大跨度拱型刚架结构倒塌破坏机理及其试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家各种重大社会经济活动的展开,一系列重大工程的建设给我国空间结构的不断发展带来了良好的契机。不论是结构形式还是结构性能都需要研究学者对其深入研究。然而结构在施工或者正常使用过程中荷载变化、使用功能、环境变化以及遭受各种灾害,这些都会引起结构的受力模式、受力性质发生变化,导致结构的损伤、失效甚至倒塌破坏。因此开展空间结构倒塌破坏机理及设计理论的研究,从结构本身出发,寻求遏制或防止结构发生倒塌破坏的技术措施,具有重要的理论和现实意义。
     本文以拱型刚架结构(实腹式拱型刚架和拱型立体桁架)为研究对象,研究其静力稳定性能以及失稳形式,推导出拱型刚架在均布径向荷载作用下的面内失稳及面外失稳的临界荷载的表达式、并研究其失稳形式以及影响因素;研究拱型刚架的动力性能,推导出拱型刚架平面内挠曲的周期的近似表达式;对一实腹式拱型刚架进行地震模拟振动台试验研究,了解模型阻尼比和自振特性;多遇、罕遇地震作用下的动力响应,在大震作用下试验模型的塑性内力重分布、变形发展过程以及破坏形式;最后将IDA方法与能量原理相结合,提出了通过数值模拟方法确定结构的倒塌破坏极限状态点的方法。主要研究结论有:
     1)根据线弹性稳定理论,考虑刚架柱对结构失稳形式和失稳临界荷载的影响,引入圆弧拱线刚度的折减系数,推导出实腹式圆弧形拱型刚架在均布径向荷载作用下的面内失稳及面外失稳的临界荷载的表达式。
     2)推导出实腹式圆弧形拱型刚架平面内挠曲的周期的近似表达式。研究通过能量原理方法确定结构的倒塌破坏极限状态点,即当地震作用结束时结构的滞回耗能等于结构的极限滞回耗能,该状态即为结构的倒塌破坏极限状态,并与振动台试验结果对比并验证。
     3)对一实腹式拱型刚架进行地震模拟振动台试验研究。研究表明在多遇和罕遇水平地震波作用时,天津波引起的测点加速度、位移、应变的反应最强,Taft波次之,Loma波最弱。设置的侧向支撑对结构平面外的变形起到了很好的约束,使结构的破坏形式呈平面内的反对称变形。结构发生倒塌破坏是因为结构内部的塑性发展和位移变化的相互作用,导致结构的刚度不断弱化,直到结构内部的塑性发展到一定程度时,结构性能发生严重变化,使结构无法抵抗外部的地震作用,结构发生动力破坏。
     4)采用抗弯刚度、抗剪刚度和抗扭刚度等效的原则,推导出了圆弧形钢管拱桁架面内失稳和面外失稳的临界荷载的表达式。为防止结构发生面外失稳要向结构面外施加必要的刚性侧向支撑,以保证结构不发生面外失稳。通过改变参数的变化范围,研究了侧向刚性支撑数目与影响因素的关系。
     5)以圆弧形格构式拱型刚架为研究对象,推导出圆弧形格构式拱型刚架在均布径向荷载作用下的面内失稳的临界荷载的表达式。研究表明:通过设置侧向支撑保证结构不发生面外失稳的前提下,当单榀圆弧形格构式拱型刚架在均布径向荷载作用下,平面内失稳模式会出现反对称失稳,或对称失稳。影响圆弧形格构式拱型刚架面内失稳的因素有:圆弧拱半径,拱的开角,桁架拱(或桁架柱)截面高度,桁架柱高,以及桁架拱和桁架柱的上弦截面类型。
     6)推导出圆弧形格构式拱型刚架在均布径向荷载作用下的面外失稳临界荷载的表达式,同时分析了面外失稳临界荷载以及侧向支撑数目的影响因素。最后进一步分析结构在均布竖向荷载作用下的稳定性能。当桁架拱的开角≤100°(即矢跨比≤0.25)时,结构在均布径向荷载作用下的失稳临界荷载理论解能近似代表实际工程中的在均布竖向荷载作用下的失稳临界荷载理论解。
     7)在IDA分析中,地震输入能和结构滞回耗能可以作为一种有效的地震动强度参数和结构响应参数来选取。将IDA方法与能量原理相结合,提出了通过数值模拟方法确定结构的倒塌破坏极限状态点的方法。并通过一具体工程算例进行单向(竖向、水平向以及侧向)地震波的IDA分析,得到该结构概率分位值为16%,50%和84%的所对应的倒塌破坏极限状态值。
With the development of significant social economic activities,the construction ofmajor projects supply a good chance for the development of large-span spatialstructures. There is a great challenge for the technical level of spatial structures instructure style and mechanical behavior. In the construction and working of thestructure, the change of loads, practical function, environment and suffered casualtieswill occur. All of those may affect the mechanical mode. Seriously it may causestructure damage and failure, then collapse. It is necessary for much research on thecollapse mechanism and design method of spatial structure. And the practicabledesign method and technical solution are provided so as to ensure the structural safeoperation.
     This paper is devoted to study collapse mechanism of large-span arched frameincluding the solid-webbed arched frame and arched truss. Static stability behaviorand instability mode are studied. The analytical solutions of in-plane instability andout-of-plane instability critical load by the linear stability theory are derived. Theinstability mode and the main factors which influence the structure stability areanalyzed. What’s more, the dynamic analysis is made, and the approximate expressionof period is acquired for in-plane deflection. Based on a shaking table experiment ofthe solid-webbed arched frame, natural vibration behaviour,dynamic response infrequent and rare earthquakes are investigated as well as plastic developmentprocesses and failure characteristics. By the energy theory with IDA method, theidentification method of collapse limited state point is put forward with numericalanalysis. The following conclusions can be drawn.
     1)The influence of the frame column on the instability mode and critical load isconsidered. According to the linear stability theory and introducing the arch stiffnessreduction factor, the analytical solutions of the in-plane and out-of-plane instabilitycritical load by the linear stability theory are derived when solid-webbed arched framesubjects to the radially uniform load.
     2)Approximate expression of the period is acquired for in-plane deflection ofsolid-webbed arched frame. Based on the energy theory, the collapse limited state point is acquired. When the earthquake ends, the hysteretic energy is equal to thelimited hysteretic energy. This state is called as the collapse limited state. And theconclusion is compared with the results of shaking table experiment.
     3)A shaking table experiment of the solid-webbed arched frame is carried out.The finding is that the acceleration, displacement and strain response under Tianjinearthquake wave is the more serious than that under Taft earthquake wave whileLoma earthquake wave is the least. The applied rigid braces can effectively limit theout-of-plane deformation, the collapse mode is in-plane antisymmetry deformation.The main reason is that mutual action of the plastic development and displacementchange result in the structure stiffness weakening. Until the plastic developmentreaches a certain degree, the solid-webbed arched frame tends to collapse.
     4)The circular arch with steel tube-truss is simplified as a model of thin-walledcircular arch with close section by the equivalent principle of the stiffness. Then bythe linear stability theory,the approximate analytical solutions of the in-planeinstability and out-of-plane instability critical load are derived when it subjects to theradially uniform load. In order to avoid losing the out-of-plane stability, the rigidbraces can be applied to the structure by the principle that the out-of-plane instabilitycritical load capacity is larger than the in-plane instability critical load capacity.Secondly the examples are given for verification. After the parametric analysis, themain factors which influence the number of braces are studied.
     5)The critical load expression of in-plane instability is reduced when thearched-truss frame subjects to the radially uniform load. The results are shown thatavoiding the out-of-plane instability by the rigid braces applied, the instability modesinclude antisymmetry deformation and symmetry deformation. The main factorswhich affect in-plane instability are arch radius, the arch angle(or rise to span ratio),section height of truss arch and truss column, truss column height, and the sectionarea of upper chord for truss arch and truss column.
     6)The critical load expression of out-of-plane instability is derived when thearched-truss frame subjects to the radially uniform load. And then the main factorswhich affect out-of-plane instability and the number of braces are analyzed. Finally,the research on stability behaviour of arched-truss frame under the vertical load. It isshown that when rise to span ratio is smaller than0.25, the critical load of instabilityfor arched-truss frame under the radially uniform load is similarly equal to that undervertical load.
     7)In the incremental dynamics analysis,the inputting earthquake energy is abetter choice of earthquake intensity measure, while the structural hysteretic energyis that of structural damage measure. Combing the energy theory with IDA, theidentification method of collapse limited state point is put forward with numericalanalysis. Taking a project as a case, IDA is applied to a arched-truss frame under thehorizontal, vertical and lateral earthquake wave. The IDA curves and collapselimit-state capacities of the16%,50%and84%fractiles are obtained.
引文
[1]刘锡良,现代空间结构,天津:天津大学出版社,2003
    [2]董石麟,罗尧治,赵阳,大跨度空间结构的工程实践与学科发展,空间结构,2005,1(4):3-10
    [3]董石麟,罗尧治,赵阳等,新型空间结构分析、设计与施工,北京:人民交通出版社,2006
    [4]刘殿中,刘灿军,三角形钢管桁架的应用研究,吉林建筑工程学院学报,2000,3:1-4
    [5]郭彦林,窦超,钢拱结构设计理论与我国钢拱结构技术规程,钢结构,2009,24(5):59-70
    [6]夏怀鹏,实腹式门式拱架结构稳定性能与设计方法研究:[硕士学位论文],北京;北京交通大学,2007
    [7]谷邛英,北京站无站台柱雨棚主桁架设计研究,铁道工程学报,2006,9:77-81
    [8]孟宪全,北京西站无站台柱雨棚安全监测方法,铁道建筑,2006,7:96-98
    [9]李云鹏,柯敏,沈阳北站雨棚工程有关问题探讨,铁道建筑,2006,11:27-28
    [10]杨惠东,王士裴,申允等,北戴河站无柱雨棚钢管桁架结构的整体稳定分析,四川建筑科学研究,2007,33(1):24-27
    [11]杨劲,汉口火车站大跨度钢结构无站台柱雨棚结构设计,武汉大学学报(工学版),2011,44(3):353-357
    [12]杜凤林,香港大球场,中国,世界建筑,2000,9:36-37
    [13]陈以一,陈扬骥,刘魁,南通市体育会展中心主体育场曲面开闭钢屋盖结构设计关键问题研究,建筑结构学报,2007,28(1):14-20
    [14]姚激,顾嗣淳,巴黎戴高乐机场候机楼倒塌事故原因初析,建筑结构,2006,(1):96-97
    [15]芦燕,强震作用下大跨度拱形立体桁架结构动力强度破坏研究:[硕士学位论文],天津;天津大学,2009
    [16]Qinghua HAN,Yan LU,Baolin YU,etc.,Ultimate Load Capacity andReinforcement of Tubular N-joint,Transactions of Tianjin University,2010,16(1):1-5
    [17]Han Qinghua,Lu Yan,Jin Mingchang,Resistance Partial Factor and Reliabilityof Cast Ball-and-socket Support Joint Transactions of Tianjin University,2011,17(6):391-396
    [18]罗永峰,韩庆华,李海旺,建筑钢结构稳定理论与应用,北京:人民交通出版社,2010
    [19]中华人民共和国建设部,GB50011-2010,建筑抗震设计规范,北京:中国计划出版社,2010
    [20]项海帆,刘光栋,拱结构的稳定与振动,北京:人民交通出版社,1991
    [21]童根树,张磊,薄壁钢梁稳定性计算的争议及其解决,建筑结构学报,2002,22(3):41-51
    [22]许强,薄壁曲梁线弹性理论和弹塑性稳定极限承载力分析:[博士学位论文],杭州;浙江大学,2002
    [23]许均陶,童根树,任意开口薄壁截面圆弧曲梁弯扭精确分析,建筑结构学报,1997,18(3):22-28
    [24]程鹏,两铰圆弧拱非线性弯曲理论和弹塑性稳定:[博士学位论文],杭州;浙江大学,2005
    [25]李国豪,桥梁结构稳定与振动,北京:中国铁道出版社,1992
    [26]林冰,郭彦林,黄李骥,均匀受压两铰圆弧钢拱的平面内稳定设计曲线,工程力学,2008,25(9):100-105
    [27]林冰,郭彦林,均匀受压工字型等截面三铰圆弧钢拱的平面内稳定性和极限强度,建筑结构,2009,39(2):48-51
    [28]黄李骥,腹板开洞工形截面拱的稳定性能及设计方法研究:[博士学位论文],北京;清华大学,2005
    [29]汪胜辉,H型截面钢拱的平面内稳定性研究:[硕士学位论文],云南;昆明理工大学,2008
    [30]王连华,易壮鹏,张辉,周期荷载作用下几何缺陷拱的动力稳定性,湖南大学学报,2007,34(11):16-19
    [31]易壮鹏,赵跃宇,朱克兆等,几何缺陷对拱结构动力稳定性的影响,地震工程与工程振动,2009,29(2):29-34
    [32]易壮鹏,赵跃宇,朱克兆,几何缺陷浅拱的动力稳定性分析,计算力学学报.2008,25(6):932-938.
    [33]郭彦林,郭宇飞,盛和太,钢管桁架拱的稳定性能及应用,空间结构,2008,14(4):41-49
    [34]郭彦林,郭宇飞,窦超,纯压圆弧形钢管桁架拱平面内稳定性能及设计方法,建筑结构学报.2010,31(8):45-53
    [35]郭彦林,郭宇飞,窦超等,四边形截面圆弧空间钢管桁架拱平面内稳定性及试验研究,建筑结构学报,2010,31(8):54-62
    [36]刘静,李海旺,刘国良等,强震下钢管拱桁架损伤及失效机理研究,土木工程学报,2010,43增刊:142-147
    [37]李海旺,王志平,杜雷鸣,考虑行波效应下单榀钢管拱桁架的非线性地震反应分析,建筑结构,2009,39增刊:395-397
    [38]Haiwang Li,Weiping Sun,Jing Liu,Dynamic Elasto-Plastic Analysis on the SteelSpatial Arch Truss with90m-span under Earthquake Action,Applied Mechanics andMaterials,2011,94-96:736-739
    [39]Haiwang Li,Caihong Guo,Jing Liu,Dynamic Elasto-Plastic Analysis on theSteel Arch Truss under Earthquake Action,Applied Mechanics and Materials,2012,105-107:356-369
    [40]Haiwang Li, Yu Ma, Jing Liu, Dynamic Elasto-Plastic Analysis on the SteelSpatial Arch Truss with120m Span and0.4Rise-Span Ratio,Applied Mechanics andMaterials,2012,105-107:862-866
    [41]崔艳,爆炸荷载作用下管桁架动力响应分析:[硕士学位论文],西安;长安大学,2010
    [42]白凤龙,李宏男,桁架拱结构在地震动双向多点激励下的反应分析,计算力学学报,2011,28(5):658-633
    [43]李东升,张耀春,张福海,三角形截面的空间格构式刚架体系静力参数分析,建筑钢结构进展,2004,6(1):7-11
    [44]张耀春,张秀华,截面为三角形的空间格构式圆拱平面内整体稳定性能分析,工业建筑,2004,34(4):76-78
    [45]刘玉姝,李国强,一种新型格构式刚架平面外稳定的实用算法,空间钢结构,2002,17(59):9-11
    [46]刘玉姝,李国强张耀春,截面为三角形的空间格构式圆拱平面内整体稳定性能分析,工业建筑,2004,34(4):76-78
    [47]郑宇淳,大跨度拱形立体桁架结构的推倒分析:[硕士学位论文],天津;天津大学,2007
    [48]韩庆华,芦燕,徐泽民,强震作用下大跨度拱形立体桁架结构动力失效机理研究,空间结构,2011,17(6):111-117
    [49]Qinghua Han,Zemin Xu,Yan Lu,etc.,Analysis of Out-of-plane Stability forThree-dimensional Cantilever Tube-truss Structure,Advanced Science Letters,2011,4(8):3131-3135
    [50]张忠,韩庆华,悬挑立体桁架的平面外稳定分析,低温建筑技术,2012,02:24-26
    [51]高标,徐昆,朱庆东等,大型储煤三角形立体管桁架结构地震作用下稳定性能研究,武汉大学学报(工学版),2010,43增:53-57
    [52]Kinoshita, T.,Nakajima, T.,Ohsaki, M.,Topology optimization of compliantmechanisms for vertical seismic isolation of spatial structures, Journal of theInternational Association for Shell and Spatial Structures,2009,50(161):89-96
    [53]Ikeda, K.,Ohsaki, M.,Sudo, K.,et al, Probabilistic analysis of buckling loadsof structures via extended Koiter law, Structural Engineering and Mechanics,2009,32(1):167-178
    [54]Elishakoff, I., Ohsaki, M.,Optimization and Anti-Optimization of StructuresUnder Uncertainty,Singapore:Imperial College Press,2010,113-144
    [55]A. S. Nazmy, Stability and Load-carrying Capacity of Three-dimensionalLong-span Steel Arch,Computers&Structures,1997,65(6):857-868
    [56]Piotr Iwicki,Stability of Trusses with Linear Elastic Side-supports,Thin-WalledStructures,2007,45:849-854
    [57]Piotr Iwicki,Sensitivity Analysis of Critical Forces of Trusses with Side Bracing,Journal of Constructional Steel Research,2010,66:923-930
    [58]Llu_s Gil, Antoni Andreu,Shape and Cross-section Optimisation of a TrussStructure,Computers&Structures,2001,79:681-689
    [59]Liang Su,Shilin Dong,Shiro Kato,Seismic design for steel trussed arch tomulti-support excitations,Journal of Constructional Steel Research,2007,63:725-734
    [60]韩建平,吕西林,李慧,基于性能的地震工程研究的新进展及对结构非线性分析的要求,地震工程与工程振动,2007,27(8):15-23
    [61]吕大刚,于晓辉,王光远,基于单地震动记录IDA方法的结构倒塌分析,地震工程与工程振动,2009,29(6):33-39
    [62]吕大刚,于晓辉,王光远,单地震动记录随机增量动力分析,工程力学,2010,27增I:53-58
    [63]马千里,叶列平,陆新征等,采用逐步增量弹塑性时程方法对RC框架结构推覆分析侧力模式的研究,建筑结构学报,2008,29(2):132-140
    [64]陆新征,叶列平,基于IDA分析的结构抗地震倒塌能力研究,工程抗震与加固改造,2010,32(1):13-18
    [65]陆新征,施炜,张万开等,三维地震动输入对IDA倒塌易损性分析的影响,工程抗震与加固改造,2011,33(6):1-7
    [66]杨成,徐腾飞,李英民等,应用弹塑性反应谱对IDA方法的改进研究,地震工程与工程振动,2008,28(4):64-69
    [67]杨成,潘毅,赵世春等,烈度指标函数对IDA曲线离散性的影响,工程力学,2010,27SI:68-72.
    [68]徐艳,钢管混凝土拱桥的动力稳定性能研究:[博士学位论文],上海;同济大学,2004
    [69]徐艳,胡世德,钢管混凝土拱桥的动力稳定极限承载力研究,土木工程学报,2006,39(9):68-73
    [70]冯清海,袁万城,基于IDA-MC的桥梁地震风险概率评估方法,长安大学学报(自然科学版),2010,30(3):60-65
    [71]张毅刚,杨大彬,吴金志,基于性能的空间结构抗震设计研究现状与关键问题,建筑结构学报,2010,31(6):145-152
    [72]YANG Da-bin, ZHANG Yi-gang, WU Jin-zhi, Application of incrementaldynamic analysis in the collapse evaluation of single-layer latticed dome,空间结构,2010,16(3):91-96
    [73]刘成清,赵世春,基于IDA的网壳结构动力失稳分析,四川建筑科学研究,2011,37(3):65-83
    [74]Vamvatsikos D,Seismic performance, capacity and reliability of structures asseen through incremental dynamic analysis:[博士学位论文],Stanford, CA: Stanforduniversity,2002
    [75]Vamvatsikos D,Cornell C A,Applied incremental dynamic analysis,EarthquakeSpectra,2004,20(2):523-553
    [76]Vamvatsikos D,Cornell C A,Developing efficient scalar and vector intensitymeasures for IDA capacity estimation by incorporating elastic spectral shapeinformation,Earthquake Engineering and Structural Dynamics,2005,34(13):1573-1600
    [77]Vamvatsikos D,Cornell C A,Direct estimation of the seismic demand andcapacity of oscillators with multi-linear static pushovers through IDA,EarthquakeEngineering and Structural Dynamics,2006,35(9):1097-1117
    [78]Vamvatsikos D,Fragiadakis M,Incremental dynamic analysis for estimatingseismic performance sensitivity and uncertainty, Earthquake Engineering andStructural Dynamics,2010,34(13)141-163
    [79]Michalis Fragiadakis,Dimitrios Vamvatsikos,Fast performance uncertaintyestimation via pushover and approximate IDA,Earthquake Engineering and StructuralDynamics,2010,39:683-703
    [80]John B. Mander, Rajesh P. Dhakal, Naoto Mashiko,Incremental dynamicanalysis applied to seismic financial risk assessment of bridges, EngineeringStructures,2007,29:2662-2672.
    [81]汪梦甫,曹秀娟,孙文,增量动力分析方法的改进及其在高层混合结构地震危害性评估中的应用,工程抗震与加固改造,2010,32(1):104-109
    [82]G. W. Housner,Limit Design of Structures to Resist Earthquake,Proceeding ofFirst World Conference on Earthquake Engineering, Berkeley: EarthquakeEngineering Research Institute,1956,1-11
    [83]周云,徐彤,周福霖,抗震与减震结构的能量分析方法研究与应用,地震工程与工程振动,1999,19(4):134-139
    [84]史庆轩,杨文星,门进杰,单自由度体系非线性地震能量反应的计算,建筑科学与工程学报,2005,22(2):25-29
    [85]熊仲明,史庆轩,钢筋混凝土框架结构倒塌破坏能量分析的研究,振动与冲击,2003,22(4):8-11
    [86]熊仲明,史庆轩,李菊芳,框架结构基于能量地震反应分析及设计方法的理论研究,世界地震工程,2005,21(2):8-11
    [87]龙刚,李广婧,赵堃,基于能量原理的钢筋混凝土桥墩抗震安全系数,工程抗震与加固改造,2008,30(6):74-78
    [88]滕军,董志君,基于能量的超高层钢筋混凝土框架核心筒结构抗震性能分析,建筑结构学报S2,2009:2-4
    [89]刘英亮,邢佶慧,基于能量的单层球面网壳强震响应规律研究,建筑结构学报S2,2009:30-33
    [90]公茂盛,谢礼立,章文波,地震动输入能量衰减规律,地震工程与工程振动,2003,23(3):15-24
    [91]Safac E,Characterization of seismic hazard and structural response by energyflux,Soil Dynamics and Earthquake Engineering,2000,20:39-43
    [92] Chung-Che Chou,Chia-Ming Uang,Establishing absorbed energy spectra-anattenuation approach,Earthquake Engineering and Structural Dynamics,2000,29(10):1441-1455
    [93]N.N. Ambraseys,J. Douglas,Near-field horizontal and vertical earthquakeground motions,Soil Dynamics and Earthquake Engineering,2003,23:1-18
    [94]Decanini L,Mollaoli F,Formulation of Elastic Earthquake Input Energy Spectra,Earthquake Engineering and Structural Dynamics,1998,27:1503-1522
    [95]Benavent Climent A,Pujades L G,Lopez Almansa F,Design energy inputspectra for moderate seismicity regions,Earthquake Engineering and StructuralDynamics,2002,31:1151-1172
    [96] Amiri G G,Darzi G A,Amiri J V,Design elastic input energy spectra based onIranian earthquakes,Canadian Journal of Civil Engineering,2008,35(6):635-646
    [97]Benavent-Climent, A.,Zahran, R.,Seismic evaluation of existing RC frames withwide beams using an energy-based approach, Earthquake and Structures,2010,1(1):93-108
    [98] A. Benavent-Climent,R. Zahran,An energy-based procedure for the assessmentof seismic capacity of existing frames: Application to RC wide beam systems inSpain,Soil Dynamics and Earthquake Engineering,2010,30(5):354-367
    [99]Taniguchi Y.,Gould P L.,Kurano M.,Earthquake input energy at dynamiccollapse for double-layer cylindrical lattice roofs, Journal of the InternationalAssociation for Shell and Spatial Structures,2008,49(158):89-96
    [100]Tanami, T.,Hangai, Y.,Dynamic Experiments and Earthquake Observation ofReticulated Single-Layer Domes,International Symposium on Practical Aspects inthe Computation of Shell and Spatial Structures,Belgium,1987:221-230
    [101]Tanami, T.,Hangai, Y.,Shaking Table Tests for the Dynamic Behaviours ofReticulated Single-Layer Dome by Use of a Spring Model,International Colloqiumon Space Structures for Sports Buildings,China,1987:101-111
    [102]李国强,沈祖炎,丁翔等,上海浦东国际机场R2钢屋盖模型模拟三向地震振动台试验研究,建筑结构学报,1999,20(2):18-27
    [103]范峰,沈世钊,单层球壳模拟地震振动台试验及结构减振试验研究,哈尔滨建筑大学学报,2000,33(3):18-22
    [104]梁海彤,双层柱面网壳减震控制理论和振动台试验研究:[硕士学位论文],北京;北京工业大学,2003
    [105]邢佶慧,柳旭东,范峰等,单层柱面网壳结构地震模拟振动台试验研究,建筑结构学报,2004,25(6):1-8
    [106]刘劲松,裘涛,贺明卫,大跨度钢桁架转换结构振动台试验研究,世界地震工程,2006,22(4):145-149
    [107]王奇,白雪霜,程绍革等,济南奥体中心体育场结构模型模拟地震振动台试验研究,空间结构,2009,15(1):35-40
    [108]黎绍敏,稳定理论,北京:人民交通出版社,1989
    [109]潘岳,刘瑞昌,静水压力作用下圆拱正对称失稳临界力的求解,岩土力学,1999,20(1):39-43
    [110]张志忠,傅学怡,陈贤川,拱结构平面内稳定性能研究,深圳土木与建筑,2007,4(1):35-38
    [111]中华人民共和国交通部,JTJ044-89,公路工程抗震设计规范,北京:人民交通出版社,1999
    [112]中华人民共和国建设部,GB50009-2001(2006版),建筑结构荷载规范,北京:中国建筑工业出版社,2006.
    [113]姚国华,王社良,陈卓,空间网壳结构主动抗震控制试验研究,水利与建筑工程学报,2011,9(4):9-12
    [114]王蕾,大跨度刚构桥地震响应分析及振动台试验研究:[博士学位论文],北京;北京交通大学,2010
    [115]刘劲松,裘涛,贺明卫,大跨度钢桁架转换结构振动台试验研究,世界地震工程,2006,22(4):145-149
    [116]闫维明,许广,任晓强等,多点激励下拱桥模型振动台试验及数值模拟研究,震灾防御技术,2009,4(2):150-156
    [117]樊珂,李振宝,闫维明,拱桥多点动力响应振动台模型试验与理论分析,铁道科学与工程学报,2007,4(6):19-23
    [118]黄智光,苏明周,何保康等,冷弯薄壁型钢三层房屋振动台试验研究,土木工程学报,2011,44(2):73-81
    [119]陈海全,应用形状记忆合金的大跨桥梁结构振动控制理论研究与振动台试验:[博士学位论文],天津;天津大学,2003
    [120]李令松,单层单跨门式刚架结构有限元时程分析与振动台试验的对比研究:
    [硕士学位论文],西安;西安建筑科技大学,2008
    [121]徐炳伟,大型复杂结构-桩-土振动台模型试验研究:[博士学位论文],天津;天津大学,2009
    [122]黄浩华,地震模拟振动台的设计与应用技术,北京:地震出版社,2008
    [123]奚德昌,赵钦淼,振动台及振动试验,北京:机械工业出版社,1985
    [124]李忠献,工程结构试验理论与技术,天津:天津大学出版社,2006
    [125]郭在田,薄壁杆件的弯曲与扭转,北京:中国建筑工业出版社,1989
    [126]冯清海,袁万城,基于IDA的钢筋混凝土桥墩随机地震响应概率特征分析,武汉理工大学学报(交通科学与工程版),2009,33(5):936-939
    [127]中华人民共和国住房和城乡建设部,(JGJ/T249-2011)拱形钢结构技术规程,北京:中国建筑工业出版社,2011.
    [128]龚曙光,谢桂兰,黄云清,ANSYS参数化编程与命令手册,北京:机械工业出版社,2009
    [129]陈志华,刘红波,周婷等,空间钢结构APDL参数化计算与分析,北京:中国水利水电出版社,2009
    [130]王全友,MATLAB在工程数学上的应用,东营:中国石油大学出版社,2006
    [131]楼顺天,姚若玉,沈俊霞,MATLAB7.X程序设计语言,西安:西安电子科技大学出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700