结构工程自适应控制的参数分析新方法研究及其在大跨度斜拉桥施工中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,随着系统概念的逐渐普及,旨在研究系统建模、分析和综合的控制理论相应在工程技术的多个学科领域得到了越来越广泛的应用。不同于经典控制理论,现代意义上控制理论的分析对象已由单输人单输出系统扩展到多输入多输出的系统结构,相应的控制方法也由简单的开环控制向闭环反馈控制以及更高层次的自适应控制发展。作为当前控制理论的研究热点,自适应控制包括模型参考自适应控制和自校正控制两个分支。前者于20 世纪60 年代建立,采用自适应机构来克服由系统模型非确定参数引起的系统输出的非确定性,相当于高级的闭环反馈控制,是自适应控制思想的初级发展形式,在结构工程领域的抗震抗风与振动控制中已有较多应用。后者于70 年代提出,通过在线系统辨识,估计系统模型参数,进而修改控制参数,以使系统适应环境的变化,这一涉及系统本质的控制思路是自适应控制的高级发展形式,在结构工程领域仍鲜见专门研究。
    作为自适应控制思想的理论补充和应用研究,本文首次采用自校正机制的自适应控制思想对结构工程问题进行研究,得到了非确定性参数分析的具一般意义的若干新方法,并将其应用于复杂工程问题——大跨度斜拉桥结构的施工过程控制,获得了理想的效果。不同于一般的自适应控制研究仅着眼于系统参数的辨识工作,本文力求从系统建模的一开始即对系统参数重要性进行分析评价,从而建立起有限完备观测和有限完全控制系统,进而进行系统主要参数的辨识研究。研究过程中,通过应用人工智能手段和随机结构概念,得到了具一般性的结构参数重要性(灵敏度和非确定性)分析方法以及时变随机结构的参数连续识别方法。本文旨在针对复杂结构工程的控制问题,建立一套具一般意义的、自包含的非确定性参数分析理论,以实现自校正机制的自适应控制思想。
    全论文共6 章。其中第2 章(结构系统参数灵敏度分析新方法研究)、第3章(结构系统参数非确定性分析新方法研究)和第4 章(时变随机结构系统的参数连续识别新方法研究)内容统编为非确定性参数分析的理论研究篇;第5 章(崖门大桥工程概况和大跨度斜拉桥的确定性多阶段施工仿真分析研究)和第6 章(崖门大桥的自适应施工控制实践)内容统编为工程应用篇。
    本论文的理论创新和主要工作如下:
    1. 首次系统地将自校正机制的自适应控制思想应用于结构工程领域,通过结构参数重要性分析和时变随机结构的参数连续识别研究,建立起了一套具一般意义、自包含的非确定性参数分析方法。
    2. 在结构系统的参数灵敏度分析中,针对在一定区域内变化的一般性非确定参数,采用人工智能手段——人工神经网络(三层感知器模型)的泛化映射机制近似模拟结构参数和结构响应间的非线性关系,进而由神经网络的结构参数构造
During the last several decades, with the worldwide acceptance of system concept, the system control theory focusing on the studies on system modelling, analysis and synthesis has been successfully applied in various engineering fields. In the modern control theory, which is different from the classical one, the SISO system as the control object has been extended to the MIMO system and respectively, the simple open-loop control theory as the control method has been developed to the close-loop feedback control theory and recently to the adaptive control theory. As an advanced control theory, the adaptive method has arisen many interests in current system control researches. The adaptive method, according to different control ideas, can be mainly classified into two categories: model-reference adaptive method and self-tuning adaptive method. As for the model-reference adaptive method which was set up in 1960s, use is made of adaptive device to conquer the system output uncertainty brought by the uncertain system parameters. From that meaning, the model-reference adaptive method can be regarded as a high-level type of close-loop feedback method and as a primary type of adaptive method. In the field of structural engineering, many applications of this method have been found in the structural vibration, earthquake and wind responses control practices. As for the self-tuning adaptive method which was proposed in 1970s, use is made of system identification algorithm to estimate the uncertain system parameters in a real-time way, so that the estimated and adjusted system model can adapt itself to the varying environment. Since such a method deals with the nature of the controlled system, the self-tuning adaptive method is then regarded as an advanced type of adaptive method and being widely used in many engineering fields in recent years. However, in the field of structural engineering, there still lacks of special study on this adaptive method.
    As a theoretical supplement to the adaptive control theory and a corresponding engineering application study, for the first time, this dissertation investigates how to apply the self-tuning adaptive idea into structural system control problems. In the investigation, several general-meaning theoretical methods for analyzing uncertain structural parameters are proposed. And finally, the proposed self-tuning control idea is successfully applied into the control practice of complex engineering problem —construction process control of long-span cable-stayed bridge. Generally, in a common adaptive control study, the main content may be a parameter estimation of the system model. The present study, however, focuses on the system modelling, as
    well as the parameter estimation. Hence, an application of adaptive idea is divided into two steps: firstly, to evaluate the different importance of different system parameters so as to set up a finitely complete observation and finitely complete control system model considering the parameter importance; secondly, to estimate those parameters of the system model as accurately as possible. In this study, the artificial intelligent tool and stochastic structure concept are applied to develop general-meaning theoretical methods for evaluating structural parameter importance (i.e. sensitivity and uncertainty) and sequentially estimating parameters of time-variant stochastic structure. The main purpose of this dissertation, in a word, is to establish a general-meaning and self-contained set of uncertain parameter analysis theory to realize the self-tuning adaptive control idea in complex structural engineering problems. The whole dissertation is composed of six chapters. Among them, Chapter 2 (new method for parameter sensitivity analysis of structure system), Chapter 3 (new method for parameter uncertainty analysis of stochastic structure system) and Chapter 4 (new method for sequential parameter estimation of time-variant stochastic structure system) are included into one part named theoretical studies; Chapter 5 (general situation of the Yamen Bridge and deterministic simulation analysis of cable-stayed bridge construction process) and Chapter 6 (non-deterministic parameter analysis practice in the self-tuning control of the Yamen Bridge construction process) are included into another part named engineering applications. The theoretical innovations and main achievements of this dissertation can be summarized as follows: 1. The self-tuning adaptive control idea is first introduced into structural engineering problems. Through studies of structural parameter importance analysis and sequential parameter estimation of time-variant stochastic structure, a general-meaning and self-contained set of uncertain parameter analysis theory is established. 2. In the parameter sensitivity analysis of structure system, the general uncertain parameters varying in a certain domain are concerned. Use is made of artificial intelligent tool —Artificial Neural Network (ANN) —to approximate the nonlinear mapping mechanism between system parameters and system outputs, and then, a uniform formula composed of ANN’s parameters is derived to approximate the first-order sensitivity indices. As compared to the common-used finite-difference approximation method, the proposed method can provide more comprehensive and
    more reliable sensitivity indices. While compared to the analytical method, the proposed method shows advantages of uniformed program coding and good feasibility. 3. Fast training algorithm of ANN is well known to be an essential premise assuring the wide applications of ANN. Concerning the disadvantages observed in the standard Levenburg-Marquardt (LM) algorithm which is mostly common-used in training Multi-Layer Perceptron, the present study proposes a Modified LM algorithm, in which the decay rate of training parameter varies adaptively during the ANN training process and as a result, the training time can then be efficiently cut down to less than half of that required in the standard LM algorithm. Such a highly efficient Modified LM training algorithm greatly increases the feasibility of applying the ANN method into the parameter sensitivity analysis, and also the following parameter uncertainty analysis. 4. In parameter uncertainty analysis of stochastic structure system, the parameters with a random field distribution are concerned. The ANN is embedded into the Monte Carlo (MC) digital simulation as a surrogate of the deterministic finite element solver. Then a so-called MC-ANN method is proposed for uncertainty analysis of stochastic structures. By use of the proposed MC-ANN method, the statistical features of random system outputs corresponding to the different random parameters can be derived much quickly and much efficiently. And the second-order importance indices of the parameters can then be obtained. As compared to the direct MC method, the proposed MC-ANN method shows a much higher computational efficiency up to several times. While compared to the analytical Stochastic Finite Element Method (SFEM), such as the first-order SFEM which has a high computational efficiency, the proposed MC-ANN method shows a much higher computational accuracy. Based on the combination of quick mapping from the ANN and a convincing solution from the MC method, the proposed MC-ANN method provides a promising and practical technique for accurately analyzing a stochastic structure. 5. In the parameter uncertainty analysis of a stochastic structure system, the discretizaiton of parameter random field is known to be one important premise of a stochastic structure analysis. Concerning the common-used local average discretization, a matrix type of Gaussian-integration method for applying the local average discretization is presented. With its clear concept and uniform operation, this new dicretization method shows an advantage of programming convenience.
    6. In the parameter uncertainty analysis of stochastic structure system, generally, Gaussian pseudo-random sequences generated from pseudo-random generators are directly applied into the MC sampling for representation of the discretized parameter random field. However, it is observed that errors inherent in the pseudo-random sequences to mean values, deviations and covariances may result in non-negligible errors in the representation. Concerning this issue, a calibrated MC sampling method is presented to shift, rescale and orthogonalize the Gaussian pseudo-random sequences so that the first-and second-order statistical features of the discretized parameter random field can be precisely represented with the calibrated MC samples. 7. In the parameter estimation analysis of structure system, concerning the common case of time-variant stochastic structure system, such as segmental construction of bridge structure, the author proposes a new sequential linear/nonlinear estimation formula by use of Markov’s process assumption and maximum a posteriori criteria, based on the consideration of construction consistency and the treatment of system rebuild. In two special correlation cases, the proposed estimation method is equal to the common-used least square estimation method and the Kalman filter estimation method, respectively. As a result, the proposed method can then be applied in a more general way. The parameter-updating and parameter-predicting abilities of the proposed estimation method in time-variant stochastic structure system can then be used efficiently to conduct time-variant structure system control problems, such as bridge segmental construction control process. 8. As an engineering application of the proposed theoretical studies, finally, the self-tuning adaptive control idea is applied into the construction control practice of Yamen Bridge project. The bridge is a prestressed concrete cable-stayed bridge with two pylons, single cable-plane and a main span of 338m. Actually, this bridge is the longest cable-stayed bridge of the same type in Asia. During the construction process, a girder segment is cast in-situ on movable carriages. Before the application of the self-tuning adaptive idea, it should be noted that deterministic simulation analysis of cable-stayed bridge construction process needs to be set up in advance, regarding that the deterministic simulation analysis is the inner mechanism of the construction process system and the basis of all the above uncertain parameter analysis. Concerning the prestressed concrete cable-stayed bridge which is common-used in China, in the present study, a new method of using element’s equivalent load increments is proposed to solve the important problem in construction simulation —estimating the creep and shrinkage effects of concrete. As compared to the routine
引文
[1] 魏忠英. 哲学与现实. 中国人民大学出版社, 1994.
    [2] 张汉全等. 自动控制理论新编教程. 西南交通大学出版社, 2000.
    [3] 鄢景华. 自动控制原理. 哈尔滨工业大学出版社, 2000.
    [4] 钱学森, 宋健. 工程控制论(修订版). 科学出版社, 1980.
    [5] 陈哲. 现代控制理论基础. 冶金工业出版社, 1987.
    [6] N. Weiner. Cybernetics. MIT Press, 1948.
    [7] H. S. Tsien. Engineering Cybernetics. McGraw-Hill, 1954.
    [8] J. E. Gibson. Nonlinear Automatic Control. McGraw-Hill, 1962.
    [9] 谢新民, 丁锋. 自适应控制系统. 清华大学出版社, 2002.
    [10] C. S. Drapper and Y. L. Li. Principles of optimalizing control systems and an application to the internal combustion engine. Report No. ARG-TI, Aerophyrics Research Group, Aeronautical Engineering Dept., MIT, 1955.
    [11] A. H. Banner and R. F. Drennick. An adaptive servosystems. IRE Conv. Rec., 1955(4): 8-14.
    [12] G. C. Goodwin and K. S. Sin. Adaptive Filtering Prediction and Control. Prentice-Hall, 1984.
    [13] P. C. Park. Lyapunov redesign of model reference adaptive control systems. IEEE Trans. Automatic Control, 1966, AC-11(4): 362-367.
    [14] I. D. Landau. A hyperstability criterion for model reference adaptive control systems. IEEE Trans. Automatic Control, 1969, AC-15(5): 552-555.
    [15] R. V. Monopoli. Model reference adaptive control with an augmented sign. IEEE Trans. Automatic Control, 1974, AC-19(5): 474-484.
    [16] Y. T. Li and W. E. Van der Velde. The philosophy of nonlinear adaptive control. Proc. IFAC Congress, Moscow, 1960.
    [17] B. N. Petrov, G. M. Ulanov and S. V. Enul’yanov. Invariantnost optimizacia sistem avtomalicheskogo regulirovanias zsestokoi peremennoi stukturoi. Proc. IFAC Congress, Basal, 1963.
    [18] K. J. ?str?m and B. Wittenmark. On self-tuning regulators. Automatica, 1973, 9(2): 185-199.
    [19] D. W. Clarke and P. J. Gawthrop. Self-tuning contoller. Proc. IEE, 1975, 122(9): 99-934.
    [20] Y. Z. Tsypkin. Adaption and Learning in Automatic Systems. New York: Academic Press, 1971.
    [21] L. Ljung, E. Trulsson. Adaptive control based on explicit criterion minimization. Proc. IFAC Congress, 1981.
    [22] J. T. P. Yao. Concept of structural control. Journal of Structural Division, ASCE, 1972, 98, 1567-1574.
    [23] 孙剑平, 朱晞. 结构控制方法评述. 力学进展, 2000, 30(4): 495-505.
    [24] E. Safak. Adaptive modeling, identification, and control of dynamic structural systems, I: theory. Journal of Engineering Mechanics, ASCE, 1989, 115(11), 2386-2405.
    [25] E. Safak. Adaptive modeling, identification, and control of dynamic structural systems, II: applications. Journal of Engineering Mechanics, ASCE, 1989, 115(11), 2406-2426.
    [26] 陈勇等. 基于压电元件的悬臂梁振动与噪声主动控制实验研究. 噪声与振动控制, 1997, (2):21-31.
    [27] A. H. Barbat, et al. Active control of nonlinear base-isolated buildings. Journal of Engineering Mechanics, ASCE, 1995, 121(6), 676-684.
    [28] 顾明, 彭福军, 叶丰. 超高层建筑风致振动的前馈自适应控制. 国家自然科学基金九五重大项目“大型复杂结构的关键科学问题及设计理论研究”论文集(2000), 上海:同济大学出版社, 2001.
    [29] 李春祥, 刘艳霞, 代玉娟. 高层建筑受风和地震作用的统一自适应控制. 同济大学学报, 1998, 26(4):405-409.
    [30] F. Leonhardt and W. Zeller. Past, present and future of cable-stayed bridges, Cable-stayed Bridge, Elsevier Science Publisher, 1991.
    [31] R. Walter, et al. Cable stayed bridge (2nd edition). London: Thomas Telford, 1999.
    [32] N. J. Gimsing. Cable supported bridges: concept and design (2nd edition). Chichester, England: John Wiley & Sons, 1997.
    [33] M. S. Troitsky. Cable-stayed bridges: theory and design (2nd edition). Oxford: BSP Professional Books, 1988.
    [34] W. J. Podolny and J. B. Scalzi. Construction and design of cable-stayed bridges. New York: Wiley, 1986.
    [35] 铁道部大桥工程局桥梁科学研究所编. 斜拉桥. 科学技术文献出版社, 1992.
    [36] 周念先等编. 预应力混凝土斜拉桥. 人民交通出版社, 1989.
    [37] 林元培. 斜拉桥. 人民交通出版社, 1994.
    [38] H. Svensson, The development of cable-stayed bridge in Europe, International Symposium on cable-stayed bridges, Shanghai, 1994.
    [39] http://www.hut.fi/Units/Departments/R/Bridge/longspan.html
    [40] 楼庄鸿译. 斜拉桥的界限. 国外公路, No.5, 1997.
    [41] M. Virlogeux. Recent evolution of cable-stayed bridges, Engineering Structures, 1999, Vol.21 No.8.
    [42] 石雪飞, 项海帆. 斜拉桥施工控制方法的分类分析. 同济大学学报, 2001, 29(1): 56-59.
    [43] 陈德伟, 许俊, 周宗泽, 李国志. 预应力混凝土斜拉桥施工控制新进展. 同济大学学报, 2001, 29(1): 99-103.
    [44] 钟万勰等. 斜拉桥施工控制中的张拉控制和索力调整. 土木工程学报, 1992, Vol.25 No.3.
    [45] 郭文复. 斜拉桥最优化调索方法. 斜拉桥国际学术大会论文集, 1994.
    [46] 官万轶. 斜拉桥施工过程的预测与控制方法研究. 华南理工大学博士学位论文, 2000.
    [47] A. Kasuga, et al., Optimum cable-force adjustments in concrete cable-stayed bridges, Journal of Structural Engineering, 1995, Vol.121 No.4.
    [48] 肖汝诚, 项海帆. 斜拉桥索力优化的影响矩阵法. 同济大学学报, 1998, Vol.26 No.3.
    [49] 吉中仁. 斜拉桥的索力调整计算. 桥梁建设, 1993, No.3.
    [50] 马文田. 混凝土斜拉桥的施工控制与索力调整. 华南理工大学博士学位论文, 1997.
    [51] J. Combault. Retentioning the cable-stays of the Brotonne Bridge, Int. Conference On Cable-Stayed Bridges, Bangkok, 1987.
    [52] 王伯惠. 广东九江斜拉桥运营两年后的索力调整. 桥梁建设, 1995, No.1.
    [53] K. Wada, et al. Construction of the Yokahama Bay Bridge superstructure. IABSE Proc. IABSE, 1988, Vol. P-92/85.
    [54] K. Maeda, A. Otsuka, and H. Takano. The design and construction of the Yokahama Bay Bridge. Cable-stayed bridges, recent developments and their future, Ito, M., et al., Elsevier Science Publishers, 1991, 377-395.
    [55] 杜亚凡编译. 东神户大桥上部结构施工及架设精度控制(上). 国外桥梁, 1994, No.1.
    [56] 杜亚凡编译. 东神户大桥上部结构施工及架设精度控制(下). 国外桥梁, 1994, No.3.
    [57] 李义. 南浦大桥主桥桥面安装及工程控制. 桥梁建设, 1992, No.2.
    [58] F. Sakai, et al. Construction control system for cable-stayed bridges. IABSE, Proc. IABSE, 1988, Vol.P-92/85, 147-152.
    [59] F. Seki and S. Tanaka. Construction control system for cable-stayed bridge. IABSE, Proc. IABSE, 1988, Vol.P-92/85, 181-190.
    [60] F. Sakai, et al. Application of construction control system to erection of stiffening truss girder of Rainbow Bridge. Proc. Inter. Conf. Bridge into 21 Century, Hong Kong, 1994, 459-466.
    [61] I. Takuwa, et al. Prestressed concrete(PC) cable-stayed bridge constructed on an expressway –the Tomei Ashigara Bridge. Cable-stayed bridges, recent developments and their future, Ito, M., et al., Elsevier Science Publishers, 1991, 357-376.
    [62] J. I. Park, et al. Control system and postprocessing in erection of composite cable-stayed bridge. Proc. Deauville Conf. 1994, Cable-Stayed Bridges and Suspension Bridges, 1994, Vol.2, 371-378.
    [63] 陈德伟等. 施工控制在甬江斜拉桥施工中的应用. 全国桥梁结构学术大会, 武汉, 1992.
    [64] 陈德伟等. 混凝土斜拉桥的施工控制. 土木工程学报, 1993, Vol.26, No.1.
    [65] 陈德伟, 范立础. 独塔斜拉桥(广东三水桥)的施工控制. 第十二届全国学术会议论文集, 同济大学出版社, 1996.
    [66] 黄大建等. 吉林临江门大桥施工工艺及施工控制. 第十二届全国学术会议论文集, 同济大学出版社, 1996.
    [67] 石雪飞. 斜拉桥结构参数估计及施工控制系统. 同济大学博士学位论文, 1999.
    [68] R. Rosen. A comprehensive Inquiry into the Nature, Origin, and Fabrication of Life. Columbia University Press, New York, 1991.
    [69] A. Saltelli, et al. Sensitivity analysis. Chichester: Wiley, 2000.
    [70] T. Turanyi. Sensitivity analysis of complex kinetic systems: Tools and applications. J. Math. Chem. 1990, 5, 203-248.
    [71] A. M. Dunker. The decoupled direct method for calculating coefficients in chemical kinetics. J. Chem. Phys., 1984, 81, 2385-2393.
    [72] M. A. Kramer, J. M. Calo and H. Rabitz. An improved computational method for sensitivity analysis: Green’s function method with ‘AIM’. Appl. Math. Modeling, 1981, 5, 432-441.
    [73] D. Miller and M. Frenklach. Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics. Int. J. Chem. Kinet., 1983, 15, 677-696.
    [74] J. T. Hwang. Sensitivity analysis in chemical kinetics by the method of polynomial approximations. Int. J. Chem. Kinet., 1983, 15, 959-987.
    [75] R. Haftka and H. M. Adelman. Recent developments in structural sensitivity analysis. Structural Optimization, 1989, 1, 137-151.
    [76] 崔飞. 桥梁参数识别与承载能力评估. 同济大学博士学位论文, 2000.
    [77] M. T. Hagan, H. B. Demuth and M. Beale. Neural network design. Boston: PWS, 1996.
    [78] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 1943, Vol. 5, 115-133.
    [79] D. O. Hebb. The Organization of Behavior. New York: Wiley, 1949.
    [80] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 1958, Vol. 65, 386-408.
    [81] B. Widrow and M. E. Hoff. Adaptive switching circuits. 1960 IRE WESCON Convention Record, New York: IRE Part 4, 1960, 96-104.
    [82] M. Minsky and S. Papert. Perceptrons. Cambridge, MA: MIT Press, 1969.
    [83] T. Kohonen. Correlation matrix memeories. IEEE Transactions on Computers, 1972, Vol. 21, 353-359.
    [84] J. A. Anderson. A simple neural network generating an interactive memory. Mathematical Biosciences, 1972, Vol. 14, 197-220.
    [85] S. Grossberg. Adaptive pattern classification and universal recording: I. Parallel development and coding of neural feature detectors. Biological Cybernetics, 1976, Vol. 23, 121-134.
    [86] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 1982, Vol. 79, 2554-2558.
    [87] D. E. Rumelhart and J. L. McClelland, eds. Parallel Distributed Processing: Explorations in Microstructure of Cognition, Vol. 1, Cambridge, MA: MIT Press, 1986.
    [88] M. T. Hagan and M. B. Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Transaction on Neural Networks, 1994, 5(6): 989-993.
    [89] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural networks by choosing initial values of adaptive weights. Proc. IJCNN, 1990, vol. 3, pp. 21-26.
    [90] D. Marquardt. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 1963, pp. 431-441.
    [91] H. Demuth and M. Beale. Neural Network TOOLBOX User’s Guide. For use with MATLAB. The MathWorks Inc., 1998.
    [92] Tai-cong, Chen, et al. Acceleration of Levenberg-Marquardt Training of Neural Networks with Variable Decay Rate. Proceeding of the International Joint Conference on Neural Networks, IEEE, 2003, v3, 1873-1878.
    [93] R. Hecht-Nielsen. Theory of the backpropagation neural networks. Proceeding of the International Joint Conference on Neural Networks, IEEE, 1989, vol. 1, pp. 593-611.
    [94] K. Hornik, et al. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5): 359-366.
    [95] 李杰. 随机结构系统-分析与建模. 北京: 科学出版社, 1996.
    [96] A. Der Kiureghian and J. Ke. The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics 1988; 3: 83-91.
    [97] W. K. Liu, T. Belytschko and A. Mani. Random field finite elements. International Journal for Numerical Methods in Engineering 1986; 23: 1831-1845.
    [98] E. H. Vanmarcke. Random Fields: Analysis and Synthesis. Cambridge: MIT Press, 1983.
    [99] T. Takada and M. Shinozuka. Local integration method in stochastic finite element analysis. Proc. Int. Conf. Struct. Safety and Reliability, 1989, 1072-1080.
    [100] P. D. Spanos and R. Ghanem. Stochastic finite element expansion for random media. J. Engng. Mech., ASCE, 1989, 115, 5, 1035-1053.
    [101] W. Q. Zhu, Y. J. Ren and W. Q. Wu. Stochastic FEM based on local averages of random vector fields. American Society of Civil Engineering, Journal of Engineering Mechanics 1992; 118(3): 496-511.
    [102] G. Deodatis. Bounds on response variability finite element systems. J. Engng. Mech., ASCE, 1990, 116, 3, 565-585.
    [103] F. Yamazaki, M. Shinozuka and G. Dasgupta. Neumann expansion for stochastic finite element analysis. American Society of Civil Engineering, Journal of Engineering Mechanics 1988; 114(8): 1335-1354.
    [104] P. L. Liu and K. G. Liu. Selection of random field mesh in finite element reliability analysis. J. Engng. Mech., ASCE, 1993, 119, 4, 667-680.
    [105] G. C. Hart and J. D. Collins. The treatment of randomness in finite element modeling. SAE Shock and Vibrations Symposium, 1970: 2509-2519.
    [106] T. K. Hasselman and G. C. Hart. Model analysis of random structural systems. Journal of Engineering Mechanics, ASCE, 1972, 98(2): 561-586.
    [107] 刘宁, 吕泰仁. 随机有限元及其工程应用. 力学进展, 1995, 25(1).
    [108] 秦权. 随机有限元及其进展――I 随机场的离散和反应矩的计算. 工程力学, 1994, 11(4): 1-10.
    [109] C. J. Astill, S. B. Nosseir and M. Shinozuka. Impact loading on structures with random properties. Journal of Structural Mechanics, ASCE, 1972, 1(1): 63-77.
    [110] M. Shinozuka and C. M. Jan. Digital simulation of random processes and its applications. Journal of Sound and Vibration, 1972, 25: 111-128.
    [111] T. Hisada, S. Nakagiri. Stochastic finite element method developed for structural safety and reliability. Proc. 3rd Int. Conf. On Struct. Safety and Reliability. Trondheim, Norway, 1981: 395-408.
    [112] K. Handa and K. Anderson. Application of finite element methods in statistical analysis of structures. Proc. 3rd Int. Conf. On Struct. Safety and Reliability. Trondheim, Norway, 1981: 409-417.
    [113] M. Shinozuka. Neumann Expansion for stochastic finite element analysis. Journal of Engineering Mechanics, ASCE, 1988; 114(8): 1335-1354.
    [114] R. Ghanem and P. D. Spanos. Stochastic finite element: a spectral approach. New York: Springer, 1991.
    [115] A. H. Nayfeh. Perturbation Methods. John Wiley & Sons, New York, 1973.
    [116] W. H. Press, et al. Numerical Recipes: The Art of Scientific Computing (FORTRAN Version), 2nd edn. 1992, Cambridge University Press, Cambridge.
    [117] O. Ditlevsen, et al. Directional simulation in Gaussian processes. DCAMM Report No. 359, Technical University of Denmark, Sept. 1987.
    [118] Y. T. Wu, et al. Advances reliability methods for probabilistic structural analysis. Proc. of ICOSSAR’89, 1989.
    [119] I. Flood and N. Kartam. Neural networks in civil engineering: Principles and understanding. ASCE, Journal of Computing in Civil Engineering 1994; 8(2): 131-162.
    [120] K. Bani-Hani, J. Ghaboussi and S. P. Schneider. Experimental study of identification and control of structures using neural network-Part 1: Identification. Earthquake Engineering and Structural Dynamics 1999; 28(9): 995-1018.
    [121] J. C. Jan, et al. Neural network forecast model in deep excavation. Journal of Computing in Civil Engineering, ASCE, 2002; 16(1): 59-65.
    [122] D. J. Han, T. C. Chen and C. Su. Application of BP neural networks for parameter identification in construction practice of a cable-stayed bridge. Proceeding of the 8th International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science (EPMESC VIII), Shanghai, 2001.
    [123] M. Papadrakakis, V. Papadopoulos and N. D. Lagaros. Structural reliability analysis of elastic-plastic structures using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering 1996; 136: 145-163.
    [124] J. E. Hurtado. Analysis of one-dimensional stochastic finite elements using neural networks. Probabilistic Engineering Mechanics 2002; 17: 35-44.
    [125] Cressie NAC. Statistics for spatial data. New York: Wiley, 1993.
    [126] M. Shinozuka. Stochastic fields and their digital simulation. Stochastic methods in structural dynamics, Dordrecht: Martinus Nijhoff Publishers, 1987.
    [127] G. Marsaglia and W. W. Tsang. A fast, easily implemented method for sampling from decreasing or symmetric unimodal density functions. Society of Industrial and Applied Mathematics, Journal of Scientific and Statistical Programming 1984; 5(2): 349-359.
    [128] H. W. Sorenson. Parameter estimation: principles and problems. New York: Dekker, 1980.
    [129] L. Ljung. Consistency of the least squares identification method. Selected Paper on Control Theory, 1979, Vol. 1.
    [130] H. Tomaka and M. Kamei. Cable tension adjustment by structural system identification. International Conference on Cable-stayed bridges, Bangkok: Asian Institute of Technology, 1987, 856-868.
    [131] F. Sakai and A. Umeda. Prediction and identification to control construction accuracy of cable-stayed bridges. Proc. 2nd East Asia-Pacific Conference on Structural Engineering and Construction, Chiang Mai, Thailand, 1989.
    [132] 徐永明, 李坚. 大跨径预应力混凝土桥梁施工控制. 预应力连续梁和刚构桥学术会议论文集, 同济大学出版社, 1995.
    [133] 郑信光, 陈德伟, 项海帆. 斜拉桥的工程控制. 中国土木工程学会桥梁及结构工程学会第九届年会论文集, 同济大学出版社, 1990.
    [134] R. E. Kalman. A new approach to linear filtering and prediction problems. J. Basic Engrg., 1960, 82(1): 35-45.
    [135] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory. J. Basic Engrg., 1961, 83(1): 95-108.
    [136] A. H. Jawinski. Stochastic process and filtering theory. Academic Press, 1970, New York, N.Y.
    [137] D. G. Carmichael. The state estimation problem in experimental structural mechanics. Proc. 3rd Int. Conf. On Applications of Statistics and Probability in Soil and Struct. Engrg, 1979.
    [138] C. B. Yun and M. Shinozuka. Identification of nonlinear structural dynamics systems. J. Struct. Mech., ASCE, 1980, 8(2), 1371-1390.
    [139] M. Shinozuka. Identification of linear structural dynamics systems. J. Engrg. Mech. Div., ASCE, 1982,
    [140] M. Hoshiya and A. Sutoh. Kalman filter-finite element method in identification. J. Engrg. Mech., ASCE, 1993, 119(2): 197-210.
    [141] R. Ghanem and M. Shinozuka. Structural system identification I: theory. J. Engrg. Mech., ASCE, 1995, 121(2): 255-264.
    [142] 林元培. 卡尔曼滤波法在斜拉桥施工中的应用. 土木工程学报, 1983, Vol.16, No.3.
    [143] F. Sakai, A. Isoe and A. Umeda. A new methodology for control of construction accuracy in cable-stayed bridges. Proceeding of 3rd East Asian-Pacific Conference on Structural Engineering and Construction, 1991, Shanghai, China.
    [144] M. Hoshiya and I. Yoshida. Process noise and optimum observation in conditional stochastic fields. J. Engrg. Mech., ASCE, 1998, 124(2): 1325-1330.
    [145] R. Fletcher. Practical methods of optimization. Chichester: John Wiley & Sons, 1987.
    [146] 苏成, 陈太聪, 韩大建, 邓江. 崖门大桥主梁牵索挂篮施工模拟计算. 桥梁建设, 2003, 1, 12~15.
    [147] Z. Behin and D. W. Murry, A substructure-frontal technique for cantilever erection analysis of cable-stayed bridges, Computer & Structures, 1992, Vol.42 No.2.
    [148] 李国平. 桥梁成形状态的施工期优化. 同济大学学报, 1999, Vol.27 No.1.
    [149] 杜国华, 姜林. 斜拉桥的合理索力及其施工张拉力. 桥梁建设, 1989, No.3.
    [150] 岳建学等. 2×160 米独塔斜拉桥的工程控制. 全国桥梁结构学术大会, 武 汉, 1992.
    [151] 秦顺全等. 武汉长江二桥斜拉桥安装计算及监控管理. 桥梁建设, 1995, No.3.
    [152] 秦顺全等. 斜拉桥安装计算-倒拆法与无应力状态控制法评述. 全国桥梁结构学术大会, 武汉, 1992.
    [153] K. T. Maher, et al. Time-dependent prestress loss and deflection in prestressed concrete members. Journal of the Prestressed Concrete Institute, 1975, Vol. 20 No.3.
    [154] 陈太聪等. 考虑节段施工的结构收缩徐变效应分析. 第十届全国工程设计计算机应用学会会议, 广州, 2000.
    [155] J. F. Fleming. Nonlinear static analysis of cable-stayed bridges structures. Computer & Structures, 1979, Vol.10 No.4.
    [156] 陈务军等. 斜拉桥施工控制分析中线性与非线性影响分析. 中国公路学报, 1998, Vol.11 No.2.
    [157] A. Churchward and Y. J. Sokal. Prediction of temperatures in concrete bridges. J Struct. Div., ASCE, 1981, Vol.107 No.11.
    [158] 管敏鑫. 混凝土箱形梁温度场、温度应力和温度位移的计算方法. 桥梁建设, 1985, No.1.
    [159] P. C. Hoffman, et al. Temperature study of an experimental segmental concrete bridge. Journal of the Prestressed Concrete Institute, 1983, Vol.28 No.2.
    [160] 苏成等. 崖门大桥施工过程中温度影响的分析、实测与补偿. 桥梁建设, 2003, No.1.
    [161] 金成棣. 混凝土徐变对超静定结构变形和内力的影响. 土木工程学报, 1981, 14(9): 19-32.
    [162] 周履, 诸林, 黎锡吾. 长跨度预应力混凝土铁路连续梁的收缩徐变计算. 桥梁建设, 1984, (2): 59-72.
    [163] 范立础. 预应力连续梁. 北京: 人民交通出版社, 1988.
    [164] 郑信光, 韩振勇, 项海帆. 桥梁节段施工过程的徐变分析. 同济大学学报, 1991, 19(3): 355-362.
    [165] 陈双笔. 大跨度混凝土斜拉桥收缩徐变效应分析. 华南理工大学硕士学位论文, 1998.
    [166] 项海帆. 高等桥梁结构理论. 人民交通出版社, 北京, 2001.
    [167] A. S. Nazmy and A. M. Abdel-Ghaffar. Three-dimensional nonlinear static analysis of cable-stayed bridges. Computers & Structures, 1990, 34(2): 257-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700