模糊控制、神经网络和变结构控制的交叉结合及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能控制中模糊控制和人工神经网络是较为成功的两个研究课题,模糊控制和人工神经网络的交叉结合的研究成了自动控制研究中的热点之一,并在模糊神经网络方面取得了一批有意义的研究成果。模糊神经网络的更深层的理论和应用研究对于促进智能控制在生产实践中的应用,提高劳动生产率具有十分重要的意义。
     本文首先在总结国内外模糊控制和神经网络研究的基础上,提出将两者交叉结合得到模糊神经网络,讨论了模糊神经网络的多种类型的应用途径,分析了模糊神经网络的工作机理。它既能充分发挥两者优势互补的特点,又能有效地克服两者的缺点。
     本文在分析和指出了模糊神经网络存在着网络性能不佳,学习效率不理想,网络难以选择最佳结构,甚至会陷入局部极值等问题,提出了采用结构学习模糊神经网络来改进网络性能的办法,详细论述了结构学习模糊神经网络控制的结构和学习算法,并构成了结构学习模糊神经网络控制系统,对三层模糊神经网络和多层模糊神经网络结构学习算法进行了研究。
     本文对结构学习模糊神经网络的工作机理进行了阐述,与人脑的思维比较,提出了结构学习模糊神经网络的控制策略和学习规律,从粗到精的学习方法是结构学习模糊神经网络学习过程的本质。结构学习模糊神经网络的优点是可以进行网络结构的学习,得到神经网络的最佳结构,克服了单凭设计经验来选择网络结构的随意性,提高了模糊神经网络的学习收敛速度。
     本文论述了感应电动机的解耦控制原理,在此基础上提出了解耦变结构控制,并对变结构引起的系统抖振问题进行了研究,提出了抑制和消除系统抖振,提高控制性能的方法。本文还讨论了采用模糊控制的感应电动机解耦控制系统,证实了模糊控制的引入抑制了系统抖振的影响。模糊滑模控制引入后会存在静态误差,消除静态误差的有效方法是修改控制规律。最后,还讨论了结构学习模糊神经网络在感应电动机解耦控制系统中的应用。
     本文讨论了结构学习模糊神经网络在GPS全球卫星定位系统中的应用,讨论了GPS卫星定位系统中园范围呼叫方法存在的问题,
Fuzzy system and artificial neural network are two of the successful directions in intelligent control. The research of intersection and integration of fuzzy control and artificial network has become one of the popular areas in automation, and a lot of significant achievement is got in fuzzy neural network (FNN). The embedded theory and application research in FNN is much significant for promting the application of intelligent control in productive practice and increasing the rate of production.
    On the basis of summarization of fuzzy control and neural network in domestic and abroad, their intersection and integration gives rise to FNN is proposed in the paper. Many kinds of FNN and their application are discussed. The mechanism of FNN is analyzed. It can not only bring into full play the superiority complment of fuzzy control and neural network but also overcome their shortcomeing.
    There still exists difficulty in FNN, such as the network performace is not so good, the efficiency of learning is not ideal, it is difficult to select optimal network structure, and even it may fall into local extreme value. Fuzzy neural network with structure learning (SL_FNN) is applying to promote the performance of network. The structure and learning algorithm of SLFNN is fully discussed, and SLFNN control system is obtained. The structure learning algorithm of three-layer and mutiple-layer SL_FNN is proposed.
    The mechanism of SLFNN is explained in the paper. The comparison with the brain of human being gives rise the control strategy and learning principle of SLFNN. The learning method from rough to fine is the essential characteristic of the learning process of SL_FNN. The superiority of SLFNN is that nerwork structure learning is achieved, and optimal one is reached. It overcomes the uncertainty of selecting network structure just by design experiment, and increases the FNN learning convergence velocity.
引文
[1] 邱焕耀,毛宗源,感应电动机解耦变结构控制系统抖振和消除的研究,自动化学报,1994,20(2):169-176。
    [2] 毛宗源,邱焕耀,姚菁,解耦变结构交流速度控制系统的研究,控制理论与应用,1992,9(5):512-518。
    [3] 毛宗源,姚菁,邱焕耀,解耦变结构调速系统的研究,冶金自动化,1992,16(5):47-48。
    [4] 毛宗源,邱焕耀,感应电动机解耦变结构调速系统的研究,中国交流调速第二次学术会议,重庆,1991。
    [5] 诸静等,模糊控制原理与应用,第1版,机械工业出版社,1995年:Ⅵ-Ⅷ.
    [6] 王顺晃,舒迪前,智能控制系统及其应用,第1版,机械工业出版社,1995年:1-5.
    [7] 解学书,最优控制理论与应用,第1版,清华大学出版社,1986年:1-13.
    [8] 刘豹,现代控制理论,第1版,机械工业出版社,1983年:1-7.
    [9] 涂序彦,李衍达,智能自动化系统的概念,模型,方法与策略,中国自动化学会智能自动化专业委员会,中国智能自动化学术会议论文集,上海,1998年:1-11.
    [10] 张钟俊等,智能控制和智能控制系统,信息与控制,1989,18(5):30-36.
    [11] 周其鉴等,智能控制及其展望,信息与控制,1987,16(2):38-45.
    [12] 蔡自兴,智能控制学科体系的初步框架,中国自动化学会智能自动化专业委员会,中国智能自动化学术会议论文集,上海,1998年:45-48.
    [13] Zadeh, L.A., Fuzzy Sets. Informat. Control, 8, 1965: 338-353.
    [14] Zadeh, L.A., Fuzzy Algorithm. Informat. Control. 12, 1968: 94-102.
    [15] Zadeh, L.A., A Rationale for Fuzzy Control. Trans. ASME, J. Dynam. syst. Measur. Control. 94,1972:29-37.
    [16] Zadeh, L.A., Fuzzy set and systems. Proc. Symp. System Theory, Polytechnic Institute of Brooklyn, 1965:29-37.
    [17] Zadeh, L.A., Fuzzy set as a basis for a theory of possibility. Fuzzy Sets and Fuzzy Systems 1, 1978: 3-28.
    [18] Zadeh, L.A., Fuzzy logic = Computing with words. IEEE Trans. on Fuzzy Systems 4, 1996: 103-111.
    [19] Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning Ⅰ、Ⅱ, Informat. Sci.,8,1975:199-??251,301-357.
    
    [20] Zadeh, L.A., Outline of a new approach to the analysis complex systems and decision processes, IEEE Trans. Syst. Man Cybern., SMC3, 1973:28-44.
    
    [21] Komolov S. V., et., Optimal control of a finite automation with fuzzy constraints and a fuzzy target, Cybern., 16(6):1979:805-810.
    
    [22] Hirota K., et., Analysis and synthesis of fuzzy systems by the use of fuzzy sets, Fuzzy Sets syst., 10(1), 1983:1-14.
    
    [23] Yasunobu S., et., Fuzzy control for automatic train operation system, Proc. 4th IFAC/IFIP/IFORS Int. Congress on Control in Transportation Systems, Baden, 1983.
    
    [24] Gupta M. M., et., Multivariable structure of fuzzy control systems, IEEE Trans. SMC, 16(5), 1986:638-656.
    
    [25] Mamdani E. H., Application of fuzzy algorithms for simple dynamic plant, Proc. IEE, 121, 1974:1585-1588.
    
    [26] King P. J., et., The application of fuzzy control systems to industrial processes, Automat., 13(3), 1977:235-242.
    
    [27] Ostergarad J. J., Fuzzy logic control of a heat exchange process, Fuzzy Automata and Decision Processes, Amsterdam: Gupta MM. Et. eds. North-Holland, 1977.
    
    [28] Pappis C. P., et., A fuzzy logic controller for a traffic junction, IEEE Trans, syst. Man Cybern, SMC-7, 1977:707-717.
    
    [29] Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning III, Informat. Sci., 9, 1975:43-80.
    
    [30] W. C. McCulloch and W. Pitts, A Logical Calculus of the Ideas Immanent in Nervous Activity, Bulletin of Mathematical Biophysics, 5,1943:115-133.
    
    [31] F. Rosenblatt, The Perceptron: a Probabilistic Model for Information Storage and Organization in the Brain, Psychological Review, 65,1958:386-408.
    
    [32] B. Widrow and M. E. Hoff, Adaptive Switching Circuits, IRE WESCON Convention Record, Part 4, Computers; Man-Machine Systems, 1960:96-104.
    
    [33] M. Minsky and S. Papert, Perceptrons, MIT press, 1969.
    
    [34] J. J. Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Natl. Acad. Sci., 79, 1982:2554-2558.
    
    [35] J. J. Hopfield, Neurons with Graded Response Have Collective Computational Properties like Those of Two-State Neurons, Proc. Natl. Acad. Sci.., 81, 1984:3088-3092.
    
    [36] J. J. Hopfield, 'Neural' Computations of Decisions in Optimization Problems, Biological Cybernetics. 52, 1985:141-153.
    
    [37] D. W. Tank and J. J. Hopfield, Simple 'Neural' Optimization Networks on A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit, IEEE Trans, on CAS, 33, 1986:533-541.[38] D. W. Tank and J. J. Hopfield, Neural Computations by Concentrating Information in Time, Proe. Natl. Acad. Sci.. USA, 84, 1987:141-152.
    [39] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Vol. 1-Vol.2, MIT Press, Cambridge, 1986.
    [40] 张立明,人工神经网络的模型及其应用,复旦大学出版社,第1版,1993年:1-12.
    [41] 周长久,模糊系统与神经网络的融合,计算机科学,20(5),1993:51-54。
    [42] 张建明,王树青,王宁,模糊系统与人工神经网络的交叉综合及应用,中国自动化学会智能自动化专业委员会,中国智能自动化学术会议论文集,上海,1998年:121-126.
    [43] 应长久,曾南,采用BP神经网络记忆模糊规则的控制,自动化学报,1991,17(1):63-67。
    [44] 王隆杰,毛宗源,利用神经网络进行推理的模糊控制器,控制理论与应用,11(4),1994:508-512.
    [45] 达飞鹏,徐嗣鑫,基于模糊神经网络的系统辨识,控制与决策,12(4),1997:377-380。
    [46] Paris Mastorocostas and John TheochaHisao Ishibuchi and Manabu Nii, FUNCOM: An Efficient Fuzzy Neural Training Algorithm, IEEE International Conference on fuzzy-Systems.1996: 380-386.
    [47] 姚尹武,熊金涛,毛宗源,一种神经网络自组织模糊控制,控制理论与应用,13(6),1996:738-744.
    [48] Z. Gherari, Y. Hamam, Backpropagation Neurofuzzy Controller for Nonlinear Dynamic System, IEEE International Conference on FuzzySystems.1996:1178-1183.
    [49] 孙增圻,模糊神经网络及其在系统建模与控制中的应用,中国自动化学会智能自动化专业委员会,中国智能自动化学术会议论文集,上海,1998年:28-36.
    [50] Chin Teng Lin and Cs George Lee., Neural-Networks Based Fuzzy Logic, Control and Decision System. IEEE Trans. on Computers, 40(2),1991:1320-1336.
    [51] Tomas Feuring, Fuzzy Neural Network are Overlapping, IEEE International Conference on fuzzy-Systems. 1996:1154-1160.
    [52] 彭小奇,梅炽,周子民,唐英,多变量系统的模糊神经网络控制模型及其应用,12(3),1995:351-357。
    [53] Hisao Ishibuchi and Manabu Nii, Learning of Fuzzy Connection Weights in Fuzzified Neural Networks, IEEE International Conference on fuzzy-Systems. 1996: 373-379.
    [54] James J. Backley, Yoich Hayashi, Neural Net Solutions To Fuzzy Linear Programming, IEEE International Conference on Fuzzy-Systems. 1996: 1563-1566.[55] 张天平,冯纯伯,一类非线性系统的自适应模糊滑模控制,自动化学报,23(3),1997:361-369。
    [56] Tong Shaocheng, Chai Tianyou, Shao Cheng, Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems, Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, 1996:49-54.
    [57] Wang L. X. and J. M. Mendel, Back-propagation fuzzy systems as nonlinear dynamic system identifiers, Proc. IEEE International Conf. on Fuzzy Systems, San Diego, 1992:1409-1418.
    [58] Wang L. X., Adaptive Fuzzy systems and control, design and stability, PTR Prentice Hall, 1994:103-154.
    [59] 候卫兵,冯冠平,自适应神经元模糊控制系统的研究,控制与决策,12(3),1997:269-272。
    [60] 陈荣,徐用懋,兰鸿森,多层前向网络的研究——遗传BP算法和结构优化策略,自动化学报,23(1),1997:43-49。
    [61] 李卓,萧德云,何世忠,基于神经网络的模糊自适应PID控制方法,11(3),1996:340-345。
    [62] 陈善本,吴林,张铨,张福恩,不确定对象的人工神经网络自学习控制方法,自动化学报,23(1),1997:112-115。
    [63] 王萧,任思聪,非线性系统模糊神经网络变结构自适应控制,控制与决策,12(3),1997:208-212。
    [64] 濮卫兴,陈来九,应用单层神经网络设计多变量自适应模糊控制器,11(3),1996:346-350。
    [65] 武妍,施鸿宝,神经网络、模糊系统和遗传算法相结合的研究概述,中国自动化学会智能自动化专业委员会,中国智能自动化学术会议论文集,上海,1998年:84-90。
    [66] 廖俊,朱世强,林建亚,基于模糊神经网络的机器人实时控制研究,自动化学报,23(4),1997:574-576。
    [67] 徐冬玲,方建安,邵世煌,交通系统的模糊控制及其神经网络实现,信息与控制,21(2),1992:63-67。
    [68] Werner Hauptmann, Friedrich Graf, Kai Heesche, Driving Enviroment Recognition for Adaptive Automotive Systems, IEEE International Conference on fuzzy-Systems.1996:387-393.
    [69] Markus PISTAUER, Reinhard BERNHARDI-GRISSON, Neural Network Based Design for a Helicopter Flight Mechanic Model Used in A Heterogeneous Distributed Workstation Architecture, IEEE International Conference on fuzzy-Systems. 1996:368-372.
    [70] A. Cuce', G. Grasso, G. Sortino, C. Vinci, Fuzzy Modelling of an Experimental Flexible Arm, IEEE International Conference on FuzzySystems. 1996:1666-1669.
    [71] F. C. Sun, Z. Q. Sun, G. Feng, Design of Adaptive Fuzzy Sliding Mode Controller for Robot Manipulators, Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, 1996:62-67.[72] 刘竞成,交流调速系统,第1版,上海交通大学出版社,1988:1-3。
    [73] Blaschke. F., Das Prinzip der Feldorientierung, die Grundlage für die TRANSVEKTOR-Regelung von Drehfeldmaschinen, Siemens-Z, 45(10), 1971.
    [74] F. Blaschke, The Principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines, siemens review, 34,1972:217-220.
    [75] K. Ohnishi and K. Miyachi, Principle of Constant Magnitude Regulation of Secondary Flux Based on Slip Frequency Control in Induction Motor Drive. Int. Conf. on Electrical Machines,Budapest, 1982,9.
    [76] K. Ohnishi, H. Suzuki, K. Miyachi, Decoupling Control of Secondary Flux and Secondary Current in Induction Motor Drive with Controlled Voltage Source and Its Comparation with Volt/Herz Control, Conf. Rec. of IEEE/IAS, 1982:678-685.
    [77] K. Ohnishi, Y. Ueda and K. Miyachi, Model reference adaptive system against rotor resistance variation in induction motor drive, IEEE trans, on industrial electronics, IE-3(3), 1986:217-223.
    [78] 吴捷,陈清泉,罗绮霞,感应电动机的解耦—自适应控制,5(2),1988:60-68。
    [79] Akira Kumamoto, Satoshi Tada and Yoshihisa Hirane, Optimal speed regulator of a tenasvector-controlled induction motor drive system using a model reference adaptive control, Conf. Rec. of IECON'85, 1985:195-200.
    [80] E. J. Krakiwsky, C. B. Harris and R. V. C. Wong, A kalman filter for integration of dead reckoning, map matching, and DPS positioning. IEEE Position Location and Navigation Sysposium, Florida, 1988:39-46.
    [81] T. W. Lezniak, R. W. Lewis, and R. A. McMillen, A dead reckoning/map corrilation system for automatic vehicle teacking, IEEE Trans. on Vehicular Technology, VT-26(1), 1997:47-60.
    [82] Li Xing Wang, Adaptive Fuzzy System and Control, PTR Prentice Hall, Inc., 1994.
    [83] C. T. Lin, Neural Fuzzy Control System with Structure and Parameter Learning Adaptive Fuzzy System and Control, PTR Prentice Hall, Inc., 1994.
    [84] 诸静等,模糊控制原理与应用,机械工业出版社,1995年:1-15,506-584。
    [85] 张立明,人工神经网络的模型及其应用,复旦大学出版社,1993年.
    [86] 余英林,李海洲,神经网络与信号分析,华南理工大学出版社,1996年.
    [87] 靳蕃,范俊波,谭永东,神经网络与神经计算机,西南交通大学出版社,1993年.[88] 王顺晃,舒迪前,智能控制系统及其应用,机械工业出版社,1995年.
    [89] 刘增良,刘有才,因素神经网络理论及实现策略,北京师范大学出版社,1992年.
    [90] 冯纯伯,非线性控制系统分析与设计,东南大学出版社,1990年.
    [91] 何新贵,模糊知识处理的理论与技术,国防工业出版社,1994年.
    [92] 钟义信,潘新安,杨义先,智能理论与技术——人工智能与神经网络,人民邮电出版社,1992年.
    [93] J. H. Holland,Adaptation in nature and artificial systems, Ann Arbor, MI: University of Michigan Press, 1975.
    [94] Structure identification of fuzzy model, Fuzzy Sets and Systems, 1988,28:315-334.
    [95] T. Tagkagi and S. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, IEEE Trans. Syst., Man, and Cybernetics, 1985,15(1):116-132.
    [96] J. Buckley and Y. Hayashi.Fuzzy neural networks: A survey. Fuzzy Sets and Systems, 1994,66:1-13.
    [97] Fuzzy neural network with fuzzy signals and weights, Y. Hayashi, J. Buckley, and E. Czogala. Int. J. Intelligent Systems, 1992,8:527-537.
    [98] T. J. Procyk and E.H. Mamdani,A linguistic self-organizing process controller, Automatica, 1979,15:15-30.
    [99] R. Palm, Sliding Mode Fuzzy Control, Proceeding of the IEEE International Conference on Fuzzy Systems, San Diego, 1992:519-526.
    [100] K. Tanaka and M. Sugeno, Stability analysis and design of fuzzy control systems,Fuzzy Sets and Fuzzy Systems, 1992, 45(2): 135-156.
    [101] K. Tanaka and M. Sano, A robust stabilization problem of fuzzy control systems and its application to backing up control of a trucktrailer.IEEE Trans. Fuzzy Systems, 1994,2(2): 119-134.
    [102] H.O. Wang, K. Tanaka and M. Griffin, An approach to fuzzy control of nonlinear systems: stability and design issues, IEEE Trans. on Fuzzy Systems, 1996,4(1): 14-23.
    [103] R.R. Yager et al, Analysis of flexible structured fuzzy logic controllers, IEEE Trans. Systems, Man and Cybernetics, 1994,24(7): 1035-1043.
    [104] E.H. Mamdani, Application of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE Trans. Computer, 1977,26(12): 1182-1191.
    [105] E.H. Mamdani and S. Assilian, An experiment in linguistic systems with a fuzzy logic controller, Int. J. Man Mach. Studies, 1975,7(1):1-13.
    [106] 阎平凡,对多层前向神经网络研究的几点看法,自动化学报,1997,23(1):129-135。[107] 张铃,张钹,前向神经网络的设计原则,中国智能自动化学术会议,上海,1998,中国自动化学会智能自动化专业委员会,12-17。
    [108] Michael Blount,Chiahung Lin,Lucien Duckstein, Solving Fuzzy Regression Equations Using a Fuzzy Neural Network, 1996 IEEE International Conference on fuzzy-Systems,1996:1161-1165.
    [109] Kyumann Im, Woonchul Ham, Byungkook Yoo, Adaptive Sliding Mode Control Based on FLS, Sacheul Jeong, 1996 IEEE International Conference On Fuzzy-Systems, 1996:601-607.
    [110] Jianjuen Hu, Jie Ren, James Thompson, Fuzzy Sliding Control of a Force Reflecting Telerobotic System, Thomas Sheridam, 1996 IEEE International Conference on fuzzy-Systems, 1996:2162-2167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700