鲜水河断裂带地震破裂段落的边界特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为“位于亚洲大陆东南部强烈变形场中的左旋剪切破裂带,撕裂了高耸的青藏高原的东南部边缘,在中国大陆内部新构造格局中占据这突出的位置”的青藏高原东缘一条重要的左旋走滑断裂带,鲜水河断裂带有着丰富的历史地震记录、较清晰的地貌特征和地表破裂形迹,是开展活动断裂的定量研究、检验地震破裂分段模型——独立破裂模型和级联破裂模型的理想场所,一直以来都吸引着很多国内外学者的关注。对鲜水河断裂的深入研究是进一步认识青藏高原东缘运动学和动力学机制的重要途径,也是理解块体边界大型走滑断裂带强震复发规律的窗口。
     前人在鲜水河断裂带已取得大量研究成果,地质方面主要针对断裂的几何学、运动学特征展开,多位学者对鲜水河断裂带进行了分段研究,但少有对段落边界进行特别关注。而段落边界的研究程度对于是否能够更好地认识断裂活动特征及其与强震发生之间的关系具有重要意义。因此论文选择鲜水河断裂带段落边界作为主要研究对象,以期能够在这一方面又更进一步的认识。
     由于论文研究区是研究程度相对较高的活动断裂带,这一前提一方面为研究提供了良好的基础条件,另一方面也对论文提出了更高的要求。论文主要从破裂分段边界特征分析的角度,着重于构建段落边界的演化模型,讨论边界特征与地震分段破裂行为的关系,进一步认识鲜水河断裂带断裂活动特征和强震复发规律。在此过程中取得了以下一些进展:
     1)从断裂活动、地貌发育以及地层沉积等多方面对对鲜水河断裂带段落边界进行了比较详细的分析,对段落边界的演化过程与断裂活动的关系进行了探讨。
     2)从段落边界演化阶段的分析来反映断裂带段落单元分段破裂行为特征。
     3)对鲜水河断裂带地震危险性进行了简要的评估。
     本文的工作主要是地质学、地貌学以及地层学等方法的综合运用来研究段落边界的活动习性,还原段落边界的演化过程,结合历史地震破裂及古地震破裂等资料,分析鲜水河断裂带地震破裂分段行为,并且进一步讨论段落边界的稳定性,为区域地震危险性分析提供依据;同时,通过本项研究可以为进一步理解大型走滑断裂带的地震破裂过程、空间迁移规律,为建立川滇活动块体的运动学模型提供科学依据。在分析和整理前人大量研究成果的基础上,基于对断裂带地质、地貌特征的调查分析,从构造地貌的角度结合地质学、测量学及年代学等方法,综合运用遥感、GIS、地质、测量等多种手段,认识鲜水河断裂带段落边界断裂活动特征、地貌特征以及地层沉积特征等,还原段落边界演化历史,获得其演化模型,并进一步讨论边界演化与断裂分段破裂行为之间的关系,主要获得以下几点认识:
     1、关于鲜水河断裂带的破裂分段
     综合鲜水河断裂带几何展布、历史地震破裂、地震活动、深部结构、断层滑动速率、古地震、强震复发特征以及最晚一次地震的离逝时间等资料,对鲜水河断裂带进行破裂分段,总共分为8个段落,分别为炉霍段、道孚段、乾宁段、雅拉河段、色拉哈段、折多塘段、雪门坎段和磨西段。
     2、关于鲜水河断裂带破裂分段边界特征及其与地震分段破裂行为关系
     1)断裂活动证据说明鲜水河断裂带的炉霍段有向南东扩展的趋势,道孚段存在向南东迁移的趋势;在虾拉沱盆地中两条边界断裂活动的重叠区域具有由北西向南东迁移的特点;盆地阶地发育及地层沉积方面体现盆地的中心具有由北西向南东迁移的特点。盆地两侧边界主断裂活动强度的迁移控制了盆地的发育过程和最新沉积中心的迁移,使其在高长宽比下仍在发育中,而尚未到达消亡期。炉霍段和道孚段上7.5级左右的地震可以被虾拉沱盆地控制,但炉霍段上更大震级的地震可能加速炉霍段的向南东扩展,使两条断裂贯通,产生级联破裂。
     2)鲜水河断裂带的道孚段和乾宁段的最新活动性具有由北西向南东迁移的趋势;在道孚盆地中两条边界断裂活动具有向盆地内部迁移的特点,且边界断裂的活动受到以子龙断裂为代表的系列横向正断层的影响。盆地阶地发育及地层沉积方面特征体现了盆地的沉积中心由盆地东侧向盆地中心迁移的特点。盆地两侧的边界主断裂活动性的迁移控制了盆地的发育过程和沉积中心的迁移。道孚段上和乾宁段上7.5级左右的地震可以被道孚盆地控制,但两段未来贯通可能性极大,可能发生7.5-8级的地震,使两条段落单元产生级联破裂。
     3)乾宁盆地的演化受鲜水河断裂带乾宁段和中古断裂的控制,且目前处于发育的初期。目前的沉积中心位于盆地的南东侧。本拉分区与相邻断裂的间距超过10km,可以认为是永久性段落边界,足以控制相邻段落破裂的扩展。
     4)折多山隆起的挤压阶区范围的鲜水河断裂带段落单元相距宽度9-13km不等,本区为鲜水河断裂带永久性段落边界。雅拉河段与雪门坎段之间存在着断层走向约10-15°弯曲,这一弯曲在以往的历史地震破裂、两侧运动学性质(走滑和带有逆冲分量走滑)、滑动速率和贡嘎山局部挤压隆升等方面反映出为一个永久性段落边界,两侧没有发生级联破裂的可能性。
     5)雅家埂拉分区的段落边界为非持久性段落边界,不具有阻止强震扩展的能力。
     6)鲜水河断裂带北西段的虾拉沱盆地和道孚盆地具有段落边界的功能,但不具有持久性和稳定性,有产生级联破裂的可能。三段同时完全破裂的最大震级为8.0级左右。惠远寺盆地以及折多山隆起可以作为永久性段落边界,阻止破裂扩展,鲜水河断裂带中段的折多塘段、色拉哈段和雅拉河段主要表现为单独破裂模式。鲜水河断裂带南东段的雅家埂拉分区有地震破裂贯通的历史,因此该段落边界也为非持久性段落边界,雪门坎段和磨西段可以产生级联破裂。
     3、关于鲜水河断裂带潜在震源区划分与震级上限分析
     根据潜在震源区划分的原则和依据,鲜水河断裂带可以划分为八个潜在震源区单元,分别为炉霍段、道孚段、乾宁段、雅拉河段、色拉哈段、折多塘段、学门坎段和磨西段,最大震级上限分别为Ms7.7级、7.7级、7.5级、7.7级、7.3级、7.3级、7.5级和7.6级.;考虑到级联破裂的可能性,将断裂带划分为五个主要的潜在震源区:北西段,色拉哈段、折多塘段、雅拉河段和南东段,最高震级上限分别为Ms7.9级、7.7级、7.3级、7.3级、7.8级。
As an important left strike-slip fault zone on the southeast margin of the Tibetan plateau which is in the strong deformation field of the Asian continent, there are abundant history earthquake records, distinct tectonic geomorphology and surface rupture feathers on the Xianshuihe Fault zone, whereso it is an ideal is a perfect region for quantitative study of active faults and test of seismic rupture model test ----the independent rupture model or cascade rupture model. This fault zone attracts much attention of geologists all around the world. Further research about the Xianshuihe fault zone is a valid way to know more about the kinematics and dynamics mechanisms of the eastern margin of the Tibetan plateau, and also is a good window of understanding recurrence of major earthquakes on the large strike slip fault zone at block boundaries.
     Lots of achievements have obtained about the Xianshuihe fault zone, especially in geology. Many studies are concentrated on the geometry, dynamitic feathers on the fault zone, besides that, several scholars have studied the segmentation of the Xianshuihe fault zone, but the segment boundary is hardly been focused on. while, the research degree of the segment boundary is very important for knowing better about the fault activity and its relationship with strong earthquakes. So we choose the segment boundaries of the Xianshuihe Fault zone as the main study object for this thesis, and expect to know more about them.
     There have been numerous research of active fault in this region, which suppliy a good foundation as well as a higher requirement for this work., The thesis begins with the characteristics of the segment boundaries of the Xianshuihe fault zone ,building their evolution models, then discussing the relationship between the boundary feathers and the seismic rupture of fault segments. Finally, it discusses the fault acvitvity feathers of the Xianshuihe fault zone and the recurrence rules of strong earthquakes. the main aspects of this thesis rae, some progresses are as follows:
     1)I have analyzed the feathers of the segment boundaries of the Xianshuihe Fault zone from three aspects including fault activities, tectonic geomorphic feathers and stratum sedimentation feathers,and furthermore, discussed the relationship between the evolution process of the segmentation boundary and the fault activities.
     2)I have determined the segmentation rupture behave features by analyzing of the evolution stages of segment boundaries.
     3) Seismic risk of the Xianshuihe fault zone has been evaluated briefly.
     By comprehensive application of geology, geomorphology, stratigraphy and so on, this work studied the activity law of fault segment boundaries, and reconstructed evolution process. Combined with the data of historical earthquake and paleoearthquake rupture, it analyzed earthquake rupture segmentation behavior for the rupture zone of the Xianshuihe, and then studied the stability of segment boundaries and provided the basis for analyzing the hazard of regional earthquake. Meanwhile, the above study result could be used as the scientific basis of understanding for the earthquake rupturing processes of large scale strike-slip fault zones and their special migration law, and modeling the kinematics model for Chuandian active block. Base on gathering and analyzing available research results, I investigated and analyzed the geological and geomorphic characteristics of the rupture zone. Combined with geology, surveying, chronology and so on, by means of remote sensing, GIS, geology, geodesy and so on, I studied the activity features, the geomorphologic features and the sedimentary pattern of the segment boundary in the Xianshuihe fault zone, and recovered and modeled the evolution history for the fault segment boundary, and then discussed the relationship between the segment boundary evolution and the segmental rupture behavior of the fault zone. Overall, some conclusions can be made below:
     1、Rupture segmentation of the Xianshuihe fault zone
     Combined with the data of the geometrical distribution pattern of the fault zone, historical seismic ruptures seismic activity, deep structure, fault sipping rates, paleoearthquakes, recurrence law of major shocks, and the elapsing time of the last seismic event, the Xianshuihe fault zone is divided into 8 segments ,i.e Luhuo segment, Daofu segment, Qianning segment, Yalahe segment, Selaha segment, Zheduotang segment, Xuemenkan segment and Moxi segment.
     2、Segment boundary features and the relationship with segments rupture behavior.
     1)The fault activity evidence indicates that, the Luhuo segment of Xianshuihe fault zone has a trend of south-east extending, and the Daofu segment has the trend to migrate toward south-east; In the Xialatuo basin, there is a moving trend from northwest to southeast at the overlapped area of the two active boundary faults.According to well developed basin terrace characteristics and stratigraphic sedimentary feature, it can be seen that the new sedimentary center had moved from northwest to southeast. The motion of the major boundary faulting strength center controlled the basin evolution history and the moving of new sedimentary center, and the basin is still developing with a high ratio of length to width. The Xialatuo basin could control M7.5 earthquakes at the Luhuo segment and Daofu segment, but the greater earthquakes could accelerate the southeasetward of the Luhuo segment, and make the two segment link andgenerate cascade faults.
     2)The latest activity of the Daofu segment and Qianning segment of the Xianshuihe fault zone has a tendency of migration from north to south.The fault activity in the Xlialatuo basin migrated from outside to inner of the basin, and the activity of the boundary fault is affected by the normal faults in the basin include Zilong fault. Feathers of the terrace development and stratigraphic sedimentary reflect that the deposit center migrates from the east part of the basin to the center, which is controlled by the boundary faults activity on two sides of the basin. Earthquakes of ~M 7.5 on the Daofu segment and Qianning segment are restricted by the Daofu basin, but it seems highly possible that the two segments rupture together, with earthquakes of M 7.5-8,and the two segments rupture in a cascade manner.
     3)The evolution of the Qianning Basin is controlled by the Qianning segment of the Xianshuihe fault zone and Zhonggu fault,and the basin is now in the intial stage of development. The deposit center is in the southeast of the basin. The apart distance of this pull apart step-over and the adjacent segment south of it is more than 10km ,a thus , it can be regarded as a persistent segment boundary.
     ? 4) The apart distance between the segments of the Xianshuihe fault zone around the Zheduoshan pop-up range are from 9 to 13km, and the segment boundary here can be considered as a persistent boundary of the Xianshuihe fault zone. There is a bend of 10-15°between the Yalahe segment and Xuemenkan segment of the Xianshuihe fault zone. Differences of the historical seismic rupture feathers, kinematic feathers (strike slip or reverse with strike slip) and slip rates between the two segments together with the local compressive uplift of the Gongga Mont. show that the bend is a permanent segment boundary, and it is almost impossible for the two segments to rupture together in a cascade mode .
     5)The segment boundary of the Yajiageng pull apart step-over is a nonpersistent boundary, which can’t stopt propagations of strong earthquakes.
     6)The Xialatuo basin and Daofu basin in the northwest of the Xianshuihe fault zone can be considered as a segment boundary, without persistence and stability,which may propagate, and the maximum magnitude would be M8.0 if the three segments all rupture through a at the same event. The Huiyuansi basin and Zheduoshan pop-up are persistent boundaries,resisting seismic ruptures propagating from each other, and so the Zheduotang segment,Selaha segment, and Yalahe segment on the middle of Xianshuihe Fault zone would rupture independently. The Yajiageng pull-apart step over on the southeast segment of the Xianshuihe fault zone has been overlapped before, and so it is an nonpersistent segment boundary.The Xuemenkan segment and the Moxi segment can be ruptured in a cascade rupture way.
     3 The potential seismic source zone and the upper limit magnitude analysis
     According to the principle and rule of the potential seismic source zoning, the Xianshuihe fault zone can be divided into eight basic potential seismic source zones as Luhuo segment, Daofu segment, Qianning segment, Yalahe segment, Selaha segment, Zheduotang segment, Xuemenkan segment and Moxi segment. In this case, their upper limit magnitudes are Ms7.7,Ms 7.7,Ms 7.5,Ms 7.7、Ms 7.3,Ms 7.3,Ms 7.5 and Ms 7.6,respectively. By considering the cascade rupture possibility, five main potential seismic source zones can be determined, and the upper magnitudes for which are Ms7.9、Ms 7.7,Ms 7.3,Ms 7.3,Ms7.8, respectively.
引文
A. G. Petrunin,S. V. Sobolev. 2008. Three-dimensional numerical models of the evolution of pull-apart basins. Physics of the Earth and Planetary Interiors,171: 387–399.
    Aki.K.1979. Characterization of barriers on an earthquake fault. J. Geophys. Res. , 84(B11): 6140–6148
    Aki.K.1984. Asperities, barriers, .1984.characteristic earthquakes, and strong motion prediction. Journal of Geophysical Research 89, 5867–5872.
    Aki. K. 1989. Geometric features of a fault zone related to nucleation and termination of an earthquake rupture, USGS. Open File Report89-315, 1-9
    Allen, Sanders C O. 1993. Interaction of the San Jacinto and San Andreas fault zones, southern California: Triggered earthquake migration and coupled recurence intervals. Science. 260: 973-976
    Allen, C. R., Lou Zhouli, Qian Hong et al. . 1991. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China, Geol. Soc. Am. Bull. 103: 1178–1199.doi: 10.1130/0016-760
    Avouac, J. P., and P. Tapponnier. 1993. Kinematic model of active deformation in central Asia, Geophys.Res. Lett., 20, 895-898.
    Aydin, A., and A. Nur.1982. Evolution of pull-apart basin and their scale independence, Tectonics, 1, 91–105.
    Bodri B, Iizuka S, . 1991. Hayakawa M. Geothermal and rheological implications of intra continental earthquakes beneath the Kanto-Tokai region, Central Japan. 194: 337~347
    Bret R, David A. Ferrill et al. 1995.tectonophysics physical analog modeling of pull-apart basin evolution .Tectonophysics. 285 (1998): 21-40.
    Burehifel,B.C., Steward J.H.. 1966.“Pull-apart”origin of the central segment of Death valley, California, GSABull, 77:459-442.
    Chen, W. P. , Molnar, P. .1983. Focal depths of intra continental and intra plate earthquake and their implication for the thermal and mechanical properties of the lithosphere, J. Geophys. Res., 88:4183-4214.
    Christie-Blick, N. , and Biddle, K. T. . 1985. Deformation and basin formation along strike-slip faults, in Biddle, K. T. , and Christie-Blick,N.,eds., Strike-slip deformation ,basin formation, and sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication 37,1–35.
    Cornell CA. 1968. Engineering seismic risk analysis. BSSA .58(5): 1583-1606
    Crowell, J. C. 1974. Origin of late Cenozoic basins in southern California, in Dott, Cunningham, W. D., P Mann. 2007. Tectonics of strike-slip restraining and releasing bends. Geological Society, London, Special Publications.v.290: p. 1-12 doi:10. 1144/SP290.1
    D.A.Rodgers, Extinction of Pull-apart Basins in the Sea of Marmara: Transition from Pull-apart Mechanism to aSingle, Through-going Fault.
    De Polo. , Carig M, Clark. Douglas G. , Slemmons Burtons. D, et al. 1991.Historical surface faulting in the Basin and Range province, western North America: implications for fault segmentation. Journal of Structural Geology.Vol.13.No.2:123-136
    Deng Q D,Zhang PZ。1984.Research on the geometry of shear fractures zones.Journal of geophysical tesearch.89(B7): 5699-5710
    Elliott, A. J., J. F. Dolan, and D. D. Oglesby .2009. Evidence from coseismic slip gradients for dynamic control on rupture propagation and arrest through stepovers, J. Geophys. Res., 114, B02313, doi: 10.1029/ 2008JB0 05969
    England, P.C. Molnar, P.2005. Late Quaternary to decadal velocity fields in Asia J. Geophys. Res. 110, B12401, doi: 10. 1029/2004JB003541,
    England, P.C, Houseman, G.1986. Finite strain calculations of continental deformation comparison with the India-Asia collision zone, J. Geophys. Res., 91: 3664–3676.
    England, P.C. Molnar, P.1990. Right-lateral shear and rotation as the explanation for strike -slip faulting in eastern Tibet, Nature, 344, 140–142.
    England, P.C. Molnar, P.. 1997. Active deformation of Asia: From kinematics to dynamics, Science, 278, 647–650.
    Gamond J-F. 1983. Displacement features associated with fault zones: a comparison between observed examples and experimental models. J Struct Geol .5:33-45
    Geoffrey King et al, 1985. Role of fault bends in the initiation and termination of earthquake rupture. Science. 228. ( 4702), 984– 987.DOI: 10.1126/science.228.4702.984
    Hasegawa, H. S., Adams, J., and K. Yamazaki. 1985. Upper crustal stresses and vertical stress migration in eastern Canada, J. Geophys. Res., 90, 3637-3648.
    Heim A .1934. Earthquake region of Daofu. 06. Bull Geol Soc America 45(06):1035-1048
    Jonathan E. Wu , Ken McClay ,et al. .2008.4D analogue modeling of transtensional pull-apart basins. Marine and Petroleum Geology: 1-16.
    Kadinsky, K, A. A. Barka. 1989. Effects of restraining bends on the rupture of strike-slip earthquakes. U.S.G.S. Open-File Report 89-135, 181-192
    Ken McClay, Tim Dooley. 1995. Analogue models of pull-apart basins. Geology, 23(8): 711-714.
    King G, Klinger Y, Bowman D, Tapponnier P.2005. Slip-partitioned surface breaks for the Mw 7.8 2001 Kokoxili earthquake, China. Bulletin of the Seismological Society of America 95: 731-738.
    King, G, Nabelek. J, 1985. Role of fault bends in the initiation and termination of fault rupture: Science, v. 228,:984-987.
    Kirby, E., N. Harkins, E, Wang, et al.. 2007 . Slip rate gradients along the eastern Kunlun fault,
    Klinger Y.R. Michel, G.C.P. King.2006.Evidence for an earthquake barrier model from Mw 7.8 Kokoxili (Tibet) earthquake slip-distribution. Earth and Planetary Science Letters 242 (2006) 354–364
    Knuepfer,P.L.K.1989.Implications of the characteristics of end-points of historical surface fault ruptures for the nature of fault segmentation. U.S.G.S. Open-File Report 89-135,193-228
    Lin A M, Masayuki Kikuchi, and Bihong Fu. 2003. Rupture segmentation and process of the 2001 Mw 7.8 Central Kunlun, China, Earthquake. Bulletin of the Seismological Society of America, 93: 2477-2492.
    McClay, K. & Bonora, M. 2001. Analog models of restraining step-overs in strike-slip fault systems. AAPG Bulletin, 85: 233–260
    Ma K F and Song T A. 2004.Thermo-mechanical structure beneath the young orogenic belt of Taiwan. Tectonophysics, 388(3):21-31
    Mann P, et al. 1983. Development of pull-apart basins[J]. Geology, 91:529– 554
    Molnar P, Tapponnier P. 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental in Asia can be interpreted as results of the India-Eurasia collision [J]. Science, 189: 419-426
    Molnar P. Tapponnier, P. 1978. Active tectonics of Tibet. J. Geophys. Res., 83:5361-5375
    Molnar P., B. C. Burchfiel, Liang K, Zhao Z.. 1987. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia. Geology, 15: 249-253
    Naoyuki K, Lei X L, Wen X Z. 2007. Asynthetic seismicity model for the Xianshuihe fault, southwestern China: simulation using a rate-and state-dependent friction law. Geophys, J Int, 169: 286-300
    Nelson, A. R. , Manley, W. F. 1992. Holocene coseismic and aseismic uplift of Esla Mocha, south-central Chile. n Impacts of Tectonics on Quaternary Coastal Evolution(Y. Ota, A. R. Nelson, )
    Okada,A.,Watanabe,M.,Ando,M,et al. 1992. Estimation of paleo-seismicity in the Nobi active fault system.J.Geogr.101: 1-18
    Olig , S. S. Lund, W.R,Black,B.D.1994.Large Mid-Holocene and late Pleistocene earthquakes on the Oquirrh fault zone,Utah.Geomorphology.10: 285-315
    Olliver C.1981.Tctonics and landforms. Longman House, New York.K.M.Clayton, Editor, University of East Anglia
    Parsons T,Chen Ji,Kirby E..2008.Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin, Nature 454: 509-510 .doi:10.1038/nature07177
    Pasquale V, Verdoya M, Chiozzi P, et al. 1993. Dependence of the seismotectonic regime on the thermal state in the northern Italian Apennines. Tectonophysics, 217(1-2), 15: 31-41, DOI: 10.1016/0040-1951(93)90200-4.
    Pasquale, V., M. Verdoya, P. Chiozzi, and G. Ranalli . 1997. Rheology and seismotectonic regime in the northern central Mediterranean. Tectonophysics, 270: 239-257.
    Peltzer, G, Grampe, F, King, G..1999. Evidence of nonlinear elasticity of the crust from the Mw 7.6 Manyi earthquake.Science 286:272-276
    Peltzer, G. Tapponnier, P..1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: an experimental approach, J. geophys. Res.93(15): 095-117.
    Peltzer, G., Tapponnier, P., Zhang, Z.et al.1985. Neogene and Quaternary faulting in and along the Qinling Shan. Nature. 317:500–505.
    Peltzer,Saucier, F.. 1996. Present-day kinematics of Asia derived from geologic fault rates, J. Geophys. Res. 101: 27943–27956.
    Personius, S. F. 1991. Paleoseismic analysis of the Wasatch fault zone at the Brigham City trench site, Brigham City, and the Pole Patch trench site, Pleasant View, Utah. Spec. Stud. Utah Geol.Miner.Surv.76: 1-39
    Porter, S. C. ,An Zhisheng, and Zhang, Hongbo.1992. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the Qinling Shan, central China. Quaternary Research 38: 157-169.
    R.H., and Shaver, R.H.. 1980. Modern and ancient geosynclinals Sedimentation: Society of Economic Palaeontologist sand Mineralogists Special Publication. 19: 292–303
    Rahe B, Ferill DA, Morri AP .1998. Physical analogue modelling of pull-apart basin evolution. Tectonophysics. 285:21–40
    Ranalli G. 1987.Rheology of the earth: Deformation and flow Processes in Geophysics and Geodynamics. Boston: Allen & Unwin Inc
    Rodgers DA.1980.Analysis of pull-apart basin development produced by en-echelon strike-slip faults. Int Assoc Sedimentol Spec Publ. 4:27–41
    Schumm, S.A.1986. Alluvial river response to active tectonics. In: Studies in National Research Council (Ed.), Active Tectonics. National Academy Press, Studies in Geophysics, Washington, D.C,:195-214.
    Schumm, S.A. 1998. To interpret the Earth-Ten Ways to be wrong. Cambridge Univ. Press, Cambridge, UK.144
    Schwartz, D. P.Lund, W. R. 1987. Paleoseismicity and earthquake recurrence at Little Cottonwood Canyon, Wasatch fault zone,Utah. In: the Footsteps of G. K. Gilbert--Lake Bonneville andNeotectonics of the EasternBasin and Range Province (edited by Machette, M. N.). Utah Geol. & Min. Surv. Misc. Publ. 88-1: 82-85
    Segall, P. and Pollard.D.D. 1980. Mechanicsofdis-continuousfaults, Geophys. Res. 85: 4337–4350, doi: 10.1029/JB085iB08p04337.
    Shan B, Xiong X, Zheng Y, et al. Stress changes on major faults caused by Mw7.9 Wenchuan earthquake, May 12, 2008. Sci China Ser D-Earth Sci, 2009, 52(5): 593-601, doi: 10.1007/s11430-009-0060-9
    Shen, Z. K. , C. Zhao, A.. Yin, et al.. 2000. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements, J. Geophys. Res., 105(B3): 5721–5734.
    Shen Z K, Lu J, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110:1-17.
    Sibson R H. 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United Sates. Bull Seismol Soc Am. 72(1): 151-163
    Sibson R H. Continental fault structure and the shallow earthquake source. J. Geol. Soc., London, 1983, 140: 741-767.
    Sylvester AG .1988. Strike-slip faults. Geol Soc Am Bull 100:1666-1703
    Tapponnier P. ,Xu Z Q, Roger, F. , et al. 2001a.Geology-Oblique stepwise rise and growth of the Tibet plateau . Science, 294 (5547): 1671-1677
    Tapponnier P. , G. Peltzer, A.Y. Le Dain, R. Armijo.1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine, Geology, VOL.10, pages 611-617.
    Tapponnier P; Molnar, P.1977.Active faulting and tectonics in China, Journal of Geophysical Research, 82 (20): 2905-2930
    Tapponnier P. , P. Molnar.1976.Slip-line field theory and large-scale continental tectonics, Nature, 264: 319-324.
    Tapponnier P; Ryerson, FJ; Van der Woerd, J; et al. 2001b. Long-term slip rates and characteristic slip: keys to active fault behavior and earthquake hazard. Comptes Rendus de Lacademie des sciences serie II Fascicule A-Sciences de la terre et des Planetes.333(9): 483-494
    Tim Dooley and Ken McClay, 1997, Analog Modeling of Pull-Apart Basins, AAPG Bulletin, Volume 81, DOI: 10.1306/3B05C636-172A-11D7-8645000102C1865D
    
    Van Der Woerd J, Ryerson FJ, Tapponnier P, A.-S.Meriaux, et al. 2000.Uniform slip-rate along the Kunlun fault:Implication for seismic behaviour and large-scale tectonics.Geophysical Research Letters,27(16):2353-2356
    Van Der Woerd J, Ryerson FJ, Tapponnier P, et al.1998.Holocene left–slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault(Qinghai, China), Geology. 26:695-698
    Van Der Woerd J ,Tapponnier P,Ryerson FJ et al. 2002b. Uniform postglacial slip-rate along the central 600 km ofthe Kunlun fault, from 26A1,10Be,and 14C dating of riser offsets, and climatic origin of the regional morphology [J].Geophysical Journal International,I48:356-388.
    Van Der Woerd J, Y. Klinger, K Sieh,et al. 2006. Long-term slip rate of the southern San Andreas Fault from 10Be-26Al surface exposure dating of an offset alluvial fan, J. Geophys. Res.: 111, B04407, doi: 10.1029/2004JB003559
    Van Der Woerd J., A. S. Meriaux, Y. Klinger,et al. 2002a. The 14 November 2001, Mw= 7.8 Kokoxili earthquake in northern Tibet (Qinghai Province, China), Seism. Res. Lett. 73, no. 2, 125–135.
    Lettis W, J Bachhuber, R Witter et al, 2002.Influence of releasing step-over on surface rupture and fault segmentation: examples from the 17 August 1999 Izmit earthquake, BSSA, 92:19-42
    Wang H., T. J. Wright, and J. Biggs .2009. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data, Geophys. Res. Lett., 36: L03302-03306, doi:10.1029/2008GL036560
    Wang Y Z,Wang E N.Shen Z K et al, 2008 GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Sci. China Ser D-Earth Sci. 51(9) : 1267-1283
    Well. D. L, Coppersmith, K, J. 1994. New empirical relationships among magnitude, rupture length, rupture area, and surface displacement, Bull. Seismol.Soc.Am.84:974-1002
    Wen X Z, Ma S L, Xu X W,et al, 2008, Histrical pattern and behavior of eratuake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China, Physics of the Earth an Planetary Interirs,168:16-36
    Wen X Z, Yi Guixi, Xu Xiwei.2008.Background and recursory seismicities along and surrounding the Kunlun fault before the Ms8.1, 2001, Kokoxili earthquake, China Journal of Asian Earth Sciences 30 (2007): 63–72
    Wesnousky S. G. 1988. Seismological and structural evolution of strike-slip faults. Nature. 335(22): 340-342
    Wesnousky S.G. 2006.Predicting the endpoint of earthquake ruptures. Nature.444 (16): doi: 10.1038 / nature05275
    Working Group on California Earthquake Probabilities. 2003. Earthquake probabilities in the San Francisco Bay Region: 2002-2031. USGS Open-File Report: 03-214
    Working Group on California Earthquake Probabilities. 2005. Earthquake probabilities in the San Francisco Bay Region: 2002-2031. USGS Open-File Report: 03-214
    Working Group on California Earthquake Probabilities. 1990. Probabilities of Large Earthquakes in the San Francisco Bay Region,California. U. S. Geological Survey Circular, 1053:1-51
    Working Group on California Earthquake Probabilities. 1999. Earthquake probabilities in the San Francisco Bay Region: 2000 to 2030. USGS Open-File Report. 99-517
    Xu XW, Deng QD, 1996. Nonlinear characteristics of paleoseismicity in China, Journal of Geophysical Research, 101(B3):6209-6231.
    Xu XW, Yu GH, Y. Klinger, Tapponnier P & Van Der Woerd J, 2006. Re-evaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), Northern Tibetan Plateau, China. Journal of Geophysical Research, vol.111, B05316-,doi:10.1029/2004JB003488.
    Yasuto Itoh, Shigekazu Kusumoto, et al. 2009.Cenozoic basin-forming processes along the northeastern margin of Eurasia: Constraints determined from geophysical studies offshore of Hokkaido, Japan .
    Yeats, R. S.. 1994. Histroical paleoseismology. In Proceedings of the Workshop on Paleoseismology. 18-22
    September 1994, Marshall, Californi(aC. S. Prentice, D. P. Schwartz, and R. S. Yeats, conveners),U. S. Geol. Surv. Open-File. Rep. 94-568, 208-210
    Yeats, R.S., Sieh, K., Allen, C.R.. 1997. The Geology of Earthquakes. Oxford University Press, New York.568
    Yu GH, Xu XW*, Yann Klinger,et al.. 2010. Fault-scarp Features and Cascading-rupture Model for the Wenchuan Earthquake (Mw7.9), Eastern Tibetan Plateau,China. Bulletin of the Seismological Society of America, Vol. 101, Nov. 2010, doi: 10.1785/0120090255 (in press)
    Zhang P Z, B C Burchifel, et al. 1989. Extinction of pull-apart basin. Geology. 17: 814-817.
    Zhang,P. Z ,Mao F Y, D B Slemmons. 1991. Rupture terminations and size segment boundaries from historical earthquake ruptures in the Basin and Range Porvince., Tectonophysics .308: 37–52.
    Zhang,P.Z 1991.Geometric pattern, rupture termination and fault segmentation of the Dixie Valley—Pleasant Valley active normal fault system, Nevada, U.S.A.Journal of Structural Geology, 13( 2):165-176.DOI: 10.1016/0191-8141(91)90064-P
    Zhao G. G., D. Q. Liu, W. Wei, et al., The late Quaternary slip rate and segmentation of the Xianshuihe active fault zone. In: Proceedings of the PRC-USA Bilateral Symposium on the Xianshuihe Fault Zone. 1990 Oct, Chengdu. Beijing: Seismological Press, 1992:41-57.
    柏美祥,向志勇,罗福忠等.1992.平板地质测量反映的富蕴地震断裂带的若干特点[M].活动断裂研究理论与应用(2).北京:地震出版社:85-94
    曹伯勋.1995.地貌学及第四纪地质学.中国地质大学出版社
    常利军,王椿镛,丁志峰.2008.四川及邻区上地幔各向异性研究[J].中国科学(D辑:地球科学),38(12): 1589-1599.
    陈桂华.2006.川滇块体北东边界活动构造带的构造转换与变形分解作用[D].博士学位论文.中国地震局地质研究所
    陈社发、邓起东.1985.南、西华山断裂带中拉分盆地的构造组合及其演化模式[M],现代地壳运动研究,1,北京:地震出版社. 98-106.
    陈智梁.沈凤,刘宇平等.1998.青藏高原东部地壳运动的GPS测量[J].中国地质.5:32-35
    崔效锋,谢富仁,张红艳.2006.川滇地区现代构造应力场分区及动力学意义[J].地震学报.28(5):451-461
    《四川地震》编辑部.道孚地震构造背景及震害述评[J].1981.四川地震. 2
    
    邓起东,1984,断层性状、盆地类型及其形成机制[J],地震科学研究,2期.
    邓起东,陈立春,冉勇康.2004.活动构造定量研究与应用[J].地学前缘.11(4):383-392
    邓起东.于党华.叶文华1992地质地表破裂参数与震级关系的研究[M].北京:地震出版社
    邓起东,张培震,冉勇康等.2002.中国活动构造基本特征[J].中国科学D辑,32(12):1020-1030.
    邓起东,张培震,冉勇康等.2003.中国活动构造与地震活动[J].地学前缘.10(Suppl):66-73.
    邓起东,张培震.1995.活动断裂分段研究的原则和方法(一) [M].现代地壳运动研究.第6卷.地震出版社.196.
    邓起东,张维岐,张培震等.1989.海原走滑断裂带及其尾端挤压构造[J].地震地质.11(1):1-14
    邓起东.1984.断层性状、盆地类型及其形成机制[J].地震科学研究.(1-6):59-64.57-64,56-64,58-64,51-64
    邓起东.1996.中国活动构造研究[J].地质论评.48(2):168-177
    邓起东.2005.活动构造研究及其应用[J].大地构造与成矿学.29(1):17-23
    丁国瑜,田勤俭,孔凡臣等.1993.活断层分段—原则、方法及应用[M].北京:地震出版社
    丁国瑜.1992.有关活断层分段的一些问题[J].中国地震.8(2):1-10
    丁国瑜.1995.阿尔金活断层的古地震与分段[J].第四纪研究.(2):97-106
    丁国瑜等.1995.活断层的分段模型[J].地学前缘.
    丁志峰,孙宏川.1999.青藏高原东部及其边缘地区的地壳上地幔三维速度结构[J].地球物理学报. 42 (2):197-205
    杜方,吴江.1995.鲜水河地区先进形变及地球动力学特征[J].四川地震.3:22-31
    方颖,江在森,牛安福. 2005.川滇菱形块体东边界地壳形变研究[J];大地测量与地球动力学; 25(3): 81-85
    桂焜长,顾国华.1992.鲜水河断裂带的现今水平形变及构造动态[J].地震地质.(1):61-67;
    国家地震局《阿尔金活动断裂带》课题组.1992.阿尔金活动断裂带[M].地震出版社.
    国家地震局地质研究所.宁夏回族自治区地震局.1990.海原活动断裂带[M].北京.地震出版社.286
    国家地震局西南烈度队.川滇强震区地震地质调查汇编[M].地震出版社.1979
    国家地震局震害防御司.1995.中国历史强震目录(公元前23世纪-公元1911年). [M]北京:地震出版社.514
    顾功叙主编.中国地震目录[J].北京:科学出版社,1983.(Gu G S. Chinese earthquake catalog. Beijing: Science Publishing House, 1983 (in Chinese))
    黄金莉,宋晓东,汪素云.2003.川滇地区上地幔顶部Pn速度细结构[J].中国科学D辑:,33(增刊): 144-150.
    孔凡臣.1991.山西及邻区水系与黄土冲沟的分形几何学分析结果[J].地震地质,13(3):221-229
    孔凡臣.1991.线性构造分数维值的含义[J].地震,5:33-37
    李玶,鲜水河-小江断裂带[M],北京,地震出版社,1993
    李天袑,杜其方,游泽李等,1997鲜水河活动断裂带及强震危险性评估[M].成都地图出版社.230
    李天袑,游泽李、杜其方等.1986.鲜水河断裂带的地质特征及其运动方式[A].鲜水河断裂带地震学术讨论文集.地震出版社
    刘本培,廖华.2001.鲜水河断裂带的构造大地测量[J].地壳形变与地震.21(4):17-25
    刘桂萍,傅征祥.2002.1973年炉霍大地震(Ms=7.6)最大余震(Ms=6.3)的库仑破裂应力触发[J].中国地震.18(2): 175-182
    刘桂萍,傅征祥.2002.1973年炉霍大地震(M_S=7.6)最大余震(M_S=6.3)的库仑破裂应力触发[J],中国地震, 18(2):175-182.
    刘立强,马胜利,马瑾等.1999.三轴压缩下不同构造花岗岩的微破裂时空分布特征及其地震学意义[J].科学通报.44(11):1194-1198
    龙德雄,邓天岗.1986.鲜水河段断裂带断层运动分段特征的初步研究[J].地震研究.5.9
    龙德雄.1983.关于道孚松林口隆起与鲜水河改道问题的讨论[J].四川地震.01
    龙德雄.1988.乾宁断裂地表的地震形变带特征.3
    龙德雄.2002.从强震前中强地震活动探讨川滇菱形块体内未来强震的可能性[J].四川地震.4:28-34
    吕江宁,沈正康,王敏.2003.川滇地区现代地壳运动速度场和活动块体模型研究[J].地震地质. 25 (04) : 543-554.
    吕弋培,李铁明.1997.鲜水河断裂带跨断层形变测量及其地震学意义[J].地震地质.19(4):333-340
    马瑾,马胜利,雷兴林. 1990.鲜水河断裂带断层几何与地震活动性[A].第二届构造物理学术讨论会文集,地震出版社.
    马青,黄立人,马宗晋等.2003.中国大陆中轴构造带及其两侧的先进地壳垂直运动[J].地质学报.77(1):35-43
    马胜利,陈顺云,刘培洵等.2008,断层阶区对滑动行为影响的实验研究[J].中国科学D辑. 38 (7): 842-851
    裴锡瑜,陈文德,李学沛.1985.利用重磁资料对四川西部地区地壳深部构造及其与地震关系的初步研究[J].四川地震.2(2)
    彭晋川,周兴和.1991.中美双边鲜水河断裂带学术讨论会综述[J].国际地震动态.7:1-6
    钱洪.1983.鲜水河断裂带反“多”字型地裂缝带的成因机制[J].地震地质.5(3): 75—79
    钱洪,唐荣昌,张成贵,曹阳国.1984.道孚地震地裂缝特征与震区的断层运动[J].地震研究7(1):53-59
    乔学军,王琪,杜瑞林.2004.川滇地区活动地块现今地壳形变特征[J].地球物理学报.47(5):805-811
    青海省地震局.中国地震局地壳应力研究所[J].1999.东昆仑活动断裂带.北京:地震出版社
    冉洪流,何宏林.2006.鲜水河断裂带北西段不同破裂源强震震级(M≥6.7)及复发间隔研究[J].地球物理学报,49(1):153~161
    冉洪流.2009.潜在震源区震级上限不确定性研究[J].地震学报.31(4):396-402
    申重阳,王琪,吴云等.2002.川滇菱形块体主要边界运动模型的GPS数据反演分析[J].地球物理学报.45(3):352-361
    四川省地震局.1985.鲜水河断裂带地震学书讨论会文集[A].北京:地震出版社.247
    四川省地震局.1986.1981年道孚6.9级地震.地震出版社.
    四川省地震局.李天袑.杜其方,游泽李等,1997.鲜水河活动断裂带及强震危险性评估.230
    四川省地质矿产局.1991.四川区域地质志.地质出版社.730
    宋方敏,等.小江断裂带的分段研究[A].活动断层研究理论与应用(6)[C].北京:地震出版社,1998,97-108
    宋鸿彪. 1994.龙门山造山带地质和地球物理资料的综合解释[J].成都理工学院学报.21(2):79-88;
    苏伟,王椿镛,黄忠贤,2008,青藏高原及邻区的Rayleigh面波的方位各向异性[J].中国科学(D辑:地球科学),38(6):674-682.
    孙洁,晋光文,白登海等.2003.青藏高原东缘地壳、上地幔电性结构探测及其构造意义[J].中国科学D辑.33(增刊):173-180
    唐荣昌,韩渭宾等.1993.四川活动断裂与地震.北京:地震出版社.1993:67-138
    唐荣昌,钱洪,张文甫等.1984.道孚6.9级地震的地质构造背与发震构造条件分析.6(2): 33-41
    唐荣昌,文德华,邓天刚等.1976. 1973年炉霍7.9级地震的地裂缝特征及地震成因的初步探讨[J].地球物理学报,19:19-27
    唐荣昌等.鲜水河断裂带近代构造活动与地震[A].大陆地震活动和地震预报国际讨论会论文( 1982年铅印本)
    唐文清,陈智梁,刘宇平等.2005.青藏高原东缘鲜水河断裂与龙门山断裂交会区现今的构造活动[J].地质通报.24(12):1169-1172
    滕吉文,曾融生,闫雅芬等.2002.东亚大陆及周边海域Moho界面深度分布和基本构造格局[J].中国科学D辑.32(2):89-100
    汪一鹏.1998.青藏高原活动构造基本特征[J].活动断裂研究-理论与应用.6.中国地震局科技发展司.地震出版社.北京:135-144
    王椿镛,W.DMooney,王溪莉等.2002.川滇地区地壳上地幔三维速度结构研究[J].地震学报. 24(1): 1-16
    王椿镛,常利军,吕智勇等.2007.青藏高原东部上地幔各向异性及相关的壳幔耦合型式[J].中国科学(D辑:地球科学).37(4):495-503.
    王椿镛,常利军,苏伟等.2008.青藏高原东部及其邻区力学耦合的岩石圈变形模式[J].地学前缘, 15(6): 208-218
    王椿镛,韩渭宾,吴建平等.2003.松潘——甘孜造山带地壳速度结构[J].地震学报,25(3):229-241.
    王椿镛,王溪莉,苏伟等.2006.青藏高原东缘下地壳流动的地震学证据[J].四川地震,(4):1-4.
    王椿镛,吴建平,楼海,等.2006.青藏高原东部壳幔速度结构和地幔变形场的研究[J].地学前缘, 13 (5): 349-359.
    王椿镛,吴建平,楼海等.2003.川西藏东地区的地壳P波速度结构[J].中国科学(D辑:地球科学): 33 (增刊): 181-189.
    王二七BurchfielC.B.,Royden等.1995.滇中小江走滑剪切带晚新生代挤压变形研究[J].地质科学. 30 (3) : 209-219
    王峰.2003.阿尔金断裂带晚第四纪滑动速率及其地震地表破裂分段特征[D].博士学位论文.中国地震局地质所
    王敏,沈正康,甘卫军等.2008.GPS连续监测鲜水河断裂形变场动态演化[J].中国科学(D辑:地球科学): 38(5): 575- 581.
    王庆良,崔笃信,王文萍等.2008.川西地区现今垂直地壳运动研究[J].中国科学D辑.38(5):598-610.
    王阎昭,王恩宁,沈正康等.2008.基于GPS资料约束反演川滇地区主要断裂现今活动速率[J].中国科学D辑.38(5):582-597
    王宗秀,许志琴,杨天南等.1997.折多山花岗岩的成因及构造环境[J].成都理工学院学报.24 (1): 48-55
    闻学泽, C.R.Allen,罗灼礼等.1989.鲜水河全新世断裂带的分段性、几何特征及其地震构造意义[J];地震学报; 11(4):360~370.
    闻学泽,白兰香.1985.鲜水河活动断裂带形变组合与运动特征的研究[J].中国地震.1(4):55-61
    闻学泽,徐锡伟,郑荣章等.2003.甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J].中国科学(D)33增刊:199-208
    闻学泽. 2000.四川西部鲜水河-安宁河-则木河断裂带的破裂分段特征[J].地震地质. 22(3): 239―249
    闻学泽.1990.鲜水河断裂带未来三十年内地震复发的条件概率[J].中国地震6(4):8-16
    闻学泽.1995.活动断裂地震潜势的定量评估.北京:地震出版社.
    闻学泽.2000.四川西部鲜水河-安宁河-则木河断裂带的地震破裂分段特征.地震地质.22(3): 239-249
    闻学泽.2001.活动断裂的可变破裂尺度地震行为与级联破裂模式的应用[J].地震学报.23(4): 380 -390
    闻学泽. 1986.从地震活动参数估计鲜水河断裂带的近期活动[J].地震学报,8(2):146~155
    闻学泽.1999.中国大陆活动断裂段破裂地震复发间隔的经验分布[J].地震学报21(6):616-622
    闻学泽等.1995.活动断裂地震潜势的定量评估.北京:地震出版社.150
    吴建平,明跃红,王椿镛.2006.川滇地区速度结构的区域地震波形反演研究[J].地球物理学报, 49 (5) :1369-1376.
    吴子安.1991.鲜水河断裂带垂直形变资料初析[J].武汉测绘科技大学学报.16(2):1-7.
    谢富仁,李宏.1995.利用断层滑动资料确定鲜水河断裂带现代构造应力场方向和大小[J].地震学报.17(2):164-171
    谢富仁,祝景忠,舒赛兵. 1995.鲜水河断裂带第四纪构造应力场分期研究[J].地震地质.17(1): 35-43.
    新疆维吾尔自治区地震局.1985.富蕴地震断裂带,北京:地震出版社
    徐锡伟,陈文彬,于贵华.等.2002.2001年11月14日昆仑山库赛湖地震(Ms8.1):地表破裂带的基本特征[J].地震地质.24(1):1-13.
    徐锡伟,程国良,于贵华等.2003.川滇菱形块体顺时针转动的构造学和古地磁学证据[J].地震地质.25(1):61-70
    徐锡伟,米仓伸之.1996.山西六棱山北麓晚第四纪不规则断裂作用的地貌学研究[J].地震地质. 18 (2): 169-181
    徐锡伟,闻学泽,于贵华.等.2005.川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J].中国科学D辑.地球科学35(6):540-551
    徐锡伟,闻学泽,郑荣章等,2003,川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学D辑,33(增刊): 151-162.
    徐锡伟,闻学泽,郑荣章等.2003.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D),33(增刊):151-162.
    徐锡伟,于贵华,马文涛等.2003.中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵[J].地学前缘,10(特刊): 160-167.
    徐锡伟,张培震,闻学泽等.2005.川西及其邻近地区活动构造基本特征与强震复发模型[J].地震地质,27(3): 446- 461
    杨景春,李有利.2005.地貌学原理.北京:北京大学出版社.246
    杨智娴等,陈运泰,郑月军等.2003.双差地震定位法在我国中西部地区地震精确定位中的应用[J].中国科学D辑33(B4):129-134
    易桂喜,范军,闻学泽等.2005.由现今地震活动分析鲜水河断裂带中南段活动习性与强震危险地段[J].地震.25(1):58-65
    易桂喜,闻学泽,徐锡伟.2002.川滇地区若干活动断裂带整体的强震复发特征研究[J].中国地震,18 (3):267-276
    易佳喜,闻学泽,苏有锦.2008.川滇活动地块东边界强震危险性研究[J].地球物理学报.51(6): 1719 -1725
    张红艳.2006.川滇地区现代构造应力场分区及动力学意义[J].地震学报,28(5):451-461.
    张培震,邓起东,张国民.等.2003b.中国大陆强震活动与活动地块[J].中国科学.33(增刊):12-20
    张培震,李传友,毛凤英.2008.河流阶地演化与走滑断裂滑动速率[J].地震地质.30(1):44-57
    张培震,沈正康,王敏,等.2004.青藏高原及周边现今构造变形的运动学[J].地震地质,26(3):367-377
    张培震,王敏,甘卫军,等.2003.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约,地学前缘,10(特刊):81-92.
    张培震,王琪,马宗晋.2002.青藏高原现今构造变形特征与GPS速度场[J].地学前缘,9(2):442-450.
    张培震,王琪,马宗晋.2002.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,9(2): 430 -441.
    张培震.2008.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J].中国科学D辑(389): 1041-1056
    张培震等.1998.重大工程地震安全性评价中活动断裂分段的准则[J].地震地质.20(4):289-301
    张世民,谢富仁.2001.鲜水河-小江断裂带7级以上强震构造区的划分及其构造地貌特征[J].地震学报.23(1): 36-44
    张希,江在森,王双绪等.2005.川滇地区地壳水平运动的弹性块体边界负位错模型与强震地点预测[J].地震研究,28 (2): 119-124.
    张晓亮,江在森,王双绪,等.2005.川滇地区现今块体水平运动变形特征分析[J].地震研究, 28 (3) : 262-267.
    张裕明,周本刚,沈得秀.2006.工程场地地震安全性评价工作中的两个问题的讨论[J].震灾防御技术.1(3): 181-185
    张裕明.1992.在确定潜在震源区中地震和地质资料的应用[J].地震地质.14(3):275-278.
    张裕明.1993.几个术语的含义及地震构造区最大潜在地震评价[J].地震地质.15(4):375-380.
    赵小麟,邓起东,陈设发.1994.岷江隆起的构造地貌学研究[J].地震学报.16(4):429-439
    赵小麟,邓起东,陈设发等.1994.龙门山中段推覆构造带的构造地貌学研究[J].地震地质.16(4): 422-428
    中国地震局震害防御司.1999.中国近代地震目录.北京:中国科学技术出版社.637
    中国科学院成都地理研究所.1985.贡嘎山地理考察.科学技术出版社重庆分社.108.
    钟锴,徐鸣洁,王良书等.2005.利用航磁、重力资料研究川滇地区大陆变形特征[J].地球科学进展, 20(10): 1089-1094.
    周本刚,张裕明,董瑞树等。1997.划分潜在震源区的地震地质规则研究[J].中国地震.13(3):241-252
    王新民等,1988.对1786年康定-泸定磨西间7.7级地震的新认识.中国地震.4(1);
    周荣军,何玉林,黄祖智等.2001.鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔[J].地震学报,23(3):250-261
    周荣军,何玉林,杨涛等.2001.鲜水河-安宁河断裂带磨西-冕宁段的滑动速率与强震位错[J].中国地震,17(3):253-262.
    周荣军,李勇,Alexander L. Densmore.等.2006.青藏高原东缘活动构造[J].矿物岩石.26(2):40-51
    朱艾斓,徐锡伟,周永胜等.2005.川西地区小震重新定位及其活动构造意义[J].地球物理学报. 48 (3): 629-636
    朱艾斓.2006.川西地区主干活动断裂间震期滑动习性与运动状态的地震学初步研究[D].博士学位论文.中国地震局地质所
    朱介寿,曹家敏,刘舜化等.1984.用人工地震初探川西地区的地壳结构[J].成都地质学院学报.3: 111-122
    朱志澄.1999.构造地质学.武汉:中国地质大学出版社.
    McClay, K. & Bonora, M. 2001. Analog models of restraining stepovers in strike-slip fault systems. AAPG Bulletin, 85, 233–260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700