李家峡水电站拱坝静、动力计算分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拱坝以其结构轻巧、造型美观、工程量省、超载能力强、抗震性能好而被世界各国广泛应用于水利水电工程中。随着国家西部大开发和“西电东送”战略的稳步推进,我国还将在西部及西南部深山峡谷中规划建设一批高拱坝拱坝是一种外形复杂的空间壳体结构,坝体的应力水平和坝肩岩体稳定状况是评价拱坝安全性的两个重要指标。为了能准确地掌握拱坝坝体应力状况,工程技术界一直在研究探索拱坝的应力分析手段和计算理论、计算方法,促使拱坝应力分析手段和方法日臻完善,为拱坝技术在工程上的应用提供了保证。拱坝的应力分析方法包括纯拱法、拱梁分载法、有限元法、壳体理论计算方法和结构模型试验法。目前国际上计算坝体应力广泛采用拱梁分载法和有限元法。我国现行拱坝规范以“拱梁分载法”作为坝体安全性评价的主要标准。
     本文结合黄河李家峡水电站技施设计阶段混凝土双曲拱坝基本体型,针对拱坝坝基开挖完成后的基础体型和地质构造条件变化,并考虑施工、蓄水过程中封拱高程、灌浆温度等与原设计的差异,应用拱梁分载法、三维有限元法等分析方法,得到不同荷载组合工况下的静、动应力和位移计算成果,通过分析复核李家峡拱坝的静、动应力,并与发包设计阶段的应力分析成果进行比较,对高拱坝坝体应力分布规律和变化特征进行了初步探讨,对坝体的安全性作出了综合评价。
     计算分析表明,技施阶段李家峡拱坝坝体应力的分布规律与发包设计阶段基本一致。在坝基开挖后基础体型变化、两岸岩体变模降低、考虑分期蓄水和施工过程、局部温度场变化、不同接缝灌浆高程等情况下,各种工况下的拱坝应力基本满足规范要求。经拟静力法和动力法对拱坝抗震性能进行复核分析,拱坝坝体应力满足规范要求。
Arch dams are widely used in hydropower projects in the world because of its light structure, beautiful shape, savings of engineering quantity, strong overcapacity and good aseismic performance, etc. With steady advancement of the western development and "electricity transmission from east to west" strategy, a number of high arch dams will be planned and constructed in deep valleys of west and southwest regions. The arch dam is a sort of space shell structure with complicated shapes. The stress level of dam body and the stability condition of abutment rock are the two key indexes to evaluate the safety of arch dam. In order to accurately grasp stress conditions of arch dam, the stress analysis means and calculating theory are explored and researched by technical and engineering sectors at all times so as to make them perfect and ensure the application of arch dam techniques in hydropower projects. The stress analytic method of arch dam covers pure arch method, arch beam sharing method, finite element method, calculating method of shell theory and structural model test method. At present, arch beam sharing method and finite element method are widely applied to calculate stress of dam body in the world. The main criterion of dam safety evaluation is on the basis of arch beam sharing method stipulated in the current Chinese Code of arch dam.
    Combined with basic shape of concrete double arch dam during construction and design periods, aiming at basic shape upon completion of arch dam foundation excavation and variation of geological conditions, and considering the difference between the gemel arch elevation, grouting temperature during stage impoundment & construction process and the original design, the static & dynamic stresses and displacement calculations under varied load combination conditions were obtained by arch beam snaring method and finite element method, etc. The static and dynamic stresses were analyzed and checked, and were compared with stress analysis results in the contracting design stage. The distribution regularity of stress and varied features for high arch dam were preliminarily discussed and the safety of dam body was comprehensively evaluated.
    The calculating results reveal that distribution regularity of stress is in conformity with that of the contracting design stage for Lijiaxia arch dam. The stress of arch dam shall meet the Specifications in respect of basic shape variation upon dam foundation excavation, varied module reduction on banks, staged impoundment and construction process, variation of local temperature field as well as jointing grouting elevation. It shall check aseismic performance of arch dam by pseudostatic method and dynamic method, and the dam stress shall meet the stipulations of the Code.
引文
[1] 李赞,陈兴华,郑建波,王光纶.混凝土拱坝设计[M].北京:中国电力出版社,2000.3.
    [2] 朱伯芳.中国拱坝建设的成就[J].水力发电,1999.10.
    [3] 潘家铮,陈式慧.关于高拱坝建设中若干问题的探讨[J].科技导报,1997.2.
    [4] 任青文,陈国荣.高坝分析中的计算力学问题[J].工程与科学中的计算力学,2003.10.
    [5] 李同春.拱 极限状态设计准则探讨[D].河海大学工学博士论文,1989.
    [6] 陈浩.拱坝计算机辅助设计软件的开发研究[D].武汉大学硕士学位论文,2004.5.
    [7] 水利电力部.混凝土拱坝设计规范SD145-85[S].水利电力出版社,1985.
    [8] 073-2000水工建筑物抗震设计规范[S].2000.
    [9] 朱伯芳,高季章,陈祖煜,厉易生.拱坝设计与研究[M].北京:中国水利水电出版社,2002.12.
    [10] 潘燕芳.复杂结构拱坝的有限元仿真分析方法研究[D].武汉大学硕士学位论文,2004.5.
    [11] U. S. Bureau of Reclamation. Treatise on Dams[M].Chap. 10, Arch Dams, 1986.
    [12] U. S. Bureau of Reclamation. Trial Load Method Analyzing Arch Dams[R].Boulder Canyon Project Final Reports, Part Ⅴ, Bulletin Ⅰ, 1988.
    [13] Bofang Zhu, Stress Level Coefficients and Safety Level Coefficient for Arch Dams[J], Dam Engineering,, Vol. Issue 3. Oct. 2000.
    [14] Malika Azmi a、Patrick Paultre b, Three-dimensional analysis of concrete dams including contraction joint non-linearity[J], Engineering Structures 24, 2002, 757-771.
    [15] M. Fanelli, The safety factor of dams, an abstract concept or measurable quantity? [J] Dam Engineering, 1991. 2.
    [16] 徐方.纯拱法计算抛物线拱坝[J].四川水利,1995年第2期.
    [17] 黎展眉.拱坝的温度荷载与温度应力[J].水利水运工程学报,2001.6.
    [18] 黎展眉.拱坝多拱梁法程序若干功能的改进[J].水利水运工程学报,2000.7.
    [19] 刘国华,汪树玉,包志仁.拱坝非线性全调整分载法研究[J].浙江大学学报(自然科学版),1999.1.
    [20] 强天弛,寇晓东,杨强.拱坝工程实例分析[J].水利水电技术,1999年第5期.
    [21] 兰仁烈.拱坝试载法理论与计算成果检查[J].四川水力发电,1995.6.
    [22] 刘蕾.关于拱坝多拱梁法程序功能的探讨[J].水利水电技术,2001年第5期.
    [23] 董福品,朱伯芳,沈之良,葛楠.国内外高拱坝应力分析概况[J].中国水利水电科学研究院学报,2003.12.
    [24] 林皋,陈健云.混凝土大坝的抗震安全评价[R].大连理工大学土建学院,海岸与近海工程国家重点试验室,2000.6.
    [25] 秦荣.高拱坝分析的新理论新方法[R].广西大学
    [26] 陈厚群.高拱坝抗震设计研究进展[Z]。
    [27] 肖白云.溪洛渡电站设计中的重大技术问题研究[R].成都勘测设计研究院.2004.4.
    [28] 潘家铮.在溪洛渡工程技术经济专题评估会议上的书面发言[Z].2005.5.
    [29] 钱向东.拱坝与复杂岩基的有限元前处理技术[R].河海大学.
    [30] Shengrui Lan, Jusheng Yang, Nonlinear finite element analysis of arch dam—Ⅱ. Nonlinear analysis[J]. Advances in Engineering Software, 1997, 28: 409~415.
    [31] Dr Richard Widmann, The mathematics of dam safety[J]. Dam Safety, 1997, 5: 34~38.
    [32] Rocha. M., Statement of the Physical Problem of the Arch Dam[R], LNEC, Lisbon, Portugal, 1965.
    [33] United States Committee on Large Dams. Managing the Risks of Dam Project Development[R], Safety and Operation. Eighteeth Annual USCOLD Lecture Series. Buffalo, New York August 10-14, 1998.
    [34] Zhu Bofang, Rao Bin and Jia Jingsheng, Stress analysis of noncireular arch dam[J]. Dam Engineering, Vol.2, Issue 3, Aug., 1991, 253~272.
    [35] 楼梦麟.设有横缝的高拱坝地震反应分析方法[R].同济大学土木工程防灾国家重点实验室
    [36] 西北勘测设计研究院.李家峡水电站工程拱坝坝体应力分析专题报告(发包设计)[R].1994.11.
    [37] 清华大学.李家峡水电站拱坝三维非线性有限元计算分析报告[R].
    [38] 中国水利水电科学研究院.李家峡水电站拱坝动力分析与评价[R].
    [39] 杜修力、王进廷.拱坝—可压缩库水—地基地震波动反应分析方法[J].水利学报,NO.6 2002.
    [40] 梁爱虎、杜修力、陈厚群.基于非平稳随机地震动场的拱坝随机地震反应分析方法[J].水利学报,NO.6 1999.
    [41] 杨令强、练继建、张社荣、陈祖坪.拱坝破坏分析及超载问题探讨[R].
    [42] 李雪春、陈重华等.非整体拱坝结构分析研究[R].中国水利水电科学研究院.
    [43] 拱坝的有限元等效应力及复杂应力下的强度储备[J].水利水电技术,2005.1.
    [44] 以应力为目标的拱坝体型优化线性规划模型[J].水利水运工程学报,2005.1。
    [45] 朱伯芳.拱坝应力控制标准研究[J].水力发电,2000.12.
    [46] 美国垦务局,拱坝设计翻译组,潘家铮校.拱坝设计[M].北京:水利电力出版社,1984.6.
    [47] 中国水力发电工程学会.1980高坝学术讨论会论文选集[C].电力工业出版社,1982.4.
    [48] 周维垣,杨若琼,剡公瑞.高拱坝的有限元分析方法和设计判据研究[J].水利学报,1997.8.
    [49] 朱伯芳.国际拱坝学术讨论会综述[J].混凝土坝技术,1987(2).
    [50] 王勖成,邵敏编著.有限单元法基本原理和数值方法(第二版)[M].清华大学出版社,2001.3.
    [51] 张建海,何江达,范景伟.小湾高拱坝三维有限元弹塑性分析[J].云南水力发电,2000,16(1):61~64.
    [52] 柴军瑞,刘浩吾.高拱坝研究新进展[J].水利水电科技进展.2001,21(6):1~4.
    [53] 柏宝忠,钟源清.混凝土拱坝设计应力控制标准的研究[J].人民长江,Vol.34,NO.11,2003.11.
    [54] 左东启.模型试验的理论和方法[M].北京:水利水电出版社,1984.
    [55] 张优秀.高拱坝承载能力研究[D].武汉大学硕士学位论文,2004.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700