特效降解菌处理苦味酸废水的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文对特效降解菌处理苦味酸废水进行研究,从南京陶吴化工厂排污口处的泥土样品中,筛选得到一株苦味酸(学名2,4,6-三硝基苯酚,简称TNP)的特效降解菌,该菌可以苦味酸为唯一碳源、氮源、能源进行生长,经驯化之后,可在含TNP浓度高达700mg/L以上的模拟废水中生长并在35h内实现对TNP的完全降解。经16S rRNA鉴定并综合其生理生化特性,可确定该菌株为红球菌属(Rhodococcus),菌株命名为Rhodococcus sp.NJUST16。研究了温度、pH值、苦味酸浓度、NaCl浓度、额外碳源、额外氮源等因素对细菌生长及苦味酸生物降解的影响。发现Rhodococcus sp.NJUST16在温度范围20-35℃内生长,但以30℃时的降解效率最高;该菌生长以及降解TNP的效果在pH值介于7.0-7.5之间为最佳;该菌对TNP有高的耐受性,但是降解效率会随着模拟废水中TNP浓度的升高而逐渐降低;随着盐分(NaCl)浓度的升高,系统降解能力逐渐下降;此外,通过实验还发现,仅添加0.02%额外碳源时,对模拟废水中TNP的生物降解及细菌生长有明显的促进作用,最佳碳源为葡萄糖,其次是麦芽糖:而添加尿素和硝酸铵却无明显作用,但酵母膏和蛋白胨因可同时提供碳、氮源且富含多种营养成分,对细菌生长也有很好的促进效果。在上述摇床实验的基础上,采用曝气生物滤池为主体反应器,对特效降解菌Rhodococcus sp.NJUST16进行苦味酸降解的工程化研究,结果表明:“快速排菌”的挂膜方案更好;添加葡萄糖同样可以达到富集反应器内生物量的效果;运行一段时间后,系统开始具有硝化能力,可将TNP分解产生的亚硝酸盐转化为硝酸盐,提高了处理效果;曝气生物滤池可降解初始浓度达700-750mg/L的TNP模拟废水;稳定运行后,平均COD负荷可达1.41kg/m3d,平均COD去除率达76.39%。
In this work,a strain was isolated from the soil contaminated by picric acid come from TaoWu chemistry in NanJing.The degradation assays suggested that strain could utilize picric acid as a sole source of carbon,nitrogen and energy.It metabolized 700mg/L picric acid within 35h.This strain identified as a member of Rhodococcus based on biochemical characterization and 16S rRNA sequence,and was named Rhodococcus sp.NJUST16.The influence of temperature,pH,concentration of picric acid,carbon source,nitrogen source and concentration of NaCl are studied in the experiment.The result show that Rhodococcus sp.NJUST16 can grow between 20-35℃,however the optimum temperature for degrading TNP is 30℃;It can grow well by the pH between 7.0-7.5.NaCl is also considered to evaluate the efficiency of TNP removal,and the result shows the efficiency of TNP decomposition of the strain descends gradually with the increase of NaCl concentration in synthetic waste water.Effect of glucose and ammonium sulphate revealed that 0.02% glucose accelerated both the degradation of picric acid and the growth of the cells,while 0.02%ammonium sulphate and urea did not.The best carbon source is glucose,and the next is maltose;The yeast paste and peptone are nutritious,they both can provide nitrogen source and carbon source which accelerated the growth of the cells too.On the basis of the above conclusions,Rhodococcus sp.NJUST16 was applied to the research of the Biological Aerated Filter(BAF.).Two start-up methods were compared.The accession of glucose can enrich the bacteria in the BAF too.The system can nitrify the nitrite to nitrate.The BAF has a high degradation value.It can degradate the synthetic waste water which concent 700-750 mg/L TNP.The average COD load is 1.4136kg/m~3d,and the removal rate of COD achieved 76.39%.
引文
[1]赵迁,傅大放,曾苏.硝基芳香烃废水处理技术研究进展[J].环境污染治理技术与设备,2002,3(5):1-35
    [2]林中祥.硝基芳烃生产废水治理中存在的问题[J].环境导报,2001(1):26-28
    [3]Karim K,Gupta S K.Effects of altemative carbon sources on biological transformation of nitrophenols[J].Biodegradation,2002,13(5):353-360
    [4]Uberoi V,Bhattacharya S K.Toxicity and degradability of nitrophenols in anaerobic systems[J].Water Environment Research,1997,69(2):146-156
    [5]蒋荣光,刘自汤.K·D复盐起爆药[M].南京理工大学,1999
    [6]王建龙.固定化微生物技术在难降解有机污染物治理中的应用[J].环境科学研究,1999(12):19-22
    [7]裘兆蓉,承民联.H103树脂吸附水溶液中硝基苯酚的研究[J].化学反应工程与工艺.1999(15):71-78
    [8]夏畅斌.改性粉煤灰吸附对硝基苯酚的研究[J].环境科学与技术,2000,91(3):35-38
    [9]林中祥,程康华.萃取法去除硝基苯生产废水中的硝基酚[J].环境导报,2000,(2):15-20
    [10]溶剂萃取法处理杀螟松含酚废水[J].环境科学,1978(3):19-26
    [11]魏凤玉.络合萃取法处理对硝基苯酚生产废水[J].工业用水与废水,1999,30(4):12-16
    [12]桂跃.CTXL3252N离心萃取器处理对硝基酚钠废水试验[J].工业用水与废水,1999,30(2):21-22
    [13]张锡辉.紫外光辐照下Fenton试剂对难降解有机物氧化特性[学位论文].上海:华东化工学院,1987
    [14]黄晓东,徐寿昌.用芬顿试剂预氧化提高硝基苯废水的可生化性[J].江汉石油学院学报,1994,16(3):74-79
    [15]赵军.O3氧化处理苯胺、硝基苯废水的试验研究[J].环境保护科学,1997,23(3):12-14
    [16]温东辉,祝万鹏.高浓度难降解有机废水的催化氧化技术发展[J].环境科学,1994.15(5):88-91
    [17]茹至刚.废水治理工程技术[M].北京:中国环境科学出版社,1990
    [18]张俊卿,冯德荣.掺杂铁的纳米二氧化钛光催化降解对硝基苯酚的研究[J].工业催化,2005(13):422-424
    [19]李丽洁,华兆哲,陈坚.新型光催化固定膜反应器对2,4-二硝基苯酚的降解研究[J].水处理技术,1999,25(3):151-154
    [20]秦麟源.废水生物处理[M].上海:同济大学出版社,1989
    [2l]尹萍,杨彦希.微生物降解硝基芳香烃及其在环境保护中的应用[J].环境科学,1998,19(6):79-83
    [22]陈勇生.32种芳香化合物的好氧生物降解性表征[J].环境化学,1997(5):43-47
    [23]Juan L Ramos.Bioremediation of polynitrated aromatic compounds:plants and microbes put up a fight[J].Current Opinion in Biotechnology,2005,16:275-281
    [24]Fundor F,et al.Biodegradation of TNT(2,4,6-Trinityotoluene)by White Rot Fungus:Phanerochaete Chrysosprium[J].Appl.Environ.Microbiol,1990,56(6):1666-1700.
    [25]徐寿昌.有机化学[M].北京:高等教育出版社,1982
    [26]张伟.生物法处理含酚废水的研究[J].油气田环境保护,1999,9(2):23-25
    [27]钱易.水体颗粒物和难降解有机物的特性与控制技术原理[M].北京:中国环境科学出版社,2000
    [28]邵云.硝基芳烃生物降解研究[博士论文].南京大学,2004
    [29]Lenke H,Knackmuss H.Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2[J].Appl Environ Microbiol,1992(58):2933-2937
    [30]Rajan J,Valli K,Perkins R E,Sariaslani F S,Barns S M,et al.Mineralization of 2,4,6-trinitrophenol(picric acid):cha-racterization and phylogenetic identification of microbial strain.[J].Ind.Microbiol.1996,16:319-324
    [31]Christian Behrend,Kerstin Heesche-Wanger.Formation of Hydride-Meisenheimer Complexes of Picric Acid(2,4,6-Trinitrophenol)and 2,4-Dinitrophenol during Mineralization of Picric Acid by Nocardioides sp.Strain CB 22-2[J].Environ.Microbiol,1999,65(4):1372-1377
    [32]Paul Genhard Rieger.Hydride-Meisenheimer Complex Formation and Protonation as Key Reactions of 2,4,6-Trinitrophenol Biodegradation by Rhodococcus erythropolis[J].Journal of Bacteriology,1999,181(4):1189-1195
    [33]Gesche Heiss.npd gene functions of Rhodococcus(opacus)erythropol is HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation[J].Microbiology,2002(148):799-806
    [34]Klaus W,Hofmann,et al.Nitrite Elimination and Hydrolytic Ring Cleavage in 2,4,6-Trinitrophenol(Picric Acid)Degradation[J].Appl.Environ.Microbiol,2004,70(5):2854-2860
    [35]陈朝东,王文东,朱树阳.废水生物处理技术问答[M].化学工业出版社,2006
    [36]Hess T F,Silverstein J,Schmidt S K.Effect of glucose on 2,4-dinirophenol degradation kinetics in sequencing batch reactors[J].Water Environment Research,1993,65(1):73-81
    [37]Kulkani M,Chaudhari A.Biodegradation of p-nitrophenol by P.putida[J].Bioresource Technology,2006,97(8):982-988
    [38]Jennifer L Weidhaas.An Aerobic Sequencing Batch Reactor for 2,4,6-Trinitrophenol (Picric Acid)Biodegradation[J].Biotechnology and Bioengineering,2007(1)
    [39]吴锦华,任源,韦朝海.专性高效菌种降解苯胺废水特性研究[C].第一届全国环境化学学术研讨会论文集
    [40]孙艳,李京,谭立扬.含酚废水性能的比较研究[J].环境科学研究,1999(12):21-26
    [41]Woolard C R,Irvine R L.Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria[C].Abstracts of the Annual Water Environmental Federation Conference,New York,1992.
    [42]Woolard C R.Treatment of hypersaline wastewater in the sequencing batch reator[J].Wat.Res,1995,29(4):23-24
    [43]梁展辉.SBBR法处理高盐度有机废水的应用研究[J].污染防治技术,1998,11(4):226-228.
    [44]赵喆,张兰英,李爽,刘鹏.一株降解PCBs嗜盐菌的筛选及产酶条件研究[J].农业环境科学报,2007,26(1):310-313
    [45]杨文英,董学畅.细胞固定化及其在工业中的应用[J].云南民族学院学报(自然科学版,2001,10(3):406-412
    [46]王建龙,周定.固定化细胞凝胶内扩散行为研究进展[J].生物工程进展,1993,14(2):46-48
    [47]李伟.适用于酶包埋的高分子载体材料的研究进展[J].功能高分子学报.1999,20(1):365-368
    [48]王建龙,生物固定化技术与水污染控制[M].科学出版社,2002
    [49]Jimenez K,Zander A,Grimberg S.Membrane enhanced biofilm reactor for treatment of highstrength wastewaters containing nitrophenolic compounds[J].Water Environment Federation,1998(7):51-59.
    [50]Grimberg S J,Rury M J,Jimenez KM,Zander AK..Tdnitrophenol treatment in a hollow fiber membrane biofilm reactor[J].Water Science and Technology,2000,41(4-5):235-238.
    [51]居乃唬.固定化细胞技术研究和应用的现状与展望[J].工业微生物,1989,1(1):25-32
    [52]赵建伟.膜生物反应器及膜污染的研究进展[J].中国给水排水,2003,19(5):31-34
    [53]Bozo Dalmacijia,Elvira Karlovic,Zagorka Tamas,et al.Purification of high-salinity wastewater by activated sludge process[J].Wat.Res,1996,30(2):295-298
    [54]周定.固定化微生物处理含酚废水研究[J],环境科学,1990,11(1):1-6
    [55]Pai S L.Continuous degradation of phenol by R.Hodoccus sp.immobilized on granular activeated carbon and incacciumal ginate[J].Bioresource Technol,1995(51):37-42
    [56]Anselmo A M.Degradation of phenol by immobilized mycelium of Fusarium in continuous culture[J].Wat Sci Tech,1992,25(1):161-168
    [57]Ramos A F,G'omez M A.Biological nitrogen and phenol removal from saline Industrial wastewater by submerged fixed-film reactor[J].Journal of Hazardous Materials,2007:(12)175-183
    [58]程丽华,钟华文,廖艳.固定生物床处理炼油厂含酚污水技术的研究[J].炼油设计,200l,31(8):57-59
    [59]Elias Razo-Flores,Brian Donlon,Jim Field and Gatze Lettinga.Biodegrada-bility of N-substituted aromatics and alkylphenols under methanogenic conditions using granular sludge[J].Water Sci.Tech.,1996,33(3):47-57
    [60]Canler J.P.Biological Aerated Filters:Assessment of the process based on 12 sewage treatment plants[J].Wat.Sci.Tech..1994,29(10-11):13-22
    [61]郑俊.曝气生物滤池污水处理新技术及工程实例[M].北京:化学工业出版社.2002
    [62]马军,邱立平.曝气生物滤池及其研究进展[J].环境工程.2002,20(3):7-11
    [63]chen J,Mecarty D,Slcak D,et al.Full scale studies of a simplified aerated filter(BAF)for organic and a nitrogen removal[J].Wat.Sci.Tech.,2000,41(4):72-77
    [64]Pujol R.Biofilters:Flexible,reliable biological reactors[J].Wat.Sci.Tech..1994,29(10-11):33-38
    [65]孙文汗.我国污水处理的可持续发展[C].中国土木工程学会水工业分会排水委员会第四届第一次年会论文集,2001:313-317
    [66]李汝琪.曝气生物滤池处理生活污水试验[J].环境科学,1999,20(5):69-71
    [67]傅金祥,陈正清,赵玉华,等.挂膜方式对曝气生物滤池的影响[J].水处理技术,2006(8):42-46
    [68]张杰,曹相生,孟雪征,等.好气滤池3种挂膜方法的实验研究[J].哈尔滨工业大学学报,2003,35(10):1216-1219
    [69]徐亚同.活性污泥的培养、驯化和生物膜挂膜[J].上海化工,2007,32(1):21-25
    [70]周晴,傅金祥,赵玉华,杨青,陈正清.UBAF两种挂膜方式的试验研究[J].工业安全与环保,2005(5):28-30
    [71]王晓阳,袁雅姝,刘军,苏锦明.两种运行方式对曝气生物滤池的影响[J].当代化工,2004(6):175-178
    [72]沈耀良,黄勇,赵丹.固定化微生物污水处理技术[M].化学工业出版,2002
    [73]国家环保总局.水与废水监测分析方法[M].第3版,北京:中国环境科学出版社,1997
    [74]苏宇亮,方黎.固相萃取-高效液相色谱法测定水中12种酚类化合物[J].现代科学仪器,2004(4):55-58
    [75]曹会兰.亚硝酸盐对人体的危害和预防[J].微量元素与健康研究,2003(4):57-58
    [76]韦进宝,吴峰.环境监测手册[M].化学工业出版社,2006
    [77]孙仕萍,邢大荣,等.水中硝酸盐氮的麝香草酚分光光度法[J].职业与健康,2005(10):1479-1501
    [78]王宏,张林军.曝气生物滤池的启动与挂膜特性对比分析[J].徐州建筑职业技术学院学报,2005(12):21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700