基于SDSS的感潮河口城市水灾减灾辅助决策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感潮河口城市如上海、广州、天津,是经济发展的先驱、滨海城市的明珠。由于所处的特定地理位置、气候条件、地形特点,在尽享水资源带来的水土膏腴和舟楫之利的同时,亦深受水灾的威胁。一旦发生水灾,将给整个国民经济造成巨大损失。与大流域地区、内陆地区或其它城市的水灾相比,具有显著的复杂性和特殊性。在科学技术高速发展的今天,将现代信息技术应用于传统的减灾决策研究中,对于更好地制定减灾对策和措施、最大限度地减轻水灾损失和影响具有重要意义。目前,针对感潮河口城市的水灾减灾研究尚不多见,有效支撑其辅助决策的方法体系和关键技术有待进一步研究。
     基于这样的认识,本文以感潮河口城市作为研究区域,以上海市为例,围绕如何为水灾减灾决策提供辅助支持,基于SDSS将水灾数据汇集、水灾过程动态模拟、信息网络联动共享等环节有机联系起来,搭建了实时动态、预测预警、分层联动的减灾辅助决策平台。论文从一个侧面对研究区域的水灾辅助决策的理论和方法、关键技术进行探讨,为相关研究提供技术借鉴和应用示范,也为国际化大都市上海最大限度地减轻水灾损失和影响提供决策依据。
     论文首先结合大量历史资料,从水灾系统角度对研究区域的水灾复杂性进行剖析,进而基于SDSS理论和技术,提出水灾减灾辅助决策系统的总体框架。其次,针对市区暴雨积水、沿海沿江台风暴潮两种主要水灾,综合考虑天文潮、热带气旋、暴雨等因子,集成GIS、水文模型和数据库,对水灾过程进行动态模拟和预警。再次,论文基于WebGIS技术,对C/S模式的水灾减灾SDSS加以补充和拓展,探讨了水灾信息分层联动和网络共享。最后从实践应用层面构建了SDSS,为上海市水灾减灾决策提供科学依据,也对本文的方法和关键技术进行应用和验证。
     论文主要有以下贡献:
     1.针对感潮河口城市这一特定区域,基于SDSS将水灾数据汇集、水灾过程动态模拟、水灾信息网络联动共享等主要环节有机集成起来,提出了C/S和B/S结构相结合、实时动态、预测预警、分层联动特色的减灾辅助决策系统的理论框架和方法。研究区域水灾是在孕灾环境、致灾因子和承灾体等子系统相互作用、相互影响下形成的,水灾的发生往往是天文潮、热带气旋、暴雨、上游洪水、海平面上升、地面沉降、人类活动等综合作用的结果。针对信息难以共享和联动、预测
Large cities located at tidal estuaries such as Shanghai, Guangzhou and Tianjin are playing an important role in economy and society development in world. Because of the special geographical locations, climate and topography, those cities are threatened by flood, although meanwhile they benefit from abundant water resources and convenient transportation. Once flood happens, it will result in a huge loss in the national economy. Compared with those in large watersheds, inland area and other cities, the floods at urbanized tidal estuaries are very complicated and unique. However, very few researches have been done on flood-reduction for cities located at tidal estuaries in the past decades. Therefore, it is necessary and urgent to explore related methods and technologies, particularly the application of modern information technology.Based on the above discussion, the cities located at tidal estuaries are chosen as the study area, and Shanghai is taken as example in this thesis. The theories, methods and key technologies used in decision-making are discussed for the purpose of reducing flood disaster. A SDSS featured by real-time, dynamic, forecasting, early warning and layered-running is also established, by connecting a few key links such as data collecting, flood process forecasting and information sharing on the network, etc. This research not only gives an example of technology and application for other researches, but also provides scientific basis for reducing economic and social loss in shanghai city.First of all, this thesis analyzes the structure, characteristics, main disaster-causing factors and space-time distribution of flood disaster from the view of large complex system of flood disaster, based on plenty of historical data. A SDSS framework for reducing flood is then brought out on the basis of SDSS theory and technology. Next, the flood process is simulated by integrating GIS with hydrological model and database. Astronomical tide, typhoon and rainstorm are considered in this SDSS as well. Next, it is discussed how the information can be shared by city and county flood-control headquarters based on WebGIS, which extends SDSS applications of C/S mode. The SDSS is established, applied into the real problems and then verified, which provides a scientific basis for flood-reduction in Shanghai. Some solutions are also suggested in terms of the pitfalls of this system.This thesis has three main contributions:1. In terms of cities located at tidal estuaries, several key links including data collecting, flood process simulating and information sharing on the network are integrated based on SDSS, and a theoretical framework and constructing method
    featured by integrating C/S and B/S modes, real-time, dynamic, forecasting and layered-running are brought out.The flood in the study area is a result from the interaction of disaster-breeding environment, disaster-causing factors and disaster-affected body. It is caused by astronomical tide, typhoon, rainstorm, flood upstream, sea level rise, ground subsidence and human activities. The current systems have quite a few pitfalls such as delayed information-sharing, inaccurate forecasting and warning, slow response to emergency, etc. This system is able to quickly gather data of weather, water regime, rain regime, hydraulic engineering, etc. It also can effectively simulate and forecast flood process by integrating GIS with hydrological models, and use WebGIS technology to publish information on Internet/Intranet.2. Using integrated hydrological models with GIS and database to simulate and forecast flood process dynamicly should also be considered an important contribution. The inherent mechanism of flood is also explored from the view of method.In terms of uban waterlogging caused by rainstorm and storm surge caused by typhoon, a system is established considering astronomical tide, typhoon, rainstorm, etc., based on the designed SDSS framework, the integrated GIS, hydrological model, database and middle-ware. This system can well simulate the process and space-time distri
引文
[1] 金磊.中国城市水灾透视[J].城市问题,1997,(2):23-29.
    [2] 富曾慈.城市防洪与减灾对策研究[A].中国水利学会2001年学术年会论文集,2001:193-197.
    [3] 于纪玉,刘方贵.城市化与现代城市防洪减灾问题研究[J].海河水利,2003,(2):33-34.
    [4] 万庆.洪水灾害系统分析与评估[M].北京:科学出版社,1999.
    [5] 李立,朱毅.工程与非工程措施并举构建现代防洪体系[J].湖南水利水电,2004,(3):36-37.
    [6] 吴庆洲.我国21世纪城市水灾风险及减灾对策[J].灾害学,1998,13(2):89-94.
    [7] 郎根栋.我国水灾与可持续发展研究[J].灾害学,2000,15(1):51-55.
    [8] 袁志伦.上海水旱灾害[M].南京:河海大学出版社,1999.
    [9] 郭生练.水文科学的最新进展和发展方向[R].参加IUGG第21届大会综述报告,1995.
    [10] 汪静萍,潘理中.水科学研究进展[J].水科学进展,1999,10(1):95-99.
    [11] 魏一鸣,杨存键,金菊良.洪水灾害分析与评估的综合集成方法[J].水科学进展,1999,10(1):25-30.
    [12] 魏一鸣,金菊良.水灾评估体系研究[J].灾害学,1997,12(3):1-5.
    [13] 杨世伦,陈吉余.太湖流域洪涝灾害的形成和演变[J].地理科学,1995,15(4):307-314.
    [14] 仇学艳.用三维极值概率分析模型推算河口城市防洪设计水位[D].博士论文,天津:天津大学,2000.
    [15] 陈满荣,王少平.上海城市风暴潮灾害及其预测[J].灾害学,2000,15(3):26-29.
    [16] 林荣,李国芳.黄浦江风暴潮位、区间降雨量和上游来水量遭遇分析[J].水文,2000,20(3):1-5.
    [17] 朱元生.上海防汛(潮)安全风险分析和管理[J].水利学报,2002,(8):21-28.
    [18] 刘树坤.国外防洪减灾发展趋势分析[J].水利规划与设计,2000,(1):4-12.
    [19] 刘树坤.利用水灾风险图指导洪泛区及城市建设[J].灾害学,1991,6(4).
    [20] 刘树坤,向立云,姜付仁.美国防洪政策演变[J].自然灾害学报,2000,9(3):38-45.
    [21] 张旭,万群志,程晓陶,等.关于全国推广水灾风险图的认识与设想[J].自然灾害学报,1997,6(4):61-67.
    [22] 葛守西.现代洪水预报技术[M].北京:中国水利水电出版社,1999.
    [23] 任立良,刘新仁.数字高程模型信息提取与数字水文模型研究进展[J].水科学进展,2000,11(14):463-469.
    [24] 李观义,程晓陶.北江大堤洪水风险信息管理系统研究[J].水文,2003,23(3):5-9.
    [25] 莫渭浓,张建云.国家防汛指挥系统概述[J].水文,1998,增刊:36-40.
    [26] 管怀民,刘宝军.浅析国家防汛抗旱指挥系统工程的建设与管理[J].海河水利,2004,(2):48-50.
    [27] 邵鹰,金管生.长江防汛决策支持系统[J].水科学进展,1996,7(4).
    [28] 崔家骏.黄河防洪决策支系统(YRFCDSS)的分析与设计[J].系统工程,1992,(3):60-72.
    [29] 水利部黄河流域水利委员会.“数字黄河”工程规划[M].郑州:黄河水利出版社,2003.
    [30] 周成虎.洪水灾情评估信息系统研究[J].地理学报,1993,48(1):11-18.
    [31] 魏一鸣,周成虎,万庆.基于GIS的洪水灾害评估智能决策支持系统设计[J].地域研究与开发,1997,16(3):8-16.
    [32] 周成虎,万庆,黄诗峰,等.基于GIS的洪水灾害风险区划研究[J].地理学报,2000,55(1):15-24.
    [33] 陈德清.基于遥感与GIS技术的洪水灾害评估方法及其应用研究[D].博士论文,北京:中国科学院地理研究所,1999.
    [34] 黄诗峰.遥感和地理信息系统在防汛减灾中的应用研究[D].博士后出站论文,北京:中国水利水电科学研究院,2001.
    [35] 黄诗峰.水灾风险评价初析[J].地理研究,1998,17(增刊):71-77.
    [36] 刘俊.城市雨洪模型研究[J].河海大学学报,1997,25(6):20-24.
    [37] 徐向阳,刘俊.水旱灾害损失评估系统[J].灾害学,1999,14(1):1-5.
    [38] 刘俊,徐向阳,黄林楠.江苏省防汛防旱决策支持系统研究[J].河海大学学报,2000,28(1):116-118.
    [39] 刘俊,徐向阳.苏州市洪涝灾情评估系统研究[J].灾害学,1999,14(3):22-26.
    [40] 刘俊,陆剑峰,方正杰,等.上海市杨浦区防汛决策支持系统研究[J].城市道桥与防洪,2004,(3):2-4.
    [41] 徐向阳,刘俊,郝庆庆,等.城市暴雨积水过程的模拟[J].水科学进展,2003,(2):193-196.
    [42] 张行南,罗健,陈雷,等.中国洪水灾害危险程度区划[J].水利学报,2000,(3):1-7.
    [43] 刘建芬,张行南,唐增文,等.中国洪水灾害危险程度空间分布研究[J].河海大学学报(自然科学版),2004,32(6):614-617.
    [44] 王腊春,周寅康,许有鹏,等.太湖流域洪涝灾害模拟与预测[J].自然灾害学报,2000,9(1):33-39.
    [45] 许有鹏,王腊春,李立国,等.中小流域防洪决策支持系统设计研究[J].南京大学学报(自然科学),2000,36(3):280-285.
    [46] 许有鹏.浙闽沿海防洪决策支持系统研究[D].博士论文,江苏:南京大学,2002.
    [47] 胡传廉.上海构筑现代都市的防汛中枢[J].中国水利,2004,(19):43-44.
    [48] 郑晓阳,胡传廉.上海市防汛辅助决策系统研究[J].水文,2003,23(2):33-36.
    [49] 潭国良,刘贡,刘爱樟.抚河流域洪水预警预报与水库联合调度系统[A].2004全国水利信息化技术与建设成果交流展示会会刊,2004.
    [50] 上海市防汛指挥部办公室.上海市防汛手册[M].上海:上海科学技术出版社,1995.
    [51] 徐其华.上海水利志[M].上海:上海社会科学院出版社,1997.
    [52] 汪松年,阮仁良.上海市水资源普查报告[M].上海:上海科学技术出版社,2001.
    [53] 汪松年.上海地区防汛形势和对策[J].城市道桥与防洪,2000,(2):24-27.
    [54] 中国上海门户网站.www.shanghai.gov.cn,2005.
    [55] 9711台风总结报告[R].上海市防汛指挥部办公室,1997.
    [56] 上海市“0108”连续性暴雨[R].上海市防汛指挥部办公室,2001.10.
    [57] 陈述彭,谢传节.城市遥感与城市信息系统[J].测绘科学,2000,25(1):1-8.
    [58] 陈述彭.城市化与城市地理信息系统[M].北京:科学出版社,2001.
    [59] 陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,2000.
    [60] 张超.地理信息系统实习教程[M].北京:高等教育出版社,2000.
    [61] 汤国安,赵牡丹.地理信息系统[M].北京:科学出版社,2000.
    [62] 黄杏元,汤勤.地理信息系统概论[M].北京:高等教育出版社,1989.
    [63] 邬伦,刘瑜,张晶,等.地理信息系统—原理、方法和应用[M].北京:科学出版社,2001.
    [64] 修文群,池天河.城市地理信息系统[M].北京:北京希望电子出版社,1999.
    [65] 王凤霞,张超.上海市地理信息系统标准化问题研究[J].华东师范大学学报(自然科学版),2004,(1):61-66.
    [66] 梁军,何建邦.“数字城市”建设的核心问题[J].地球信息科学,2002,(1):21-26.
    [67] 王少安.地理信息系统(GIS)及其发展趋势[J].焦作工学院学报(自然科学版),2001,20(3).217-220.
    [68] 高洪深.决策支持系统(DSS)理论、方法、案例(第二版)[M].北京:清华大学出版社,2000.
    [69] 陈文伟.决策支持系统及其开发[M].北京:清华大学出版社,广西:广西科学技术出版社,2000.
    [70] 陈崇成,肖桂荣,孙飒梅.空间决策支持系统的集成体系结构及其实现途径[J].计算机工程与应用,2001,37(15):55-57.
    [71] 唐震,朱仲英.基于GIS的SDSS模式研究和分析[J].微型电脑应用,1999,15(11):27-30.
    [72] 许礼林.什么是空间决策支持系统[EB/OL].http://www.digitalearth.net.cn//debooks/de100/3-26.htm,2003.
    [73] 王家耀,周海燕,成毅.关于地理信息系统与决策支持系统的探讨[J].测绘科学,2003,28(1):1-4.
    [74] 阎守邕,陈文伟.空间决策支持系统开发平台及其应用实例[J].遥感学报,2000,4(3):239-244.
    [75] 张慧勤,高树婷,王秋玲.国家环境宏观决策支持系统的研究[J].环境科学研究,1991,4(4):57-64.
    [76] 常晋义,张渊智.空间决策支持系统及其应用[J].遥感技术与应用,1996,11(1):33-39.
    [77] 刘耀.论决策支持系统的应用现状和发展前景[J].计算机与现代化,2000,(2):29-47.
    [78] 张显峰,崔伟宏.建立面向区域农业可持续发展的空间决策支持系统的方法探讨[J].遥感学报,1997,1(3):231-236.
    [79] 黄添强,王钦敏,邬群勇.环境调控空间决策支持系统的设计与实现—福建海岸带环境调控决策支持系统[J].福州大学学报(自然科学版),2002,30(5):538-541.
    [80] 陈崇成,王钦敏,汪小钦,等.空间决策支持系统中模型库的生成及与GIS的紧密集成—以厦门市环境管理空间决策支持系统为例[J].遥感学报,2002,6(3):168-172.
    [81] 贾永刚,广红,王义.GIS和SDSS在高速公路选线之中的应用[J].地球科学—中国地质大学学报,2001,26(6):653-656.
    [82] 邓坚,束庆鹏,辛国荣.防汛指挥决策支持系统研究[J].中国水利,2001:31-32.
    [83] 陈仁升,康尔泗,杨建平,等.水文模型研究综述[J].中国沙漠,2003,23(3):221-229.
    [84] 朱跃龙,郭学俊,王志坚,等.省级防汛指挥系统模型研究[J].河海大学学报,2000,28(6):70-73.
    [85] 刘震.城市防汛指挥决策系统总体设计[J].河海大学学报,1998,26(6):49-52.
    [86] 上海市降雨径流分析和排水模拟项目研制报告[R].上海市防汛信息中心,国家海洋环境预报中心,2000.
    [87] 王喜年,尹庆江,张保明.中国海台风风暴潮预报模式的研究与应用[J].水科学进展,1991, 2(1):1-10.
    [88] 王喜年.SLOSH模式的进一步应用[J].海洋预报,1987(增刊):30-47.
    [89] 尹庆江,吴少华,王喜年.美国SLOSH模式在我国的应用—杭州湾台风风暴潮的数值模拟[J].海洋预报,1997,14(1):70-72.
    [90] 上海风暴潮漫滩预报模式的建立及应用项目研制报告[R].上海市防汛信息中心,国家海洋环境预报中心,2000.
    [91] 徐建成.派比安台风对上海黄浦江潮位的影响及成因探讨[J].海洋预报,2001,18(1):1-10.
    [92] 张汉雄.黄土高原的暴雨特性及其分布规律[J].地理学报,1983,39(4):416-425.
    [93] 岑国平,沈晋范,荣生.城市设计暴雨雨型研究[J].水科学进展,1998,9(1):41-46.
    [94] 张犁.城市水灾分析与模拟的GIS方法研究[D].博士论文,北京:中国科学院地理所,1995.
    [95] 孟波.大城市防汛自动化管理系统与决策支持系统[J].系统工程,1993,11(1):27-37.
    [96] 王平.水环境管理决策支持系统的研究和应用[J].中山大学学报(自然科学版),2000,39(3):97-101.
    [97] 陈丙咸,杨戊,黄杏元.基于GIS的流域洪涝数字模拟和灾情损失评估的研究[J].环境遥感,1996,11(4):309-314.
    [98] 朱玉.安徽省防汛抗早决策支持系统[R].中国通讯(富融科技有限公司),总第11期,2001.9.
    [99] 张闻胜,董秀颖,刘金清.国内外水灾风险分析概述[J].北京水利,2000,(6):12-15.
    [100] 于野,王闯,王铮.地理信息系统支持下的降雨时空统计分析[J].测绘通报,2003,(2):44-46.
    [101] 王林,秦其明,李吉芝.基于GIS的城市内涝灾害分析模型研究[J].测绘科学,2004,29(3):48-51.
    [102] 张敏,沈荣芳.城市暴雨积水预报系统的理论模型及模拟计算[J].同济大学学报,1994,22(3):334-339.
    [103] 张建云.地理信息系统及其在水文水资源中的应用[J].水科学进展,1995,6(4):290-296.
    [104] 姜铁兵,康玲,梁斌.新型防汛减灾决策支持系统的设计与应用[J].华中理工大学学报,1998,26(11):44-46.
    [105] 王桥,吴纪桃.GIS中的应用模型及其管理[J].测绘学报,1997,26(3):280-283.
    [106] 王桥,吴纪桃.空间决策支持系统中的模型标准化问题研究[J].测绘学报,1999,28(2):172-176.
    [107] 王桥,陈锁忠,闾国年,等.地理信息系统应用模型实现技术研究[J].中国图象图形学报,2001,6(9):912-917.
    [108] 韩英剑,张子平.地理信息系统与城市环境模型的集成研究[J].焦作工学院学报(自然科学版),2001,20(1):23-26.
    [109] 贾海峰,程声通,杜文涛.GIS与地表水水质模型WASP5的集成[J].清华大学学报(自然科学版),2001,41(8):125-128.
    [110] 邓钟,群勇,廖永丰,等.环境模型与GIS的集成技术研究[J].环境科学与技术,2004,27(3):37-38.
    [111] 蒋景曈.中国地理信息元数据标准研究[M].北京:科学出版社,1999.
    [112] 孙亚梅,张犁.空间决策支持系统及其支撑软件的设计与应用[J].环境遥感,1993,(2): 147-159.
    [113] 任建武,孙亚梅,付肃性.基于GIS的群体决策支持系统若干问题的探讨[J].系统工程理论与实践,1997,(10):46-48.
    [114] 宋关福,钟耳顺,王尔琪.WebGIS—基于Internet的地理信息系统[J].中国图象图形学报,1998,3(3):251-254.
    [115] 杨崇俊,王宇翔,王兴玲,等.万维网地理信息系统发展及前景[J].中国图象图形学报,2001,6(9):886-894.
    [116] 越霈生,杨崇俊.Web-GIS的设计与实现[J].中国图象图形学报,2000,(5):75-79.
    [117] 沈静,吴建平,戎恺.基于WebService的WebGIS的设计与应用[J].现代测绘,2004,27(4):14-16.
    [118] 张火青,余安仁.基于GIS和Web技术的城市防汛信息系统[J].计算机工程与应用,1999,(6):122-124.
    [119] 张火青,舒振文,黄皓.汛情及台风路径动态监视WebGIS系统[J].计算机系统应用,2002,(3):58-61.
    [120] 黄诗峰,李纪人,徐美.基于WebGIS的全国水环境信息系统的设计与初步实现[J].水文,2003,23(4):22-25.
    [121] 陈锁忠,陶芸,陆海英.基于WebGIS的一维水质模型研究[J].水文,2003,23(2):11-14.
    [122] 蒋海琴,陈锁忠,王桥,等.WebGIS与一维水质模型的集成研究[J].环境污染与防治,2002,24(5):305-308.
    [123] 刘纪远,钟耳顺,庄大方,等.SARS控制与预警地理信息系统的研制与应用[J].遥感学报,2003,7(5):337-344.
    [124] 吕小燕,王志坚,娄渊胜,等.基于WebGIS的防汛信息系统[J].计算机与现代化,2004,(4):77-79.
    [125] 侯召成,翟宜峰,周惠成,等.基于WebGIS的防汛信息服务系统设计与实现[J].水利水电技术,2003,34(5):33-35.
    [126] 姚保华.基于WebGIS的防震减灾系统研究及其实现[D].博士论文,北京:中国地震局工程力学研究所,2002.
    [127] ESRI公司ArcGIS系列产品在水利行业的解决方案[R].ESRI中国(北京)有限公司,2003.10.
    [128] Slobodan P. Simonovic, P.Eng. Decision support system for flood management in the red river basin[EB/OL], http://www.ijc.org/boards/rrb/red_dss.pdf, 2003.
    [129] Williams C.A. Risk management and insurance[M]. NcGraw-Hill Book Company, 1985.
    [130] Walsh M R. Toward spatial decision support systems in water resources[J]. J W R P & M, 1993, 119(2): 158.
    [131] Bo Huang, Bin Jiang. AVTOP: a full integration of TOPMODEL into GIS[J]. Environmental Modeling and Software, 2002, (17): 261-268.
    [132] Herbert H. Landslide risk-systematic approaches to assessment and management, In: Cruden&Fell(eds)[J]. Landslide Risk Assessment. Balkema, Rotterdam, 1997.
    [133] Real-time forecasting of flood hydrographs in a decision support system[EB/OL]. http://www.iwra.siu.edu/pdf/wang.pdf.
    [134] R.H.Sprague, H.J.Watson. Decision support systems: putting theory into practice[M]. Prentice-Hall, 1989.
    [135] Chester P. Jelesnianski, Jye Chen and Wilson A. Shaffer. SLOSH: sea, lake, and overland surges from hurricanes[R]. NOAA Technical Report NWS 48,1992.
    [136] Tineke D.j., et al. Modeling floods and damage assessment using GIS. In: HydroGIS: application of Geographic Information Systems in hydrology and water resources management. IAHS Publ, 1996.
    [137] Scott Morton, M.S. Management decision support: computer based support for decision making, division of research[M]. Harvard University, Cambridge Mass, 1971.
    [138] Philip A. Townsend, et al. Modeling flood plain inundation using an integrated GIS with radar and optical remote sensing[J]. Geomorphology, 1998, 21: 295-312.
    [139] Pakes U., et al. The use of GIS for one-dimensional modeling of large dutch rivers[EB/OL]. http://www.esri.com/library/userconf/proc97.
    [140] Stephen P. Integrating GIS for better hydrologic and hydraulic modeling[EB/OL]. http://www.esri.com/library/userconf/proc96.
    [141] Bennett D A. A framework for the integration of Geographical Information Systems and model-base management[J]. International Journal of Geographical Information Science, 1997, 11(4): 337-357.
    [142] Ling Bian. Integrating environmental models and GIS in the framework of GIS interoperability[J]. ACM Communications, 1997, 20(9): 634-641.
    [143] R. Srinivasan, J. G Arnold. Integration of a basin-scale water quality model with GIS[J]. Water Resources Bulletin, 1994, 30(3): 453-464.
    [144] Sui D Z, Maggio R C. Integrating GIS with hydrological modeling: practices, problems, and prospects[J]. Computers, Environment and Urban Systems, 1999,23: 33-51.
    [145] Densham J, Maguire D J. Spatial decision support system: principles and applications[J]. Geographic Information System, 1991: 403-412.
    [146] Crossland M D, Wynne B E, Perkins W C. Spatial decision support systems: an overview of technology and a test of efficacy[J]. Decision Support Systems, 1995, 14: 219-235.
    [147] Densham P J, Goodchid M F. Spatial decision support system: a research agenda, proceeding of GIS/LIS'98[J]. ACSM, 1989: 707-716.
    [148] Michael R M. Geostatistics as an aid to mapping[A]. ESRI User Conference Proceedings, 1997.
    [149] Yee Leung. Intelligent spatial decision support systems[J]. Heidelberg: Springer, 1997.
    [150] Brand Plewe. So you want to build on ONLINE GIS?[J]. GIS World, 1997, 11.
    [151] City of Ontario, California. Graphic Information Web Server[EB/OL]. http://gis.ci.ontario. ca.us/, 1996.
    [152] Clarke R. T. A review of some mathematical models used in hydrology, with observation on their calibration and use[J]. Journal of Hydrology, 1973, 19(1):1.
    [153] C. A. Schultz. Meso-scale modelling of runoff and water balances using remote sensing and other GIS data[J]. Hydrological Sciences Journal, 1994, 39(2).
    [154] J. Garbrecht, J. Campbell. TOPAZ: an automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterimtion[M]. TOPAZ User Manual, USDA-ARS, oklahoma, 1997.
    [155] D. J. Sample, J. P. Heaney, L.T. Wright, et al. Geographic Information Systems, decision support systems, and urban storm-water management[J]. Water Resouces Planning and Management, 2001, 127(3).
    [156] Ford David T, et al. Flood-warning decision-support system for Sacramento, California[J]. Journal of Water Resources Planning and Management, 2001, 7: 254-260.
    [157] OGC(1998), Open GIS consortium. Open GIS Guide: Introduction to interoperable geoprocessing, Wayland[EB/OL]. http://www.opengis.org/techno/specs.htm.
    [158] Jonge, T. D. et al. Modelling floods and damage assessment[M].
    [159] Using GIS, in HydroGIS 96: Application of Geographic Information Systems in hydrology and water resources management[A]. IAHS Publ, 235: 299-306.
    [160] Marco Painho, Miguel Peixoto, Pedro Cabral et al. WebGIS as a teaching tool[DB/OL]. http://gis.esri.com/library/userconf/proc01/professional/papers/pap910/p910.htm, 2001-10-17.
    [161] R.W.Blanning. A relational framework for joint implementation in model management systems[J]. Decision Surpport Systems, 1985, 1: 69-81.
    [162] D.R.Dolk, B.R.Konynski. Knowledge representation for model management systems[J]. IEEE Transactions on Software Engineering, 1984, 10, 619-628.
    [163] A.M.Geoffrion. Introduction to structured modeling[J]. Management System Sciences, 1987, 33, (5): 547-588.
    [164] W.A.Muhana, R.A.Pick. Composite models in SYMMS, Precedings of the 21th Haqaii International Conference on Systems Sciences[J]. IEEE Computer Society, 1988, 3(843): 418-427.
    [165] K.M.Van Hee, L.J.Somers, M.Voorhoeve. A modeling environment for decision surpport systems[J]. Decision Surpport Systems, 1991, (7): 241-251.
    [166] Ting-Peng Liang. Analogical reasoning and case-based learning in model management systems[J]. Desision Support Systems, 1993, (10): 137-160.
    [167] M.A.H.Dempster, A.M.Ireland. Object-oriented model integration in a finacial decision support system[J]. Decision Support System, 1991, (7): 329-340.
    [168] ESRI. Understanding GIS, the Arc/Info method[M]. New York Longman Scientific & Technical, 1993.
    [169] ESRI Map Book Volume 17. Geography and GIS-sustaining our world[M]. ESRI Press, 2002.
    [170] ESRI Map Book Volume 18. Geography and GIS-serving our world[M]. ESRI Press, 2003.
    [171] ArcIMS 4: ArcXML programmer's reference guide[R]. ESRI, 2003.
    [172] http://www.geographynetwork.com
    [173] http://www.digitalearth.net.cn.
    [174] http://www.go2map.com.
    [175] http://www.digitalbeijing.gov.cn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700