TNF-BP is that it is a small peptide with molecular weight about 1 kDa so that its half-life time in blood circulation is very short. These often results in low bioavailability. In order to overcome the problems, drug carriers are needed to sustained-release, control delivery and extend half-life of TNF-BP. Two novel drug carriers as sustained-release microspheres and long-circulating nanoparticles would be suitable for our purpose. Poly (lactide-co–glycolic acid) (PLGA), as a biocompatible and slowly degradable polymer, has been targeting, widely used in drug delivery systems, especially in drug-controlled release.
     The dissertation consists of two parts. In partⅠ, the subject was to explore the methods of coupling TNF-BP to PLGA microspheres based on double emulsion process, and provide references for the study of targeting, sustained and controlled release delivery systems of TNF-BP. In order to gain the best parameters for preparing PLGA microspheres, the influences of different factors on average drug loading and average entrapment efficiency of PLGA microspheres were evaluated by orthogonal-designing method using L16(45) table. The physicochemical properties of PLGA microspheres were investigated in detail by using optical microscope, scanning electronic microscope (SEM) and laser dynamic scattering. The average particle size of PLGA microspheres was (10.23±0.026)μm. The average drug loading and the average entrapment efficiency were (13.39±0.286)%, (83.54±0.241) % respectively.
     The lyophilized powders of TNF-BP-loaded PLGA microspheres were obtained in order to enhance the stability. Glucose, sucrose and mannitol were used as cryoprotectants in the freeze-drying process. Mannitol, concentration in 3%, was selected as the optimum cryoprotectant due to the minimum change of physicochemical properties of PLGA microspheres before and after freeze-drying process.
     In vitro releasing property of TNF-BP PLGA microspheres was studied and the drug releasing performance was good. TNF-BP releasing from PLGA microspheres in vitro could be described by double phase dynamic model and could be described by the following equation: Q = ?0. 010+38.856·(1-e~(-t/0.496))+27.96·(1-e~(-t/50.004)).
     In partⅡ, the subject was to explore the methods of coupling TNF-BP to polyethyleneglycol-modified poly ( d,l-lactide-co-glycolide ) ( PEG-PLGA ) nanoparticles based on solvent evaporation process, and provide references for the study of targeting, sustained and controlled release delivery systems of TNF-BP. In order to gain the best parameters for preparing PEG-PLGA nanoparticles, the influences of some factors on average particle size and polydispersity index (PDI) of PEG-PLGA nanoparticles such as the type of polymer, the polymer concentration, the type of emulsifiers and the emulsifier concentration were studied. The size, morphology and zeta potential of PEG-PLGA nanoparticles were investigated in detail by using transmission electronic microscope (TEM), Zeta potential analysis and laser dynamic scattering. The average particle size and the average PDI of PEG-PLGA nanoparticles were(80.8±0.6) nm, (0.073±0.034). The average drug loading and the average entrapment efficiency were (1.22±0.15) %, (56.10±7.49) % respectively. And the average zeta potential was (-17.90±1.00) mV.
     In vitro releasing property of PEG-PLGA nanoparticles was studied and the release of PEG-PLGA nanoparticles was 71.85% for 24 h. TNF-BP releasing from PEG-PLGA nanoparticles in vitro could be described by double phase dynamic model and could be described by the following equation: Q = 0. 008+36.710·(1-e~(-t/0.134))+34.705·(1-e~(-t/2.580)). The in vitro release results showed that the peptide released fast which was probably attributed to the TNF-BP adsorbed to the surface of nanoparticles by electrostatic interactions. The pattern of the fast release may be useful for treatment of acute diseases, such as endotoxic shock and multi-organ function failure.
     In vitro uptake of PEG-PLGA nanoparticles by murine peritoneal macrophages (MPM) was analyzed by a flow cytometry. The results indicated that the nanoparticles modified with PEG could reduce the uptake by MPM. Western-blot was used to detect the content of IκB in order to assess the ability of the protection to TNF-BP by the PEG-PLGA nanoparticles. The results showed that PEG-PLGA nanoparticles give high protection to TNF-BP.
引文
[1]何亚萍,李卓娅,姜晓丹等. TNF-α受体封闭肽对大鼠佐剂性关节炎的影响[J].药学学报, 2003, 38(12): 889-892
    [2] Arend W, Dayer J. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor-αin rheumatoid arthritis[J]. Arthritis Rheum, 1995, 38(2): 151-160
    [3] Brennan FM, Feldrnann M. Cytokines in autoimmunity[J]. Current Opinion in Immunology, 1996, 8: 872-877
    [4]何亚萍. TNF-α与IL-1在类风湿性关节炎的发生和发展中的作用及其对策[D].武汉:华中科技大学, 2000
    [5]张义浜.类风湿关节炎发病机制及其治疗方法研究进展[J].细胞与分子免疫学杂志, 2005, 12: 88-91
    [6] Kollias G, Kontoyiannis D. Role of TNF/TNFR in autoimmunity: specific TNF receptor blockade may be advantageous to anti-TNF treatments[J]. Cytokine & Growth Factor Reviews, 2002, 13: 315-321
    [7]李莉,李卓娅,李清芬等.跨膜型与分泌型TNF对中性粒细胞功能的影响[J].中华微生物学和免疫学杂志, 2001, 21(4): 453-455
    [8]聂英坤,张凤山,孙凤琴.类风湿性关节炎的治疗现状与进展[J].临床荟萃, 2004, 19(2): 119-120
    [9] Feldmann M. Immunotherapy[J]. Current Opinion in Immunology, 2001, 13: 595-596
    [10]朱江,王毅,张震宇.类风湿性关节炎及骨性关节炎关节滑液TNF-α水平的相关性[J].哈尔滨医科大学学报, 2004, 38(6): 553-555
    [11] Feldmann M, Brennan FM, Maini RN. Rheumatoid Arthritis[J]. Cell., 1996, 85: 307-310
    [12]刘畼.肿瘤坏死因子-α与类风湿性关节炎[J].标记免疫分析与临床, 2003, 10(3): 174-176
    [13] Feldmann M, Maini RN. Discovery of TNF-αas a therapeutic target in rheumatoidarthritis: preclinical and clinical studies[J]. Joint Bone Spine., 2002, 69: 8-12
    [14] Feige U HY, et al. Anti-interleukin-1 and anti-tumornecrosis factor-alpha synergistically inhibit adjuvant arthritis in Leuis rats[J]. Cell Mol Life Sci., 2000, 57(10): 1457-1470
    [15]金玄玉.异丙酚对内毒素休克鼠肺保护机制的研究[D].沈阳:中国医科大学, 2002. 71
    [16] Bacher A, Mayer N, Klimscha W, et al. Effects of pentoxifylline on hemodynamics and oxygenation in septic and nonseptic patients[J]. Crit Care Med., 1997, 25: 795-800
    [17] Yang RB, Mark MR, Gurney AL, et al. Signaling events induced by lipopolysac-charide-activated Toll-like receptor 2[J]. J of Immunology, 1999, 163: 639-643
    [18] Wang P, Wu P, Siegel MI, et al. Interleukin ( IL ) - 10 inhibits nuclear factor B ( NF-κB ) activation in human monocytes[J]. J Biol Chem, 1995, 270: 9558-9563
    [19] Vassalli P. The pathophysiology of tumor necrosis factors[J]. Annu Rev Immnunol, 1992, 10: 411-416
    [20] Poll TVd, Lowry SF. Tumor necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defense[J]. Shock, 1995, 3: 112
    [21] Blackwell TS, Christwan JW. Sepsis and cytokines: current status[J]. Br J Anaesth, 1996, 77: 110-117
    [22] Ksontini R, MacKay SL, Moldawer LL. Revisiting the role of tumor necrosis factorαand the response to surgical injury and inflammation[J]. Arch Surg., 1998, 133: 558-567
    [23] Li XY, Donalsson K, Browm D, et al. The role of tumor necrosis factor in increased airspace epithelial permeability[J]. Am J Respir Cell Mol Biol., 1995, 13: 185
    [24] Marks JD, Marks CB, Luce JM, et al. Plasma tumor necrosis factor in patients with septic shock. Mortality rate, incidence of adult respiratory distress syndrome, and effects of methylprednisolone administration[J]. Am Rev Respir Dis., 1990, 141: 94
    [25]尹丙姣,李卓娅,余上斌等.跨膜型和分泌型TNF-α对内毒素性休克过程中的作用[J].中华微生物学和免疫学杂志, 2002, 22: 334-337
    [26]尹丙姣,李卓娅,余上斌等.跨膜型和分泌型肿瘤坏死因子α对内毒素性休克肝的影响及意义[J].中华病理学杂志, 2002, 31(6): 534-537
    [27] Lunm WW, Christwan JW. Risk factors include sepsis, aspiration and trauma ARDS: appreciating the causes, making the diagnosis[J]. J Respir Dis., 1995, 16: 581-590
    [28] Anzueto A, Baughman RP, Guntupalli KK, et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome[J]. N Engl J Med., 1996, 30(334): 1417
    [29] Rankin JA, al e. Macrophages cultured in vitro release leukotriene B4[J]. J Clin Invest., 1990, 85: 1556
    [30]黄杨.白介素-10和一氧化氮抑制内毒素诱导肺泡巨噬细胞核因子-κB活化及肿瘤坏死因子释放的实验研究[D].西安:第四军医大学, 2001: 23-27
    [31] Billiau A, Vandekerckhove F. Cytokines and their interactions with other inflammatory mediators in the pathogenesis of sepsis and septic shock[J]. Eur J Clin Invest, 1991, 21: 559-573
    [32] Bang LM, Keating GM. Adalimumab: a review of its use in rheumatoid arthritis[J]. BioDrugs, 2004, 18(2): 121-139
    [33] Feldmann M, Brennan FM, Bondeson J, et al. Analysis of Cytokine Expression in Rheumatoid Synovium Has Provided New Insights Into the Pathogenesis of Rheumatoid Arthritis and New Therapeutic Opportunities[J]. Transplantation Proceedings, 2001, 33: 2085-2086
    [34] Feldmann M, Brennan FM, Foxwell BMJ, et al. Anti-TNF therapy: Where have we got to in 2005?[J]. Journal of Autoimmunity, 2005, 25: 26-28
    [35] Feldmann M, MJ E, al e. Anti-tumor necrosis factor-αtherapy of rheumatoid arthritis[J]. Adv Immunol, 1997, 4: 283-350
    [36] Maini R, Clair EWS, Breedveld F, et al. Infliximab (chimeric anti-tumour necrosis factorαmonoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial[J]. THE LANCET, 1999, 354: 1932-1939
    [37] Maini RN, Feldmann M. Cytokine therapy in rheumatoid arthritis[J]. THE LANCET, 1996 348: 824-825
    [38]李克江,贾勋超,朱同舜.近几年开发的类风湿性关节炎治疗药物[J].国外医药抗生素分册, 2003, 24(1): 24-29
    [39]罗仕华.类风湿性关节炎的抗TNF治疗[J].上海第二医科大学学报, 2003, 23(3): 276-278
    [40]秦卫松.肿瘤坏死因子-α拮抗剂的研究进展[J].国外医学免疫学分册, 2005, 28(1): 24-27
    [41]王玉树.抗TNF-α治疗类风湿性关节炎进展[J].《国外医学》预防、诊断、治疗用生物制品分册, 2002, 25(4): 168-172
    [42]杨晓光,赵邦荣,赵智.治疗类风湿性关节炎新药[J].临床荟萃, 2005, 20(10): 591-594
    [43]郑方算.类风湿性关节炎的药物治疗[J].国外医药--合成药生化药制剂分册, 1998, 19(4): 209-212
    [44]钟倩.治疗类风湿性关节炎的靶向特效药[J].国外医药--合成药生化药制剂分册, 1999, 20(4): 237-239
    [45] Putte LBAvd, Atkins C, Malaise M, et al. Adalimumab (D2E7) monotherapy in the treatment of patients with severely active rheumatoid arthritis[J]. Arthritis Rheum, 2002, 46(supply): S205
    [46] Lewis AJ, Manning AM. New targets for anti-inflammatory drugs[J]. Current Opinion in Chemical Biology, 1999, 3: 489-494
    [47] Carney DE, Lutz CJ, Picone AL, et al. Soluble Tumor Necrosis Factor Receptor Prevents Post-pump Syndrome[J]. Journal of Surgical Research, 1999, 83(2): 113-121
    [48] Chiang CH, Wu CP, Perng WC, et al. Use of anti-(tumour necrosis factor-alpha) antibody or 3-deaza-adenosine as additives to promote protection by University of Wisconsin solution in ischaemia/reperfusion injury[J]. Clinical Science (London, England: 1979), 2000, 99(3): 215-222
    [49]陈庆华,瞿文.多肽、蛋白质类药物缓释剂型的研究进展[J].中国药学杂志, 2000, 35(3): 147-150
    [50]刘昂,吴梧桐.制剂新技术在多肽、蛋白质类药物给药系统研究中的应用[J].中国现代应用药学杂志, 2003, 20(2): 110-114
    [51] Cleland JL, Daugherty A, Mrsny R. Emerging protein delivery methods[J]. Current Opinion in Biotechnology, 2001, 12(2): 212-219
    [52] Cleland WP. Opportunities and obstacles in veterinary dental drug delivery[J]. Advanced Drug Delivery Reviews, 2001, 50(3): 261-275
    [53] Kwon MJ, Bae JH, Kim JJ, et al. Long acting porous microparticle for pulmonary protein delivery[J]. International Journal of Pharmaceutics, 2007, 333(1/2): 5-9
    [54] Langer R. Biodegradable long-circulating polymeric nanospheres [J]. Science., 1994, 263: 1600-1603
    [55] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J]. Advanced Drug Delivery Reviews., 2003, 55(3): 329-347
    [56]崔福德.药剂学(第5版)[M].北京:人民卫生出版社, 2003: 91
    [57] Langer R. New methods of drug delivery[J]. Science,. 1994, 263: 1715-1720
    [58] Langer R. Drugs on Target[J]. Science., 2001, 293(5527): 58
    [59] LaVan DA, Lynn DM, Langer R. Moving smaller in drug discovery and delivery[J]. Nature Reviews Drug Discovery, 2002, 1: 77-84
    [60] Langer R. Where a Pill Won't Reach[J]. Scientific American, 2003, 288(4): 50
    [61] Lee M, Chen TT, Iruela-Arispe ML, et al. Modulation of protein delivery from modular polymer scaffolds[J]. Biomaterials, 2007, 28(10): 1862-1870
    [62] Cai L, Okumu FW, Cleland JL, et al. A slow release formulation of insulin as a treatment for osteoarthritis[J]. Osteoarthritis and Cartilage, 2002, 10(9): 692-706
    [63] Carelli V, Di Colo G, Guerrini C, et al. Drug release from silicone elastomer through controlled polymer cracking: an extension to macromolecular drugs[J]. International Journal of Pharmaceutics, 1989, 50(3): 181-188
    [64] CHANG A-C, GUPTAX RK. Stabilization of Tetanus Toxoid in Poly(DL-lactic- co-glycolic acid) Microspheres for the Controlled Release of Antigen[J]. Pharmaceutical Science, 1996, 85: 129-133
    [65] Clavreul A, Sindji L, Aubert-Pou毛ssel A, et al. Effect of GDNF-releasing biodegradable microspheres on the function and the survival of intrastriatal fetal ventral mesencephalic cell grafts[J]. European Journal of Pharmaceutics & Biopharmaceutics, 2006, 63(2): 221-228
    [66] Cleland JL, Duenas ET, Park A, et al. Development of poly-(,-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis[J]. Journal of Controlled Release, 2001, 72(1-3): 13-24
    [67] CLELAND JL, LIM A, DAUGHERTY A, et al. Development of a Single-shot Subunit Vaccine for HIV-1. 5. Programmable in Vivo Autoboost and Long Lasting Neutralizing Response[J]. Journal of Pharmaceutical Sciences., 1998, 87: 1489-1494
    [68] Colombo G, Langer R, Kohane DS. Effect of excipient composition on the biocompatibility of bupivacaine-containing microparticles at the sciatic nerve[J]. Journal of Biomedical Materials Research Part A., 2004, 68(4): 651-659
    [69] Franssen O, Stenekes RJH, Hennink WE. Controlled release of a model protein from enzymatically degrading dextran microspheres[J]. Journal of Controlled Release, 1999, 59(2): 219-228
    [70] Fu K, Harrell R, Zinski K, et al. A potential approach for decreasing the burst effect of protein from PLGA microspheres[J]. Journal Of Pharmaceutical Sciences., 2003, 92(8): 1582-1591
    [71] Hanes J, Cleland JL, Langer R. New advances in microsphere-based single-dose vaccines[J]. Advanced Drug Delivery Reviews, 1997, 28(1): 97-119
    [72] Jones AJS, Cleland JL. Technical and regulatory hurdles in delivery aspects of macromolecular drugs[J]. Journal of Controlled Release, 1996, 41(1-2): 147-155
    [73] K. Langer SB, V. Vogel, N. Dinauer, H. von Briesen, D. Schubert. Optimization of the preparation process for human serum albumin (HSA) nanoparticles[J]. International Journal of Pharmaceutics, 2003, 257: 169-180
    [74] Langer R. Delivering Genes[J]. Scientific American, 2003, 288(4): 56
    [75] Okumu FW, Dao LN, Fielder PJ, et al. Sustained delivery of human growth hormone from a novel gel system: SABERTM[J]. Biomaterials, 2002, 23(22): 4353-4358
    [76] Perez C, De Jesus P, Griebenow K. Preservation of lysozyme structure and function upon encapsulation and release from poly(lactic-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method[J]. InternationalJournal of Pharmaceutics, 2002, 248(1-2): 193-206
    [77] Qiang Y, John A, Mark S, et al. DepoFoam(TM) technology: a vehicle for controlled delivery of protein and peptide drugs[J]. Journal of Controlled Release, 2000, 64(1-3): 155-166
    [78] Sano A, Maeda M, Nagahara S, et al. Atelocollagen for protein and gene delivery[J]. Advanced Drug Delivery Reviews, 2003, 55(12): 1651-1677
    [79] Sutter M, Siepmann J, Hennink WE, et al. Recombinant gelatin hydrogels for the sustained release of proteins[J]. Journal of Controlled Release. In Press, Corrected Proof
    [80] Takada S, Yamagata Y, Misaki M, et al. Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique[J]. Journal of Controlled Release, 2003, 88(2): 229-242
    [81] Thomas TT, Kohane DS, Wang A, et al. Microparticulate formulations for the controlled release of interleukin-2[J]. Journal of Pharmaceutical Sciences, 2004, 93(5): 1100-1109
    [82] Wang C, Ge Q, Ting D, et al. Molecularly engineered poly (ortho ester) microspheres for enhanced delivery of DNA vaccines[J]. Nature Materials, 2004, 3: 190196
    [83] Senior J, Radomsky M.可注射缓释制剂(Sustained-Release Injectable Products). (第1版)[M].北京:化学工业出版社, 2005
    [84] Talmadge JE. Pharmacodynamic aspects of peptide administration biological response modifiers[J]. Advanced Drug Delivery Reviews, 1998, 33: 241-252
    [85] Kumar N, Ravikumar MNV, Domb AJ, et al. Biodegradable block copolymers[J]. Advanced Drug Delivery Reviews, 2001, 53: 23-24
    [86] Tae Gwan Park HYL, Yoon Sung Nam. A new preparation method for protein loaded poly(D,L-lactic-co-glycolic acid) microspheres and protein release mechanism study[J]. Journal of Controlled Release, 1998, 55: 181-191
    [87] Yeh M-K, Chen J-L, Chiang C-H, et al. The preparation of sustained release erythropoietin microparticle[J]. Journal of Microencapsulation, 2007, 24(1): 82-93
    [88]龚非力.基础免疫学.第1版[M].武汉:湖北科学技术出版社, 1998
    [89] Locher CP, Putnam D, Langer R, et al. Enhancement of a humanimmunodeficiency virus env DNA vaccine using a novel polycationic nanoparticle formulation[J]. Immunology Letters, 2003, 90(2-3): 67-70
    [90] Shi L, Caulfield MJ, Chern RT, et al. Pharmaceutical and Immunological Evaluation of a Single-Shot Hepatitis B Vaccine Formulated With PLGA Microspheres[J]. Journal of Pharmaceutical Sciences., 2002, 91: 1019
    [91] Lahann J, Balcells M, Hang L, et al. Reactive Polymer Coatings: A First Step toward Surface Engineering of Microfluidic Devices[J]. Analytical Chemistry, 2003, 75(9): 2117
    [92] Anderson DC, Burdick JA, Langer R. Smart Biomaterials[J]. Science., 2004, 305(5692): 1923-1924
    [93] Gref R, Domb A, Quellec P, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres[J]. Advanced Drug Delivery Reviews, 1995, 16(2-3): 215
    [94] Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Journal of Controlled Release, 2001, 70(1-2): 1-20
    [95] Putnam D, Zelikin AN, Izumrudov VA, et al. PolyhistidinePEG:DNA nanocomposites for gene delivery[J]. Biomaterials, 2003, 24(24): 4425
    [96] Vila A, Sánchez A,évora C, et al. PLA-PEG particles as nasal protein carriers: the influence of the particle size[J]. International Journal of Pharmaceutics, 2005, 292: 43-52
    [97] Yang A, Yang L, Liu W, et al. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: Preparation and in vitro evaluation[J]. International Journal of Pharmaceutics, 2007, 331(1): 123-132
    [98] Bures P, Huang Y, Oral E, et al. Surface modifications of molecular imprinting of polymers in medical and pharmaceutical applications[J]. Journal of Controlled Release, 2001, 72(1-3): 25-33
    [99] Ya-Ping Li Y-YP, Xian-Ying Zhang, Zhou-Hui Gu, Zhao Hui Zhou, Wei-Fang Yuan , Jian-Jun Zhou, Jian-Hua Zhu , Xiu-Jian Gao. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats[J]. Journal of Controlled Release, 2001, 71: 203-211
    [100] Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin: Design, characterization and in vitro/in vivo bioactivity[J]. European Journal of Pharmaceutical Sciences, 2007, 30(5): 392-397
    [101] Goldberg M, Langer R, Xinqiao J. Nanostructured materials for applications in drug delivery and tissue engineering[J]. Journal of Biomaterials Science-- Polymer Edition, 2007, 18(3): 241-268
    [102] Langer R, Tirrell DA. Designing materials for biology and medicine[J]. Nature, 2004, 428: 487-492
    [103]何亚萍,尹丙姣,李卓娅等. TNF受体封闭肽对大鼠腹腔巨噬细胞功能的影响[J].中国免疫学杂志, 2003, 19(6): 385-388
    [104]尹丙蛟,李卓娅,余上斌等.跨膜型和分泌型TNF-α在内毒素性休克过程中的作用[J].中华微生物学和免疫学杂志, 2002, 22(3): 334-338
    [105] Hickeya T, Kreutzerb D, Burgessc DJ, et al. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices[J]. Biomaterials, 2002, 23: 1649-1656
    [106] Aubert-Pou?ssel A, Venier-Juliennea M-C, Clavreul A, et al. In vitro study of GDNF release from biodegradable PLGA microspheres[J]. Journal of Controlled Release, 2004, 95 463-475
    [107] Fernández-Carballido A, Herrero-Vanrell R, Molina-Martínez IT, et al. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticular administration Effect of Labrafil addition on release in vitro[J]. International Journal of Pharmaceutics, 2004, 279: 33-41
    [108]梅兴国.生物技术药物制剂--基础与应用[M].北京:化学工业出版社, 2004: 278-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700