一种镍基单晶高温合金的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单晶高温合金的高强度是多种强化机制和多种元素共同作用的结果。因此,单晶合金成分、工艺的改变对合金的组织与力学性能的关系的影响是一个较为复杂的问题。本文工作选用采用液态金属冷却定向凝固技术(LMC)制备的一种低成本无铼镍基单晶高温合金(DD265),该合金具有高强度、低成本、低密度和铸态直接使用的特点。主要研究内容包括:LMC法制备单晶铸件工艺研究;单晶合金的拉伸性能;单晶合金的持久性能和蠕变性能;长期时效对单晶合金组织与性能的影响等。
     液态金属冷却定向凝固过程中,增加选晶器起晶段激冷层晶粒数量是控制单晶取向的有效方法;型壳温度一定时,随着抽拉速率的增加合金组织细化,一次枝晶间距降低,共晶含量降低,型壳温度升高这种变化趋势更加明显;工艺参数对合金持久性能的影响不大,但是对室温拉伸性能影响较大。
     LMC工艺可以有效细化合金组织,采用LMC工艺制备的DD265单晶合金一次枝晶间距相对HRS工艺制备的合金缩小近1倍,共晶和碳化物尺寸为HRS工艺的一半,并且DD265合金的初熔温度升高。LMC工艺制备的合金最高固溶温度和处理时间都低于HRS工艺制备的合金。固溶处理过程中,LMC工艺制备的合金中铸态MC型碳化物全部发生溶解,而HRS工艺制备的合金中碳化物只有少量发生溶解。这是由于LMC工艺可以有效的降低显微偏析和减小碳化物尺寸所引起的。
     对LMC法制备的DD265单晶合金的拉伸性能研究发现,合金的屈服强度与抗拉强度随温度的变化规律一致,首先随着温度的升高略有降低,450℃后开始升高,在600℃达到最大值,然后缓慢下降,850℃后屈服强度与抗拉强度随着温度升高迅速下降。延伸率与断面收缩率随温度的变化规律也基本相同,但是变化趋势与强度正好相反。
     DD265单晶合金的持久强度与典型第一代单晶合金相当。同一温度下蠕变曲线的形状相似,不同温度下存在差异。低温区蠕变可以发现明显的蠕变三个阶段;高温区表现出明显的蠕变稳态和蠕变加速阶段。同时,本文从位错运动角度深入分析了不同温度蠕变过程。合金在975°C/255MPa的持久性能从大到小的顺序为:[11]>靠近[001]-[11]边界>[001]>靠近[001]-[011]边界>[011]。(111)[01]滑移系的Schmidt因子和取向旋转对不同取向单晶高温合金975°C/255MPa持久性能有很大影响。
     DD265合金在900℃和1000℃条件下经过2000小时时效处理,合金内部没有发现TCP相。900℃条件下,单晶合金的室温拉伸强度和屈服强度随着时效处理时间的延长,表现为先降低,再升高,最后再降低的趋势。在1000℃条件下,抗拉强度和屈服强度呈下降趋势;持久性能的变化规律与室温拉伸性能相似。
The high strength of single crystal (SX) superalloys was resulted from the variousstrengthening mechanisms and the effect of alloying elements. Therefore, it is difficult tomake clear the correlation between the chemical compositions, processing parameters andthe microstructure or mechanical properties. A Re-free, low cost, low density nickel-basesuperalloy DD265was directionally solidified (DS) by liquid metal cooling (LMC) methodin the present study. The processing of LMC casting, tensile behavior, creep properties andthe effect of long term annealing on the microstructure stability and mechanical propertieswere investigated.
     During DS casting by LMC method, more grains generated in the starter resulted inbetter crystal orientation. With the increase of withdraw rate finer microstructure wasgenerated, which means fine primary dendrite arm spacing and low volume fraction ofeutectics. More obvious changes were observed with the increase of the shell temperature.With the change of processing parameters almost no change of creep properties could bedetected, while the room temperature tensile properties were affected dramatically.
     Very fine microstructure could be obtained by LMC method, the primary dendritearm spacing changed to one half of that in alloys cast by HRS, so did the sizes of eutecticsand carbides. The incipient melting temperature was increased. A simpler solution heattreatment with lower solution temperature and shorter time was employed in alloys cast byLMC than HRS. During the solution heat treatment all the as-cast MC carbides dissolvedin alloys cast by LMC, while only small amount of carbides dissolved in alloys cast byHRS. This was probably due to the lower micro-segregation and finer carbides in LMCalloys.
     With the increase of temperature the yielding strength and ultimate tensile strengthshow the same trend, i.e. decreased a little bit, and then increased from around450oC, amaximum value was achieved at600oC then decreased slowly, after850oC they decreasedsignificantly. The elongation and percentage of area reduction show the opposite trends.
     DD265alloy shows the same creep performance as the typical1stgeneration SXsuperalloys. During low temperature creep three stages were shown, while during hightemperature creep only steady stage and accelerate stage were shown. The creep propertieswere affected by the crystal orientation, during975oC/255MPa creep the creep rupture lifedecreased in the sequence of [11]> near [001]-[11]>[001]> near [001]-[011]>[011].Schmidt factor of (111)[01] slip systems and the crystal rotation should be the mainreason.
     No TCP phases were observed in DD265alloys after2000h annealing at900oC and1000oC. After900oC annealing, the yielding strength and ultimate tensile strengthdecreased, increased and then decreased again with the increase of annealing time. After1000oC annealing both the yielding strength and the ultimate tensile strength decreasedwith the increase of annealing time. The creep properties show the same trend as the tensileproperties.
引文
[1] Sims C T. Superalloy II. New York: John Wiley&Sons,1987.
    [2]殷凤仕.熔体处理和热处理M963微观组织与力学性能的影响:(博士学位论文).沈阳:中国科学院金属研究所,2003.
    [3]黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000.
    [4] Trea M. Pollock, Sammy Tin. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry,Microstructure, and Properties. Journal of Propulsion and Power,2006,22(2):361~374.
    [5]储昭贶. DZ951合金力学性能及变形机制的研究:(博士学位论文).沈阳:中国科学院研究生院,2008.
    [6] Harris K, Erickson G L, Schwer R E. Metals Handbook,10thEdition: Properties and Selection.USA: ASM international,1995:995~1005.
    [7] Jong Jun Lee, Do Won Kang, Tong Seop Kim. Development of a gas turbine performance analysisprogram and its application. Energy,2011,36(8):5274~5285.
    [8] I.G. Wright, T.B. Gibbons. Recent developments in gas turbine materials and technology and theirimplications for syngas firing. International Journal of Hydrogen Energy,2007,32(16):3610~3621.
    [9] Reed R C. The Superalloys Fundamentals and Applications. London: Cambridge University Press,2006.
    [10]师昌绪,陆达,荣科.中国高温合金四十年.北京:中国科学出版社,1996.
    [11] Miracle D B. Overview No104the physical and mechanical properties of NiAl. ActaMetallurgica Materialia,1993,41(3):649~684.
    [12] Nardone V C, Tien J K. On the creep rate stress dependence of particle strengthened alloys.Scripta Metallurgica,1986,20(6):797~802.
    [13] George E P, Liu C T. Brittle fracture and grain boundary chemistry of microalloyed NiAl. Journalof Materials Research,1990,5(4):754~762.
    [14] Versnyde F L, Shank M E. Development of columnar grain and single crystal high temperaturematerials through directional solidification. Materials Science and Engineering,1970,6(4):213~217.
    [15] Piearcey B J, Versnyde F L. Control of grain shape and its effect on properties of castcomponents for high temperature and high stress applications. Sae Transactions,1967,75:68~73.
    [16] Piearcey B J, Smashey R W. Carbide phases in MAR-M200. Transactions of the MetallurgicalSociety of Aime,1967,239(4):451~456.
    [17] Gell M, Leverant G R. Fatigue of nickel base superalloy Mar-M200in single crystal andcolumnar grained forms at room temperature. Transactions of the Metallurgical Society of Aime,1968,242(9):1869~1873.
    [18] Jackson J J, Donachie M J, Henricks R J. Effect of volume percent of fine gamma' on creep inDS MAR-M200+HF. Metallurgical Transactions a Physical Metallurgy and Materials Science,1977,8(10):1615~1620.
    [19] Gell M, Duhl D N, Giamei A F. The development of single crystal superalloy turbine blade. Proc.Of4" Int. Symp. on Superalloy, New York, USA,1980:205~214.
    [20] Harris K, Erickson G L, Schwer R E. High temperature alloys for gas turbines and otherapplications1986. Netherland: D. Reidel Publishing Company,1986.
    [21] Nathal M V, Ebert L J. Elevated temperature creep rupture behavior of the single crystal nickelbase superalloy NASAIR100. Metallurgical Transactions a Physical Metallurgy and MaterialsScience,1985,16(3):427~439.
    [22] Gabb T P, Miner R V,Gayda J. The tensile and fatigue deformation structures in a single-crystalNi-base superalloy. Scripta Metallurgica,1986,20(4):513~518.
    [23] Ford D A, Arthey R P. Cost effective single crystals. Proc. Of5" Int. Symp. on Superalloy, NewYork, USA,1984:167~176.
    [24] Khan T, Caron E, Duret C. The development and characterization of a high performanceexperimental single crystal superalloy. Proc. Of5" Int. Symp. on Superalloy, New York, USA,1984:145~155.
    [25] Yamagaga T, Harada H, Nakazawa S. Alloy design for high strength nickel-base single crystalalloys. Proc. Of5" Int. Symp. on Superalloy, New York, USA,1984:157~166.
    [26] Chen D H, Wei S Y, Wu Z T et al. High temperature alloys for gas turbines and other applications1986. Netherland: D. Reidel Publishing Company,1986.
    [27]陈荣章.单晶高温合金发展现状.材料工程,1995,(8):3~12.
    [28] Cetel A D, Duhl D N. Second-generation nickel-base single crystal superalloy. Proc.6th Int.Symp on Superalloys, Champion, Pennsylvania, USA,1988:235~244.
    [29] Blavete D, Caron P, Khan T. An atom-probe study of some fine-scale microstructural features inni-based single crystal superalloys. Proc.6th Int. Symp on Superalloys, Champion, Pennsylvania,USA,1988:305~314.
    [30] Foster S M, Nielson T A, Nagy P. Enhanced rupture properties in advanced single crystal alloys.Proc.6th Int. Symp on Superalloys, Champion, Pennsylvania, USA,1988:245~254.
    [31] Erickson G L. The development and application of CMSX (R)-10. Proc.8th Int. Symp onSuperalloys, Champion, Pennsylvania, USA,1996:35~44.
    [32] Erickson G L. The development of the CMSX (R)-11B and CMSX (R)-11C alloys for industrialgas turbine application. Proc.8th Int. Symp on Superalloys, Champion, Pennsylvania, USA,1996:45~52.
    [33] G.E. Fuchs. Solution heat treatment response of a third generation single crystal Ni-basesuperalloy. Materials Science and Engineering,2001,300A(1-2):52~60.
    [34]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望.航空材料学报,2000,20(01):55~61.
    [35]孔祥鑫.国外军用直升机的动力装置.航空科学技术,1995,(05):30~32.
    [36] Wukusick C S, Buchakjian L. Nickel superalloy for single crystal articles having superiortemperature stress rupture strength and high and low cycle fatigue properties. USA, M26,GB2235697-A,1991.
    [37] Pollock T M, Ross E W, Walston W S et al. Superalloy based on nickel contg. rhenium useful forsoln. heat treatment to limit presence of e.g. undesirable topologically close packed and gammaphases. USA, M26, US5270123-A,1993.
    [38] Granquist R E. Separable, double sided heat sensitive recording material produced at high speedwithout discolouration using e.g. polyolefin, acrylic, styrene diene, polyester or polyamidebonding layer. USA, A89, US5366952-A,1995.
    [39] Harris K, Erickson G L. Single crystal single grain alloy useful for turbine blades is practical tosolution heat treatment without forming prim-coarse gamma prime or incipient melting. USA,M26,US4582548-A,1986.
    [40] Jian Zhang. Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-basedsuperalloy IN792. Scripta Materialia,2003,48(6):677~681.
    [41] Dayong Cai, Liangyin Xiong, Wenchang Liu, Guidong Sun, Mei Yao. Development ofprocessing maps for a Ni-based superalloy. Materials Characterization,2007,58(10):941~946.
    [42] Giamei A F, Anton D L. Rhenium additions to a Ni-base superalloy effects on microstructure.Metallurgical Transactions a-Physical Metallurgy and Materials Science.1985,16(11):1997~2005.
    [43] B.C. Wilson, E.R. Cutler, G.E. Fuchs. Effect of solidification parameters on the microstructuresand properties of CMSX-10. Materials Science and Engineering,2008,479A (1-2):356~364.
    [44] Naik S K, Nangia V K. High strength nickel base single crystal alloys where rhenium, vanadium,etc., improve strength and hafnium and silicon and aluminide coating improve corrosionresistance. USA, M26, US5077141-A,1992.
    [45] Austin C M, Ohara K S, Darolia R. New nickel base superalloy useful for gas turbine enginesingle crystal air foil. USA, M26, US5151249-A,1991.
    [46] Aimone P R, McCormick R L. The effects of yttrium and sulfur on the oxidation resistance of anadvanced single-crystal nickel based superalloy. Proc.7th Int. Symp on Superalloys, Champion,Pennsylvania, USA,1992:817-823.
    [47] Marchionni M, Goldschmidt D, Maldini M. High temperature mechanical properties of CMSX4yttrium single crystal nickel base superalloy. Proc.7th Int. Symp on Superalloys, Champion,Pennsylvania, USA,1992:775~784.
    [48] Smallman R E. Modern physics metallurgy. Translated by Zhang R J. Beijing: The Press Houseof Metallurgical Industry,1980.
    [49] Pete Haasen. Physical metallurgy. London: Cambridge University Press,1978.
    [50]吕俊英,杨洪才,王志兴.一种高温合金的γ'相析出初期长大动力学.东北大学学报,1994,(02):184~188.
    [51] Mackay R A, Ebert L J. Factors which influence directional coarsening of γ′during creep innickel-base superalloy single crystals. Proc. Fifth Int.Symp. on Superalloys, USA, New York,1984:135~144.
    [52] Nathal M V. Effect of initial gamma prime size on the elevated-temperature creep-properties ofsingle-crystal nickel-base superalloys. Metallurgical Transactions a-Physical Metallurgy andMaterials Science,1987,18(11):1961~1970.
    [53] Mackay R A, Nathal M V. MiCon86: Optimization of Processing, Properties, and ServicePerformance Through Microstructural Control. Philadelphia: Baltimore Md,1988.
    [54] Footner P K, Richards B P. Long-term growth of super-alloy gamma'-particles. Journal ofMaterials Science,1982,17(07):2141~2153.
    [55] Zhenxue Shi, Jiarong Li, Shizhong Liu. Effect of long term aging on microstructure and stressrupture properties of a nickel based single crystal superalloy. Progress in Natural Science:Materials International,2012,22(5):426~432.
    [56] James Coakley, Hector Basoalto, David Dye. Coarsening of a multimodal nickel-base superalloy.Acta Materialia,2010,58(11):4019~4028.
    [57] Mackay R A, Nathal M V. Gamma coarsening in high-volume fraction nickel-base alloys. ActaMetallurgica Materialia,1990,38(6):993~1005.
    [58] Sharghi-Moshatghin R, Asgari S. The effect of thermal exposure on the gamma' characteristics ina Ni-base superalloy. Journal of Alloys and Compounds,2004,368(1-2):144~151.
    [59] Moshtaghin R S, Asgari S. Growth kinetics of gamma ' precipitates in superalloy IN-738LCduring long term aging. Materials&Design,2003,24(5):325~330.
    [60] Nathal M V, Mackay R A, Garlick R G. Lattice-parameter variations during aging in nickel-basesuperalloys. Scripta Metallurgica,1988,22(9):1421~1424.
    [61] Reppich B, Schepp P, Wehner G. Some new aspects concerning particle hardening mechanismsin gamma' precipitating nickel-base alloys.2. Experiments. Acta Metallurgica,1982,30(1):95~104.
    [62] Jayanth C S, Nash P. Factors affecting particle-coarsening kinetics and size distribution. Journalof Materials Science,1989,24(9):3041~3052.
    [63] Baldan A. Review Progress in Ostwald ripening theories and their applications to the gamma'-precipitates in nickel-base superalloys-Part II-Nickel-base superalloys. Journal of MaterialsScience,2002,37(12):2379~2405.
    [64] Doi M, Miyazaki T, Wakatsuki T. The effect of elastic interaction energy on the morphology ofgamma'-precipitates in nickel-based alloys. Materials Science and Engineering,1984,67(2)A:247~253.
    [65] R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, M.J. Mills. Dislocation decorrelation andrelationship to deformation microtwins during creep of a γ′precipitate strengthened Ni-basedsuperalloy. Acta Materialia,2011,59(19):7325~7339.
    [66] С Т基什金, Н Ф拉什科, В А斑克拉托夫. ЖС-6К、ЖС6У及ВЖЛ12铸造合金的相成分和高温力学性能.航空材料学报,1991,(1):18~26.
    [67] Srdjan Milenkovic, Ilchat Sabirov, Javier LLorca. Effect of the cooling rate on microstructure andhardness of MAR-M247Ni-based superalloy. Materials Letters,2012,73:216~219.
    [68] Huang X B, Kang Y, Zhou H H et al. Influence of heat treatment on the microstructure of aunidirectional Ni-base superalloy. Materials Letters,1998,36(1-4):210~213.
    [69] He L Z, Zheng Q, Sun X F et al. M23C6precipitation behavior in a Ni-base superalloy M963.Journal of Materials Science,2005,40(11):2959~2964.
    [70] Liu L R, Jin T, Zhao N R et al. Formation of carbides and their effects on stress rupture of aNi-base single crystal superalloy. Materials Science and Engineering,2003,361(1-2):191~197.
    [71] Q.Z. Chen, C.N. Jones, D.M.Knowles. Effect of alloying chemistry on MC carbide morghologyin modified RR2072and RR2086SX superalloys. Scripta Materialia,2002,47:669~675.
    [72] Collins H E. Relative long-time stability of carbide and intermetallic phases in nickel-basesuperalloys. Asm Transactions Quarterly,1969,62(1):82~88.
    [73] Qin X Z, Guo J T, Yuan C et al. Decomposition of primary MC carbide and its effects on thefracture behaviors of a cast Ni-base superalloy. Materials Science and Engineering,2008,485(1-2):74~79.
    [74]陈国良.高温合金.北京:冶金工业出版社,1985:1.
    [75]刘丽荣.一种镍基单晶高温合金微观组织及持久性能的研究:(博士学位论文).沈阳:中国科学院研究生院,2004.
    [76]杨金侠. K465镍基高温合金的组织和性能稳定性及热疲劳性能:(博士学位论文).沈阳:中国科学院金属研究所,2006.
    [77] Madeleine Durand-Charre. The Microstructure of Superalloys. New York: Gordon and BreachScience Publishers,1997.
    [78] Copley S M, Giamei A F, Johnson S M. Origin of freckles in unidirectionally solidified castings.Metallurgical Transactions,1970,1(8):2193~2198.
    [79] Zhang J S, Hu Z Q, Murata Y. Design and development of hot corrosion-resistant nickel-basesingle-crystal superalloys by the d-electrons alloy design theory-ⅠCharacterization of thephase-stability. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1993,24(11):2443~2450.
    [80] Ohta Y, Nakagawa Y G,Ohama S. Fabrication and high-temperature properties of single-crystalcomponent of advanced Ni-base superalloys. Tetsu to Hagane-Journal of the Iron and SteelInstitute of Japan,1990,76(6):940~947.
    [81] Machlin E S, Shao J. Sigma-safe phase diagram approach to sigma-phase problem in Ni-basesuperalloys. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1978,9(4):561~568.
    [82] Mihalisi J R, Bieber C G, Grant R T. Sigma-its occurrence effect and control in nickel-basesuperalloys. Transactions of the Metallurgical Society of Aime,1968,242(12):2399~2405.
    [83] Zheng Y R, Cai Y L. The formation of Ni5Hf and the secondary carbide in hafnium-bearing castsuperalloys. Acta Metallurgica,1980,16(2):151~158.
    [84] Nabarro F R N, De Villiers H L. The Physics of Creep: Creep and Creep-Resistant Alloys. Taylor&Francis,1997,83:17~25.
    [85] Betz U, Hugo F, Kemmer H J. World conf Invest Casting, San Francisco, USA,1996.
    [86] Singer R.F. Material advance power. Netherlands: Kluwer Academic Publishers,1994.
    [87]宋艳平,李双明,傅恒志.高温度梯度定向凝固下Ni-NbC合金的组织演化.航空材料学报,2007,(3):6~10.
    [88] L. Liu, T.W. Huang, J. Zhang, H.Z. Fu. Microstructure and stress rupture properties of singlecrystal superalloy CMSX-2under high thermal gradient directional solidification. MaterialsLetters,2007,61:227~230.
    [89] A. Kermanpur, N. Varahram, P. Davami, M. Rappaz. Thermal and Grain-Structure Simulation ina Land-Based Turbine Blade Directionally Solidified with the Liquid Metal Cooling Process.Metallurgical and Materials Transactions,2000,31B:1293~1304.
    [90] Giamei A F, Tschinkel J G. Liquid-metal cooling-new solidification technique. MetallurgicalTransactions a-Physical Metallurgy and Materials Science,1976,7(9):1427~1434.
    [91] Fu H Z, Xie F Q. Solidification characteristics of near rapid and super-cooling directionalsolidification. Transactions of Nonferrous Metals Society of China,1999,9(4):102~117.
    [92] Jinlai LIU, Jinjiang YU, Tao JIN, Xiaofeng SUN, Hengrong GUAN, Zhuangqi HU. Influence oftemperature on tensile behavior and deformation mechanism of Re-containing single crystalsuperalloy. Transactions of Nonferrous Metals Society of China,2011,21(7):1518~1523.
    [93] Jian Zhang, Langhong Lou. Directional Solidifcation Assisted by Liquid Metal Cooling. Journalof Materials Science&Technology,2007,23(3):289~300
    [94] Kermanpur A, Varahram N. Department of Material Science and Engineering. Germany:University of Erlangen-Nuremberg,2000.
    [95] Westbrook J H. Temperature dependence of the hardness of secondary phases common in turbinebucket alloys. Transactions of the American Institute of Mining and Metallurgical Engineers,1957,209:898~904.
    [96] Milligan W W, Antolovich S D. Yielding and deformation-behavior of the single-crystalsuperalloy PWA1480. Metallurgical Transactions a-Physical Metallurgy and Materials Science,1987,18(1):85~95.
    [97] Takeuchi S, Kuramoto E. Temperature and orientation dependence of yield stress in Ni3Gasingle-crystals. Acta Metallurgica,1973,21(4):415~425.
    [98] Kim M S, Hanada S, Watanabe S et al. Orientation dependence of deformation and fracture-behavior in Ni3(Al, Ti) single-crystals at973-K. Acta Metallurgica,1988,36(11):2967~2978.
    [99] D. Leidermark, J.J. Moverare, S. Johansson, K. Simonsson, S. Sj str m. Tension/compressionasymmetry of a single-crystal superalloy in virgin and degraded condition. Acta Materialia,2010,58(15):4986~4997.
    [100]彭志方,严演辉.镍基单晶高温合金CMSX-4相形态演变及蠕变各向异性.金属学报,1997,(11):1147~1154.
    [101] Sass V, Glatzel U, FellerKniepmeier M. Anisotropic creep properties of the nickel-basesuperalloy CMSX-4. Acta Materialia,1996,44(5):1967~1977.
    [102] M. Arul Kumar, Sivasambu Mahesh. Banding in single crystals during plastic deformation.International Journal of Plasticity,2012,36:15~33.
    [103] Mackay R A, Maier R D. The influence of orientation on the stress rupture properties ofnickel-base super-alloy single-crystals. Metallurgical Transactions a-Physical Metallurgy andMaterials Science,1982,13(10):1747~1754.
    [104] Matan N, Cox D C, Carter P et al. Creep of CMSX-4superalloy single crystals: Effects ofmisorientation and temperature. Acta Materialia,1999,47(5):1549~1563.
    [105] Sass V, Schneider W, Mughrabi H. On the orientation dependence of the intermediate-temperature creep-behavior of a monocrystalline nickel-base superalloy. Scripta MetallurgicaMaterialia,1994,31(7):885~890.
    [106] K.Y. Cheng, C.Y. Jo, T. Jin, Z.Q. Hu. Influence of applied stress on the γ′directional coarseningin a single crystal superalloy. Materials&Design,2010,31(2):968~971.
    [107] Khan T, Caron P, Duret C. The developmenat nd characterization of a high performanceexperimentals ingle crystals uperalloy. Proc.5th Int. Symp on Superalloys, USA,1984:145~155.
    [108] Fellerkniepmeier M, Link T. Correlation of microstructure and creep stages in the (100)oriented superalloy SRR-99at1253-K. Metallurgical Transactions a-Physical Metallurgy andMaterials Science,1989,20(7):1233~1238.
    [109] Conley J G, Fine M E,Weertman J R. Effect of lattice disregistry variation on the late stagephase-transformation behavior of precipitates in ni-al-mo alloys. Acta Metallurgica,1989,37(4):1251~1263.
    [110] R.A. MacKay, T.P. Gabb, M.V. Nathal. Microstructure-sensitive creep models for nickel-basesuperalloy single crystals. Materials Science and Engineering,2003,582A:397~408.
    [111] Carry C, Strudel J L. Apparent and effective creep parameters in single-crystals of a nickel-basesuperalloy-Ⅱ Secondary creep. Acta Metallurgica,1978,26(5):859~870.
    [112]彭志方.一种镍基单晶高温合金中γ'沉淀的定向粗化.金属学报,1995,(12):531~536.
    [113]田素贵.单晶镍基合金组织演化与蠕变行为及微观特征的研究:(博士学位论文).沈阳:东北大学,1998.
    [114] Paris O, Fahrmann M, Fahrmann E et al. Early stages of precipitate rafting in a single crystalNi-Al-Mo model alloy investigated by small-angle X-ray scattering and TEM. Acta Materialia,1997,45(3):1085~1097.
    [115] Socrate S, Parks D M. Numerical determination of the elastic driving force for directionalcoarsening in Ni-superalloys. Acta Metallurgica Materialia,1993,41(7):2185~2209.
    [116] Yuhki Tsukada, Yoshinori Murata, Toshiyuki Koyama, Nobuhiro Miura, Yoshihiro Kondo.Creep deformation and rafting in nickel-based superalloys simulated by the phase-field methodusing classical flow and creep theories. Acta Materialia,2011,59(16):6378~6386.
    [117] Buffiere J Y, Ignat M. A dislocation based criterion for the raft formation in nickel-basedsuperalloys single-crystals. Acta Metallurgica Materialia,1995,43(5):1791-1797.
    [118] Ha l Mughrabi, Michael Ott, Ulrich Tetzlaff. New microstructural concepts to optimize thehigh-temperature strength of γ′-hardened monocrystalline nickel-based superalloys. MaterialsScience and Engineering,1997,234A (30):434~437.
    [119] Wen Ping Wu, Ya Fang Guo, Yue Sheng Wang, Ralf Mueller, Dietmar Gross. Influence ofexternal stress and plastic strain on morphological evolution of precipitates in Ni-basedsuperalloys. Computational Materials Science,2009,46(2):431~437.
    [120] J.F. Nie, Z.L. Liu, X.M. Liu, Z. Zhuang. Size effects of γ′precipitate on the creep properties ofdirectionally solidified nickel-base super-alloys at middle temperature. ComputationalMaterials Science,2009,46(2):400~406.
    [121] M. Kamaraj, K. Serin, M. Kolbe, G. Eggeler. Influence of stress state on the kinetics ofγ-channel widening during high temperature and low stress creep of the single crystalsuperalloy CMSX-4. Materials Science and Engineering,2001,319-321A:796~799.
    [122] M. Qian, J.C. Lippold. Investigation of grain refinement during a rejuvenation heat treatment ofwrought Alloy718. Materials Science and Engineering,2007,456A:147~155.
    [123] Brown J A, Freer R, Rowley A T. Reconditioning of gas turbine components by heat treatment.Journal of Engineering for Gas Turbines and Power-Transactions of the Asme.2001,123(1):57-61.
    [124] G. Clark. Aircraft fatigue life extension: Development of a mid-life rework method based onpeening. European Structural Integrity Society,2000,26:97~114.
    [125] X.L. Yang, H.B. Dong, W. Wang, P.D. Lee. Microscale simulation of stray grain formation ininvestment cast turbine blades. Materials Science and Engineering,2004,386A:129~139.
    [126] V.M. Orera, J.I. Pe a, P.B. Oliete, R.I. Merino, A. Larrea. Growth of eutectic ceramic structuresby directional solidification methods. Journal of Crystal Growth,2012,360:99~104.
    [127]胡汉起.金属凝固原理.北京:机械工业出版社,1983,39~41.
    [128] B. Wolf, K.-O. Bambauer and P. Paufler. On the temperature dependence of the hardness ofquasicrystals. Materials Science and Engineering,2001,298A:284~295.
    [129] A.R.P. Kingsly, K.E. Ileleji. Glass transition behavior of corn distillers dried grains withsolubles (DDGS). Journal of Cereal Science,2011,54(3):332~338.
    [130] M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G.Purdy, M. Rappazand R. Trivedi. Solidifcation microstructures and solid-state parallels: Recent developments,future directions. Acta Materialia,2009,57:941~971.
    [131] E. Pink, A. Grinberg. Stress drops in serrated flow curves of A15Mg. Acta Metallurgica,1982,30:2153~2160.
    [132] V.F. Kocks, R.E. Cook and R.A. Mulford. Strain aging and strain hardening in Ni-C alloys.Acta Metallurgica,1985,33:623~638.
    [133] C.L. Brundidge, D. Vandrased, B. Wang, and T.M. Pollock. Structure Refnement by a LiquidMetal Cooling Solidifcation Process for Single-Crystal Nickel-Base Superalloys. Metallurgicaland Materials Transactions,2011,27A:155~159.
    [134] Zhang J, Singer R F. Effect of grain-boundary characteristics on castability of nickel-basesuperalloys. Metallurgical and Materials Transactions,2004,35A(3):939~946.
    [135] Tin S, Pollock. Phase instabilities and carbons in single-crystal nickel-base superalloys.Materials Science and Engineering,2003,348A:111~121.
    [136]张炫. DD98镍基单晶高温合金的热处理和拉伸、疲劳性能的研究:(博士学位论文).沈阳:中国科学院金属研究所,2006.
    [137]宋波,马雪容.定向凝固方法对DZ22合金初熔温度的影响.宇航学报,1997,18(1):76~79
    [138]蔡玉林,郑运荣.高温合金的金相研究.北京:国防工业出版社,1986:20~40.
    [139] R. Jensen, J. K. Tien. Temperature and strain rate dependence of stress-strain behavior in anickel-base superalloy. Metallurgical and Materials Transactions,1985,16A:1049~1068.
    [140] A.H. Sherry, R. Pilkington. The creep fracture of a single crystal superalloy, Materials Scienceand Engineering A.1993,172:51~61.
    [141]张俊善.材料的高温变形与断裂.北京:科学出版社,2007:5~10.
    [142] Jaroslav Mackerle. Creep and creep fracture/damage finite element modeling of engineeringmaterials and structures. International Journal of Pressure Vessels and Piping,2000,77:53~77.
    [143]胡赓祥,钱苗根.金属学.上海:上海科学技术出版社,1980:269~275.
    [144] A. Pineau. Influence of uniaxial stress on the morphology of coherent precipitates duringcoarsening—elastic energy considerations. Acta Metallurgica,1976,24:559~570.
    [145]夏鹏成.定向凝固DZ951合金热处理和热疲劳行为:(博士学位论文).沈阳:中国科学院金属研究所,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700