基于能量和量纲分析的高温蠕变分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蠕变是高温结构破坏的主要形式之一,是高温强度设计中的一个核心问题,相关研究人们已开展了半个多世纪。但由于蠕变断裂失效的时间相关性、蠕变断裂失效微观和宏观机理的多样性、以及蠕变拘束效应的复杂性,对如何利用短时而有限的蠕变试验数据,描述与时间、温度和应力等有关的蠕变问题,仍是一个富有挑战性的工程难题,迄今还没有得到很好地解决。
     本文以汽轮机转子用材料25Cr2NiMolV铁素体耐热钢作为研究对象,着重探讨了如何利用量纲分析的方法,去研究蠕变裂纹扩展的规律、蠕变试样的相似准则,以及利用能量方法研究蠕变断裂寿命的预测问题。本文研究的主要内容和结论如下:
     (1)运用量纲分析方法及相似性的原理,研究得到蠕变裂纹扩展速率da/dt与c*、应力强度K、净积面应力σnet、裂纹张开位移速率dδ/dt和参量Q*之间的关系模型。并且证明了模型中的有关参数不是材料的常数,而是与尺寸特征有关的参数。
     (2)利用量纲分析方法推导出蠕变试样的相似准则,建立了单轴拉伸蠕变试样的尺度关系,在无量纲载荷和无量纲应力与无量纲直径之间得到了一系列关系式和关联曲线。这一结果对于蠕变力学和断裂力学的深入发展都是有帮助的。
     (3)从反映物系运动的能量守恒定律出发,采用蠕变损伤力学的方法,推导出在等温条件下蠕变预测的新模型,即单位体积外载荷所作的机械功Wc与时间t幂函数之积为常数。该模型与2.25Cr-1Mo、1Cr-.0.5Mo、18Cr-12Ni-Mo和1Cr-1Mo-0.25V钢在不同温度下的试验数据具有较好的吻合性。为由短期试验数据外推长期蠕变寿命提供一种基于能量守恒定律的蠕变寿命预测新模型。
     (4)推导出基于耗散功率的蠕变寿命新的参数预测方法(LHP),与传统的Larson-Miller方法(LMP)相比,通过对2.25Cr1.0Mo钢和TiAl合金钢试验数据的拟合、分析,表明该方法不但能够对试验数据内的蠕变数据进行很好地拟合,同时可以准确把握持久曲线、断裂寿命曲线的变化趋势,从而提高了长期蠕变持久强度和断裂寿命的预测精度。
Creep fracture is one of main reasons for high temperature structures damage. As a key and basic problem in the field of strength design for high temperature structures, the creep crack behavior has been investigated for more than half a century. However, it remains very challenging to reasonably describe the creep crack behavior in terms of time, temperature and stress given limited testing time and data. The difficulties mainly root in the varieties of micro-mechanism and time-dependent characteristic for the creep crack failure as well as the complexity for the creep crack constraint.
     High chromium ferritic steel 25Cr2NiMol V is the material developed for the steam turbine rotor of ultra super-critical power stations. In this thesis, the steel is selected to investigate its creep properties, crack behavior and failure mechanism by the experiment. By using dimensional analysis technique and energy methods, creep crack regulations, similarity of uniaxial tension creep specimens and prediction method of creep crack life are put forth effort to study. All research work and results for the thesis are generalized as follows:
     (1) Dimensional analysis and self-similar principles have been applied in the study of crack behavior of materials under creep loading conditions. The correlations between creep crack growth grate da/dt and C*, stress tension factor K, net section stressσnet, crack open displacement rate dd/dt and Q* have been established. Parameters in the above correlations were proved not to correspond to material characteristics based on the concept of incomplete similarity. On the contrary, they are dependent on dimensional characteristics.
     (2) The similarity rules and scaling relationships of the loads, the stress and the life of uniaxial tension specimens are derived by using dimensional analysis. The relationship curves have been gained between the dimensionless forces, stresses and specimens diameters. Thus, the results of the paper contributes researches of creep mechanics and fracture mechanics.
     (3) A new model for life estimation of creep derived from the law of energy conservation principle was proposed with damage mechanics. By mathematical technique, the expressions of the model is transformed into a simple function, which can describe between Wc the mechanic work per unit by applied loads and time t power function that it accumulates for the constant at uniform temperature. To check the validity of the new model proposed in this paper, the published data of 2.25Cr-1Mo, 1Cr-0.5Mo,18Cr-12Ni-Mo and 1Cr-1Mo-0.25V steels have been studied and analyzed. A well agreement is noted between the model and the results. A new model for life estimation of creep was developed for long term creep life from short experimental data based on energy process.
     (4) A new model for creep life prediction is proposed based on power processes. The dissipated power of applied loads is used to describe creep processes. Based on comparisons with the published data for 2.25Cr1.0Mo steel and TiAl-base intermetallics, the model of the relationship between stress and time to rupture is a better representation of the creep process compared with the Larson-Miller method, represents the published data well and produces extreme extrapolation results that behave as would be expected. the model developed in the present study more accurately predicts creep life.
引文
[1]王铎.断裂力学.哈尔滨:哈尔滨工业出版社,1989.
    [2]范水哲等.超期服役机组寿命评估技术及研究进展,河北电力技术,2003.22(4):7-10.
    [3]涂善东.高温结构完整性原理.北京:科学出版社,2003.
    [4]王从曾.材料性能学.北京:北京工业大学出版社,2001.
    [5]邓增杰,周敬恩.工程材料的断裂与疲劳.北京:机械工业出版社,1995.
    [6]冯端.金属物理学(第三卷:金属力学性质).北京:科学出版社,1999.
    [7]P. A. T. Sivenms M J. Crack growth under creep conditions,2001.
    [8]Robsonk, Properties of creep resistant steel,1972.
    [9]R. D. Nicholson,C. L. Formby. The validity of various fracture mechanics methods at creep temperatures, International Journal of Fracture,1975.11 (4):595-604.
    [10]G. J. Neate. Creep crack growth in steel at 565℃, Engineering Fracture Mechanics,1977,9(2):297-300, IN3-IN4,301-306.
    [11]W. G.A, "Crack growth at temperature," presented at the Conference on the Mechanics and Physics Fracture, Cambridge,1975.
    [12]R. D. Nicholson. The effect of temperature on creep crack propagation in AISI 316 stainless steel, Materials Science and Engineering,1976,22:1-6.
    [13]M. D. Snyder,T. A. Cruse. Boundary-integral equation analysis of cracked anisotropic plates, International Journal of Fracture,1975,11 (2):315-328.
    [14]J. Mackerle. Finite element analysis of fastening and joining:A bibliography (1990-2002), International Journal of Pressure Vessels and Piping,2003,80(4):253-271.
    [15]大路清嗣,小仓敬二,保司郎.口本机械学会论文集,1976,pp:343-347.
    [16]W. W. Rice H. Creep crack growth in Nimonic 80A and in a lCr-1/2Mo-steel, In:Valluri S R, in Advances in Fracture Research-Proceedings of ICF6,1985, pp:2199-2206.
    [17]S. A,C. B. Transients in elevated temperature crack growth. In Bensussan P, in High temperature fracture mechanics, EFG 6, London,1998, pp:219-309.
    [18]T. S, O. R,K. T. Appilication of J-integral to high-temperature crack propagation. Part 1-creep crack propagation, Trans ASME,1979,101(4):154-161.
    [19]O. F. K.G. Mathematical theory of creep and creep rupture. Oxford:Clarendon Press,1966.
    [20]张俊善.材料的高温变形与断裂.北京:科学出版社,2006.
    [21]佐佐木良一,志贺正男.材料,1976,27(25):236.
    [22]吴四发,孙庆平.GH901合金的蠕变裂纹扩展,金属学报,1988,24(1):3.
    [23]孙忠孝.汽轮机转子钢疲劳蠕变交互作用,汽轮机技术,1990.32(1):5.
    [24]陶春虎等.航空发动机转动部件的失效与预防.北京:国防工业出版社,2008.
    [25]徐自力.高温金属材料的性能、强度设计及工程应用.北京:化学工业出版社,2006.
    [26]L. FR,M. J. A. A time-temperature relationship for rupture and creep stresses, Trans ASME,1952,51(36):10.
    [27]R. K. Penny, R. Penny,D. Marriott. Design for creep:Springer,1995.
    [28]I. Le May, T. Da Silveira,C. Vianna. Criteria for the evaluation of damage and remaining life in reformer furnace tubes, International Journal of Pressure Vessels and Piping,1996,66(1-3):233-241.
    [29]陈国华.结构完整性评估.北京:科学出版社,2002.
    [30]李耀君,刘树涛,郝振亚.高温锅炉管寿命预测技术及其应用,热力发电,1996,5:50-58.
    [31]J. Zhao, S. Han, H. Gao, et al. Remaining life assessment of a CrMoV steel using the Z-parameter method, International Journal of Pressure Vessels and Piping,2004,81 (9):757-760.
    [32]李贵军,王乐勤,郑传祥.高温设备和构件的蠕变损伤和断裂研究进展,化工机械,2004,31(2):119-124.
    [33]张少波 ,傅惠民.蠕变持久寿命幂函数预测方法,机械强度,2004,26(6):602-665.
    [34]涂善东、轩福贞、王卫泽.高温蠕变与断裂评价的若干关键问题,金属学报,2009,45(7):781-787.
    [35]A. Saxena. Mechanics and mechanisms of creep crack growth, Fracture mechanics:Microstructure and micromechanisms,1989:283-334.
    [36]J. S. Lee, J. Jang, B. W. Lee, et al. An instrumented indentation technique for estimating fracture toughness of ductile materials:A critical indentation energy model based on continuum damage mechanics, Acta materialia,2006,54(4):1101-1109.
    [37]R. Ainsworth. R5:Assessment procedure for the high temperature response of structures, Nuclear Electric procedure R,2003,5.
    [38]B. S. Institution. " BS PD6525. Elevated temperature properties for steels for pressure purpose, Part 1. Stress rupture properties," ed,1990.
    [39]B. Drubay, D. Moulin, C. Faidy, et al. Defect assessment procedure:a French approach for fast breeder reactors. ASME-PUBLICATIONS-PVP,1993,266:113-113.
    [40]R. Ainsworth, D. Hooton,D. Green. Failure assessment diagrams for high temperature defect assessment, Engineering Fracture Mechanics,1999,62(1):95-109.
    [41]C. Davies, N. O'dowd, D. Dean, et al. Failure assessment diagram analysis of creep crack initiation in 316H stainless steel, International Journal of Pressure Vessels and Piping,2003,80(7-8):541-551.
    [42]P. Budden. Failure assessment diagram methods for strain-based fracture. Engineering Fracture Mechanics,2006,73(5):537-552.
    [43]S. Manson. National Advisory Commission on Aeronautics:Report 1170. Cleveland:Lewis Fight Propulsion Laboratory,1954
    [44]J. Park. Time-Temperature Parameters for Creep-Rupture Data of W C4Re C0.3 HfC, Journal of Materials Science Letters,1999,18(4):277-279.
    [45]李贵军,王乐勤,郑传祥.高温设备和构件的蠕变损伤和断裂研究进展,化工机械,2004,31(2):8.
    [46]L. Kachanov. On failure time under conditions of creep, Izv. Akad. Nauk SSSR Otd.Tehn.Nauk,1958,8:26-31.
    [47]R. Y. N. Creep Problems in Structural Members. North Holland:Amsterdam, 1969.
    [48]M. Evans. A comparative assessment of creep property predictions for a 1CrMoV rotor steel using the CRISPEN, CDM, Omega and Theta projection techniques, Journal of Materials Science,2004,39(6):2053-2071.
    [49]R. Evans. Statistical scatter and variability of creep property estimates in projection method, Materials Science and Technology,1989,5(7):699-707.
    [50]R. Evans. A Constitutive Model for the High-Temperature Creep of Particle-Hardened Alloys Based on the Projection Method, Proceedings: Mathematics, Physical and Engineering Sciences,2000,456(1996):835-868.
    [51]束国刚,李益民.应用theta法外推主汽管道蠕变寿命研究,热力发电,2000,5:2.
    [52]胡南昌,尚丽娟,田素贵等.用修正的theta函数预测镍基高温合金的蠕变寿命,钢铁研究学报,2007,6:4.
    [53]B. Wilshire,H.Burt. The theta approach to creep and creep fracture of forged 1Cr-1Mo-0.25 V steel, Strength, Fracture and Complexity,2005.3(1):1-14.
    [54]K. M. E. Investigation into the Accuracy and Applicability of the MPC Omega Method of Creep Life Prediction in Relation to Other Lifing Methods, D, University of Wales Swansea, Swansea,1996.
    [55]M. Prager. The omega method Can engineering approach to life assessment, Journal of Pressure Vessel Technology,2000.122:273.
    [56]K. Maruyama, I. Nonaka, K. Sawada, et al. Improvement of omega method for creep life prediction, ISIJ international,1997,37(4):419-423.
    [57]H. Lopez,P. Shewmon. Precipitation induced voids in quenched and tempered steel, Acta Metallurgica,1983,31 (11):1945-1950.
    [58]张俊善,王来,徐善国等.HK40转化炉管的组织与性能的关系及剩余寿命预测方法,王富岗,王来:石油化工装置失效分析论文选集,1991:1-8.
    [59]刘勇俊,赵彬,岳珠峰.平头压痕蠕变的试验和数值研究,机械强度,2008,30(5):854-859.
    [60]S. W. Nam. Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition, Materials Science and Engineering A,2002,322(1-2):64-72.
    [61]凌树森.可靠性在机械强度设计和寿命评估中的应用.北京:宇航出版社,1988.
    [62]G. I. Barenblatt. Scalling:Cambridge University Press,2003.
    [63]G. Taylor, "The formation of a blast wave by a very intense explosion. Report RC-210.," presented at the Civil Defence Research Committe. London,1941.
    [64]G. Taylor. The formation of a blast wave by a very intense explosion. I. Theoretical discussion, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1950:159-174.
    [65]G. Taylor. The formation of a blast wave by a very intense explosion. Ⅱ. The atomic explosion of 1945, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1950:175-186.
    [66]M. Ciavarella, M. Paggi,A. Carpinteri. One, no one, and one hundred thousand crack propagation laws:A generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth, Journal of the Mechanics and Physics of Solids,2008,56(12):3416-3432.
    [67]谈庆明.量纲分析.合肥:中国科技大学出版社.2005.
    [68]E. Buckingham. On physically similar systems; illustrations of the use of dimensional equations, Physical Review,1914.4(4):345-376.
    [69]B. P. W, Dimensional Analysis. New Haven:Yale University Press.1922.
    [70]G. I. Barenblatt. Scalling,Self-similarity and Intermediate Asymptotics: Cambridge University Press,1966.
    [71]G. I. Barenblatt. Scalling phenomena in fatigue and fracture. International Journal of Fracture,2006,138:19-35.
    [72]郑哲明,杨振声等.爆炸加工.北京:国防工业出版社,1981.
    [73]郑哲明.连续介质力学与断裂,力学研究,1982,12(2):7.
    [74]A. A. Griffith. The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character,1921,221:163-198.
    [75]A. Griffith, "Proc. First Intern. Congr. Appl. Mechanics, Delft," ed,1924.
    [76]A. Eringen,B.S. Kim. Relation between non-local elasticity and lattice dynamics, Crystal Lattice Defects,1977,7(1):51 C57.
    [77]P. Paris,F. Erdogan. A critical analysis of crack propagation laws, Journal of Basic Engineering,1963,85(4):528-534.
    [78]袁榕,王冰,陈学车等.对于某些CF-2钢制压力容器中的裂纹分析与防止措施的建议,压力容器,2003,20(2):38-42.
    [79]陈学车,王冰,吴卫和等.我国石化企业在用压力容器与管道使用现状和缺陷状况分析及失效预防对策,压力容器,2001,18(5):43-53.
    [80]刘立名,段贺兰,柳春图等.对裂纹扩展规律Paris公式物理本质的探讨,力学学报,2003,35(2):171-175.
    [81]F. A. Heiser,W. Mortimer. Effect of thickness and orientation on fatigue crack growth rate in 4340 steel, Metallurgical and Materials Transactions B,1972,3(8):2119-2123.
    [82]R. Ritchie,J. Knott. Mechanisms of fatigue crack growth in low alloy steel, Acta Metallurgica,1973,21(5):639-648.
    [83]R. Ritchie. Incomplete self-similarity and fatigue-crack growth, International Journal of Fracture,2005,132(3):197-203.
    [84]D. Rice. On the ductile enlargement of voids in triaxial stress fields** 1, Journal of the Mechanics and Physics of Solids,1969,17(3):201-217.
    [85]A. Gurson. Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology,1977.99(1):2-15.
    [86]B. Li, J. Lin,X. Yao. A novel evolutionary algorithm for determining unified creep damage constitutive equations, International Journal of Mechanical Sciences,2002,44(5):987-1002.
    [87]D. Hayhurst, B. Dyson,J. Lin. Breakdown of the skeletal stress technique for lifetime prediction of notched tension bars due to creep crack growth, Engineering Fracture Mechanics,1994,49(5):711-726.
    [88]杨森,刘文今,贾均.定向凝固Al-Bi偏晶合金中第二项的粗化行为,材料科学与工艺,2002,10(1):19-22.
    [89]H. Ben Hadj Hamouda, L. Laiarinandrasana,R. Piques. Fracture mechanics global approach concepts applied to creep slow crack growth in a medium density polyethylene (MDPE), Engineering Fracture Mechanics,2007,74(14):2187-2204.
    [90]X. Lu,N. Brown. The transition from ductile to slow crack growth failure in a copolymer of polyethylene, Journal of Materials Science,1990,25(1):411-416.
    [91]X. Lu,N. Brown. Unification of ductile failure and slow crack growth in an ethylene-octene copolymer, Journal of Materials Science,1991,26(3):612-620.
    [92]谈建平,王国珍*,轩福贞,涂善东.CT试样厚度对Cr-Mo-V钢蠕变裂纹扩展速率的影响,机械工程材料,2011,已录用.
    [93]G. W. Jianping TAN, Fuzhen XUAN and Shan-Tung TU. Creep crack growth in a Cr-Mo-V type steel:experimental observation and prediction, Acta Metallurgica Sinica (English Letters),2011,24(2):81-91.
    [94]J.-P. Tan. EFFECT OF THE OUT-OF-PLANE CONSTRAINT ON CREEP CRACK GROWTH PROPERTY OF Cr-Mo-V TYPE STEEL, in Proceedings of the ASME 2011 Pressure Vessels and Piping Division Conference, Baltimore, Maryland, USA,2011.
    [95]H. Riedel,W. Wagner. Creep Crack Growth in Nimonic 80A and in a lCr-l/2Mo Steel, Advances in Fracture,1984,3:2199-2206.
    [96]T. S, O. t. R,K. T. Application of J-Integral to High-Temperature Crack Propagation:Part Ⅰ—Creep Crack Propagation, Journal of Engineering Materials and Technology 1979,101 (2):8.
    [97]D. Hawk,J. Bassani. Transient crack growth under creep conditions, Journal of the Mechanics and Physics of Solids,1986,34(3):191-212.
    [98]R. H,W. W, Creep crack growth in Nimonic 80A and in a 1Cr-1/2Mo-steel, presented at the In:Valluri S R. Advances in Fracture Research-Proceedings of ICF6, Oxford,1985.
    [99]B. N. Nguyen, P. Onck,E. van der Giessen. Crack-tip constraint effects on creep fracture, Engineering Fracture Mechanics.2000,65(4):467-490.
    [100]W. Churley,J. Earthman. High-temperature crack growth in 304 stainless steel under mixed-mode loading conditions. Metallurgical and Materials Transactions A,1997,28(13):763-773.
    [101]C. Wiesner, J. Earthman, G. Eggeler, et al. Creep crack growth and cavitation damage in a 12% CrMoV steel, Acta Metallurgica,1989,37(10):2733-2741.
    [102]J. Ha, M. Tabuchi, H. Hongo, et al. Creep crack growth properties for 12CrWCoB rotor steel using circular notched specimens, International Journal of Pressure Vessels and Piping,2004,81 (5):401-407.
    [103]A. Yokobori. Effects of component size, geometry, microstructure and aging on the embrittling behavior of creep crack growth correlated by the Q* parameter, Engineering Fracture Mechanics,2007,74(6):898-911.
    [104]M. Yatomi, N. O'Dowd, K. Nikbin, et al. Theoretical and numerical modelling of creep crack growth in a carbon-manganese steel, Engineering Fracture Mechanics,2006,73(9):1158-1175.
    [105]M. Yatomi,M. Tabuchi. Issues Relating to Numerical Modelling of Creep Crack Growth, Engineering Fracture Mechanics,2010
    [106]R. Sugiura,A. Yokobori. Comparison of creep crack growth rate in heat affected zone of welded joint for 9% Cr ferritic heat resistant steel based on C*, d[delta]/dt, K and Q* parameters, Engineering Fracture Mechanics,2007,74(6):868-881.
    [107]C. Davies, D. Dean, K. Nikbin, et al. Interpretation of creep crack initiation and growth data for weldments, Engineering Fracture Mechanics,2007,74(6):882-897.
    [108]A. T. Yokobori, T. Uesugi, T. Yokobori, et al. Estimation of creep crack growth rate in IN-100 based on the Q* parameter concept, Journal of Materials Science,1998,33(6):1555-1562.
    [109]H. Riedel,W. Wagner. Creep crack growth in Nimonic 80 A and in a 1 Cr-1/2 Mo steel, Advances in fracture research(Fracture 84).1986,3:2199-2206.
    [110]A. Saxena,B. Gieseke. Transients in elevated temperature crack growth, High Temperature Fracture Mechanisms and Mechanics,1987:291-309.
    [111]王承玉,王季梅.相似理论在真空灭弧室研究和设计中的应用,中国电机工程学报,1992,12(5):58-60.
    [112]王美敬,罗麟,卢红伟等.水中污染物扩散模型实验中的形似理论,四川大学学报(工程科学版),2004,36(2):25-28.
    [113]周美立.相似系统.北京:科学技术文献出版社,1994.
    [114]巴列切夫斯基.科学研究:对象、方向、方法.北京:轻工业出版社,1984.
    [115]李宗森,余萍,胡孝平.相似理论在混凝土结构振动台模型设计中的应用,国外建材科技,2008,29(1):54-57.
    [116]汤广福,贺之渊.相似理论在大功率电力电子装置试验中的应用,中国电机工程学报,2007,27(22):74-79.
    [117]刘会平,程源.相似准则和量纲分析在高聚物流变学中的应用,合成橡胶工业,1995,18(3):129-131.
    [118]叶骞.量纲分析在等温容器建模中的应用,上海交通大学学报,2005,39(9):1393-1395.
    [119]朱兴元,吴幼明.量纲分析在缓冲气囊动态特性研究中的应用,华南理工大学学报,2000,28(5):82-85.
    [120]黄惠兰,张华,邬志明等.太阳能风力发电模型中的动力相似性分析,华东电力,2008,36(2):123-126.
    [121]李成兵,裴明敬,沈兆武.聚能杆式弹丸侵彻水夹层复合靶相似律分析,火炸药学报,2006,29(6):1-5.
    [122]梁国业,廖健平.数学建模.北京:冶金工业出版社,2004.
    [123]胡云.探索量纲分析法及其应用,长江工程职业技术学院学报,2006,123(2):52-54.
    [124]P. Grau, G. Berg, H. Meinhard, et al. Strain rate dependence of the hardness of glass and Meyer's law, Journal of the American Ceramic Society,1998,81 (6):1557-1564.
    [125]X. Ma, F. Yoshida,K. Shinbata. On the loading curve in microindentation of viscoplastic solder alloy, Materials Science and Engineering A,2003,344(1-2):296-299.
    [126]X. Ma, F. Yoshida,K. Shinbata. Microindentation study on the rate sensitivity of non-homogeneous solder alloy, Journal of Materials Science Letters,2002,21(18):1397-1399.
    [127]B. Lucas,W. Oliver. Indentation power-law creep of high-purity indium, Metallurgical and Materials Transactions A,1999,30(3):601-610.
    [128]D. Stone,K. Yoder. Division of the hardness of molybdenum into rate-dependent and rate-independent components, J. Mater. Res.,1994,9(10):2524-2533.
    [129]M. Pandey, D. Taplin,P. R. Rao. An analysis of specimen geometry effect on the creep life of inconel alloy X-750. Materials Science and Engineering: A,1989,118:33-39.
    [130]J. Storesund,S. T. Tu. Geometrical effect on creep in cross weld specimens, International Journal of Pressure Vessels and Piping,1995,62(2):179-193.
    [131]范镜泓,高其辉.非线性连续介质力学基础.重庆:重庆大学出版社,1987.
    [132]杨光松.损伤力学与复合材料损伤北京:国防工业出版社,1995.
    [133]郑重如.不可逆热力学及现代动力学导论.北京:高等教育出版社,1987.
    [134]严家騄,王永青.工程力学.北京:中国电力出版社,2007.
    [135]C. J. L. Continuum damage mechanics:Part Ⅰ-General concepts., Journal of Applied Mechanics,1988,55(3):59-64.
    [136]C. J. L. Continuum damage mechanics:Part Ⅱ-Damage growth,crack initation and crack growth, Journal of Applied Mechanics,1988,55(3):65-72.
    [137]M. yczkowski. Creep damage evolution equations expressed in terms of dissipated power, International Journal of Mechanical Sciences,2000,42(4):755-769.
    [138]K. Kimura, H. Kushima, F. Abe, et al. Inherent creep strength and long term creep strength properties of ferritic steels, Materials Science and Engineering A,1997,234(1079-1082.
    [139]N. c. D. s. N. 1B, Data Sheet on the Elevated Properties of 1Cr-0.5Mo Steel Tubes for Boilers and Heat Exchangers(STBA22),1996.
    [140]N. c. D. s. N.3B, Data Sheet on the Elevated Temperature Stress Relaxation Properties of 2.25Cr-1Mo(Tubes),1996.
    [141]N. c. D. s. N.42., Data sheet on the Elevated Temperature Stress Relaxation Properties of 18Cr-12Mo Hot Rolled Stainless Steel Plates(SUS 316-HP), 1996.
    [142]Y. N. Rabotnov, Creep of Structural Elements, Nauka, Moscow,1966.
    [143]S. F. Description of anisotropic damage application to elasticity, in Proceedings IUTAM Symposium Physical Nonlinearities in Structural Analysis, L. J. Hult J, Ed., 1ed Berlin:Springer,1981, pp.:237-244.
    [144]Z. Tobolova,J. adek. An interpretation of steady state creep, Philosophical Magazine,1972,26(6):1419-1428.
    [145]i. S. L. Masuyama F, Holdsworth SR, Merckling G (Eds.). Creep and Fracture in High Temperature Components-Design and Life Assessment Issues. DEStech Publications:Lancaster, PA.2005.
    [146]M. Leinster. A method of creep rupture data extrapolation based on physical processes. International Journal of Pressure Vessels and Piping,2008.85(10):701-710.
    [147]A. Dlouh, K. Kucharov(?),A. Orlov (?).Long-term creep and creep rupture characteristics of TiAl-base intermetallics, Materials Science and Engineering: A,2009,510:350-355.
    [148]K. Samuel,P. Rodriguez. An empirical relation between strain energy and time in creep deformation, International Journal of Pressure Vessels and Piping,1998,75(13):939-943.
    [149]姚华堂,轩福贞,王正东.基于孔洞模型的高温构件多轴蠕变设计准则研究,核动力工程,2008,29(4):74-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700