关于几类非自治梁方程(组)解的长时间动力行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无穷维动力系统作为非线性科学的一个主要的研究对象,其理论与方法在许多重要领域和众多学科中有着广泛的应用,并且有着悠久的研究历史.近年来,非自治梁方程(组)作为无穷维动力系统的中心内容之一,受到了数学及其它自然科学工作者的高度重视,更在生物、化学、流体力学等领域结出了丰硕的成果.
     本学位论文主要研究了非自治梁方程(组)系统的最终归宿,即:解的长时间动力学行为.由于吸引子是描述t→∞时系统的长时间动力学行为的重要指标,因此,它成为了无穷维动力系统研究的重点课题.这里,我们考虑的问题是:当t→∞时系统的相空间的任何相轨道是否从已知的初始状态出发又回到了原来的初始状态,以及是否被吸引到一个维数比原始空间更低的吸引子上?
     对于非自治梁方程(组)所对应的无穷维动力系统的一致吸引子的存在性研究是本文的主要研究内容.文中,我们考虑了几类具有非线性阻尼系数的Kirchhoff型结构阻尼项、具有衰退记忆项、具有非线性阻尼项等一系列非自治梁方程(组)的一致吸引子的存在性问题.首先,我们将自治系统中的算子半群理论推广到非自治系统的过程理论,利用算子半群理论证明了系统存在连续解.其次通过能量的一致先验估计,构造了连续过程紧的或一致渐近紧的吸收集.最后通过过程分解技术,当外力项与时间相关时,将非自治系统所决定的过程{U(t,τ)}分解成两个小部分,并验证了一个满足压缩性质,另一个满足紧致性质.从而获得了由非自治系统所生成的过程存在一致吸引子.
     本文共分六章,具体内容如下.
     第一章,在阐述动力系统、无穷维动力系统和吸引子的应用背景的同时,介绍了吸引子的存在性的基本理论,以及自治和非自治系统的区别及其研究的进展概况.此外,还简单地介绍了本文所讨论的主要研究问题.
     第二章,简要列举了本文用到的一些基本概念及理论.
     第三章,在材料的粘性效应和非线性外阻尼作用下,考虑了较一般的具有非线性阻尼系数的带Kirchhoff型结构阻尼项的非自治梁方程在齐次Dirichlet边界条件下,当外力项与时间相关时,获得由非自治系统所生成的过程在空间H02(Ω)×L2(Ω)中一致吸引子的存在性.
     第四章,当非线性项满足临界的Sobolev指数增长条件时,考虑了非自治情形下,具有衰退记忆项的非经典双曲梁方程当外力项h(x,t)依赖于时间并且为平移有界,而不是平移紧函数的时候,通过渐近非自治偏微分方程的极限集的性质,证明了在适当的参数范围内,对应于非自治系统所生成的过程族{Uh(t,τ),t≥τ,τ∈R}在弱拓扑空间H02(Ω)×L2(Ω)×Lμ2(R+;H02(Ω))和强拓扑空间D(A)×H02(Ω)×Lμ2(R+;D(A))中存在一致吸引子.
     第五章,在非线性阻尼和热效应作用下,讨论了带强阻尼项的粘弹性非自治热弹耦合梁方程组当非自治外力项与时间相关,并且是平移紧的时侯,我们证明了系统所生成的解过程在空间H02(Ω)×L2(Ω)×L2(Ω)中存在一致吸引子.同时,我们还发现对于一定的参数范围内的吸引子,其结构是非常简单的,即:吸引子指数地吸引方程组的其它解,是方程组的有界完全轨道的一切值的唯一闭包.
     第六章,在齐次Dirichlet边界条件下,研究了具有线性记忆项的非经典的非自治耦合梁方程组证明了当非线性项满足临界指数增长,且对于任意的非自治外力项是平移有界而非平移紧时,方程组具有一致吸引子,即:周期解唯一的指数吸引任何有界集.
Infinite dimensional dynamical system is an important research direction of nonlinear science. It has a long history, and the theory and method of it has comprehensive applications in many important areas and in many disciplines. In recent years, non-autonomous beam equations as one of central issues of infinite dimensional dynamical system, was attached great importance to mathematics and other natural science worker. And, it has made great achievements in biology, chemistry, fluid mechanics, etc.
     The thesis is devoted to the study of non-autonomous beam equations--the long-time dynamical behavior of solutions. Attractor is an important indicator of the long-time dynamical behavior as time tends to infinity. Thus, it has become the key topics in the study of infinite dimensional dynamical system. Now, the question to consider is if the any orbit of phase space is from the known initial state back to the original on the initial state, and, if is attracted to a dimension space more than the original low attractor as time tends to infinity?
     The study of the existence of uniform attractors for the infinite dimensional dynamical system of non-autonomous beam equations has become a main topic. In this thesis, we considered several cases about the existence of uniform attractors, such as the nonlinear viscoelastic beam equation with the Kirchhoff structural damped terms, the beam equation with linear memory type, the strongly damped nonlinear beam equations, etc. Firstly, we will promote the semigroup theorem of autonomous system to the process theorem of non-autonomous system and prove the existence of continuous solution by the operator semigroup theorem. Then, through a prior estimate of the energy, we structure the compact and uniformly asymptotically compact absorbing set of continuous process. Finally, using the process decomposition technique, we will decompose the corresponding family of processes {U(t,τ)} into two fractions, which one satisfies the squeezing property and the other is uniformly compact. Furthermore, we obtain the existence of uniform attractors of the process generated by non-autonomous system.
     The thesis consists of six chapters, and the detailed content included following aspects.
     In Chapter1, we not only exposit the background of dynamics, infinite dimensional dynamical system and attractors in the literature, but also introduce the basic theorem on the existence of attractors. Meanwhile, we illustrate the difference and its research progress of autonomous and non-autonomous system. In addition, we simply introduced the main research problems discussed in this thesis.
     In Chapter2, some basic concept and theory that we will use in the thesis are presented.
     Chapter3is concerned with the general Kirchhoff type non-autonomous beam equation with a nonlinear structural damped coefficient, under the material viscosity effect and the nonlinear damping effect. And under the homogeneous boundary condition, when the external force is time-dependent, the existence of uniform attractors of the process determined by non-autonomous system is obtained in the space H02(Ω)×L2(Ω).
     In Chapter4, when the nonlinearity satisfies critical Sobolev exponential growth condition, the non-classic hyperbolical beam equation with fading memory in the case of non-autonomous is discussed. when the forcing term only translation bounded, not translation compact, we prove the existence of uniform attractors of the corresponding family of processes {Uh(t,τ),t≥τ}in weak topological space H02(Ω)×L2(Ω)×Lμ2(R+;H02(Ω)) and in strong topological space D(A)×H02(Ω)×Lμ2(R+;D(A))in a certain parameter region, through the properties of limit set of the asymptotic non-autonomous partial differential equations.
     Chapter5discusses the non-autonomous viscoelastic coupled beam equations with strongly damped term under the nonlinear damping and the thermal effect, If the time-dependent forcing term is translation compact, the uniform attractor of solution process is obtained, and we can find that it has a simple structure. That is to say, the attractor attracts all the other solutions exponentially, and it is the only closure of all the solutions of the bounded completely orbit of the equations.
     In Chapter6, under the homogeneous Dirichlet boundary condition, we study the non-autonomous non-classical coupled beam equations with linear memory, And, when the nonlinear term satisfies critical exponential growth, we prove the equations possess the uniform attractor. Namely, the periodic solution attracts any bounded set exponentially. Here, the any forcing term is translation bounded, not translation compact.
引文
[1]Poincare H.. Sur less equations de ia dynamique et problem des troic corps[M]北京:高等教育出版社,1890:1-270.
    [2]Birkhoff G.D.. Dynamical systems[M]. Providence:Am. Math. Soc.,1927.
    [3]Babin A.V., Vishik M.I.. Attractors of evolution equations[M]. North-Holland: Amsterdam,1992.
    [4]Vishik M.I.. Asymptotic behavior of solutions of evolutionary equations[M], Cambridge: Cambridge University,1992.
    [5]Cheban D.N.. Global attractors of non-autonomous dissipative dynamical systems[J]. Inter-disciplinary Mathematical Sciences,2004,1.
    [6]Cheban D.N., Duan J.. Almost periodic motions and global attractors of the non-Autonomous Navier-Stokes[J]. Journal of Dynamical Differential Equations,2004,16: 1-34.
    [7]郭柏灵.无穷维动力系统[M].北京:国防工业出版社,2002.
    [8]Debussche A.. On the finite dimensionality of random attractors[J], Stoch. Anal. and Appl.,1997,15:473-492.
    [9]Ghidagla J.M., Marzocchi A.. Longtime behavior of strongly damped wave equations global attractors and their dimension[J]. SIAM J.Math.Anal.,1991.20:861-895.
    [10]Crauel H., Flandoli F.. Attractors for random dynamical systems[J], Probab. Theory Relat. Fields,1994,100:365-393.
    [11]Chepyzhov V.V., Vishik M.I.. Attractors for equations of mathematical physics[M]. Providence, Amer., Math. Soc.,2002.
    [12]Webb G.F.. Existence and asymptotic behavior for a strongly damped nonlinear wave Equation[J]. Canad. J. Math.,1980,32:631-643.
    [13]Massatt P.. Limiting behavior for strongly damped nonlinear wave equations[J]. J. Differential Equations,1983,48:334-349.
    [14]Ghidagla J.M., Temam R.. Attractors for damped nonlinear hyperbolic equations[J]. J. Math. Pure and Appl.,1987,66:273-319.
    [15]Robinson J.C.. Infinite-dimensional dynamical systems, An introduction to dissipative parabolic PDEs and the theory of global attractors[M]. Cambridge University:2001.
    [16]Ladyzhenskya O.A.. Attractors for semigroups and evolution equations[M]. Cambridge, New York:Leiziono Lincei, Cambridge Univ.,1991.
    [17]Sell G.R.. Nonautonomous differential equations and topological dynamics. Ⅰ. The basic theory[J]. Amer. Math. Soc.,1967,127:241-262.
    [18]Sell G.R.. Nonautonomous differential equations and topological dynamics. Ⅱ. Limiting equations[J]. Amer. Math. Soc.,1967,127:263-283.
    [19]Foias C, Manley O., Temam R... On the interaction of small and large eddies in two-dimensional turbulent flows[J]. Math. Model and Number Anal.,1988,22:93-114.
    [20]Hale J.K.. Asymptotic behavior of dissipative systems[M], Providence, Rhode Island: Amer. Math. Soc.,1988.
    [21]Narasimha K.. Nonlinear vibration of an elastic string[J]. J. Sound Vibration,1968,8: 134-146.
    [22]Nishihara K., Yamada Y. On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms[J]. Funkcial.Ekvac.,1990,33(1):151-159.
    [23]Eden A., Foias C., Nicolaenko B., Temam R.. Exponential attractors for dissipative evolution equations[M]. RAM, Wiley, Chichester,1994.
    [24]Robinson J.C.. Infinite-dimensional dynamical systems[M]. Cambridge, Cambridge University Press,2000.
    [25]Stuart A.M., Humphries A.R.. Numerical analysis and dynamical systems[M]. Cambridge, Cambridge University Press,1996.
    [26]郭柏灵著.非线性演化方程[M].上海:上海科技教育出版社,1995.
    [27]Adams R.. Sobolev spaces[M]. New York:Academic Press,1975.
    [28]Nirenberg L.. Topic in nonlinear functional analysis[M]. New York:Courant Institute of Mathematical Science,1974.
    [29]Zheng S.. Nonlinear parabolic equations and hyperbolic-parabolic coupled systems[M]. London:Pitman Series Monograph and Surveys in Pure and Applied Mathematics,1995, 76.
    [30]Haraux A.. Attractors of asymptotically compact processes and application to nonlinear partial differential equations[J]. Commun. in partial differential equations,1988,13(11): 1383-1414.
    [31]Chepyzhov V.V., Vishik M.I.. Attractors of non-autonomous dynamical systems and their dimension[J], J. Math.Pures Appl.,1994,73(3):279-333.
    [32]Miranville A., Wang X.. Attractors for nonautonomous nonhomogeneous Navier-Stoke equations[J]. Nonlinearity,1997,10(5):1047-1061.
    [33]Ma Q.F., Wang S.H., Zhong Z.K.. Necessary and sufficient conditions for the existence of global attractors for semigroups and applications[J]. Indiana University Math. J,2002, 51(6):1541-1559.
    [34]汪璇.带衰退记忆的方程整体解的长时间动力学行为[D].兰州:兰州大学,2009.
    [35]Zhong C.K., Yang M.H., Sun C.Y.. The existence of global attractors for the norm-to-weak continuous semigroup and its application to the nonlinear reaction-diffusion equations[J]. J. Differential Equations,2006,223:367-399.
    [36]Debussche A.. Hausdorff of a random invariant set[J]. J. Math.Pures Appl.,1998,77: 967-988.
    [37]Douady A., Oesterle J.. Dimension de Hausdorff des attracteurs[M]. Paris:C.R.Acad.Sci. Ser. A,1980,290:1135-1138.
    [38]Ball J.M.. Global attractors for damped semilinear wave equations[J], Discrete Contin. Dyn.Syst.,2004,14:31-52.
    [39]Coleman B.D., Gurtin M.E.. Equipresence and constitutive equations for rigid heat conductors[J]. Z. Angew. Math. Phys.,1967,18:199-208.
    [40]Chepyzhov V.V., Gatti S., Grasselli M., Miranville A., Pata V.. Trajectory and global attractors for evolution equations with memory [J]. Applied Mathematics Letters,2006, 19:87-96.
    [41]Caraballo T., Langa J.A., Robinson J.C.. Attractors for differential equations with variable delays[J]. J. Math.Anal.Appl.,2001,260:421-438.
    [42]Chepyzhov V.V., Miranville A.. On trajectory and global attractors for semilinear heat equations with fading memory[J]. Indiana University Mathematics Journal,2006,55: 119-167.
    [43]Dafermos C.M.. Semiflows generated by compact and uniform processes and some generalizations[J]. Math. Systems Theory,1974,8:142-149.
    [44]Feireisl E.. Attractors for semilinear damped wave equations on R3[J]. Nonlinear Analysis, TMA.,1994,23(2):187-195.
    [45]Giorgi C., Pata V., Marzocchi A.. Asymptotic behavior of a semilinear problem in heat conduction with memory[J]. Nonlin. Diff. Eq. Appl.,1998,5:333-354.
    [46]Giorgi C., Rivera J.E.M., Pata V.. Global attractors for a semilinear hyperbolic equations in viscoelasticity[J]. J. Math.Anal.Appl,2001,260:83-99.
    [47]Giorgi C., Pata V.. Stability of abstract linear theermoelastic systems with memory[J]. Math. Models Methods Appl. Sci.2001,11:627-644.
    [48]Ladyzhenskaya O.A.. Attractors for semigroups and evolution equations[M]. Cambridge, New York:Leizioni Lincei, Cambridge Univ.,1991.
    [49]Lions J.L., Magenes E.. Non-homogeneous boundary value problems and applications [M]. Berlin:Springer,1972.
    [50]Temam R.. Navier-Stokes equations and nonlinear functional analysis[M]. Philadelphia: SIAM,1995.
    [51]Temam R.. Infinite-dimensional dynamical systems in mechanics and physics[M]. Berlin:Springer,1997.
    [52]卢松松.非自治的二维Navier-Stokes方程的一致吸引子[D].兰州:兰州大学,2005.
    [53]Pata V., Zucchi A.. Attractors for a damped hyperbolic equation with linear memory[J]. Adv. Math. Sci. Appl.,2001,11(2):505-529.
    [54]Sun C.Y., Wang S.Y., Zhong C.K.. Global attractors for a nonclassical diffusion equation[J], Acta Mathematica Sinica, English Series,2007,23:1271-1280.
    [55]Lu S.S., Wu H.Q., Zhong C.K.. Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces[J]. Discrete Contin. Dyn. Syst.,2005,13:701-719.
    [56]Temam R... Some developments on Navier-Stokes equations in the second half of the 20th century [J]. the Development of mathematics,2000:1049-1106.
    [57]Ma S., Zhong C.k.. The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces[J]. Discrete Contin. Dyn. Syst.,2007,18(1): 53-70.
    [58]王素萍.两类偏微分方程吸引子的存在性[D].兰州:西北师范大学,2009.
    [59]Temam R.. Navier-Stokes equations, theory and numerical analysis[M]. AMS, Providence:2001.
    [60]尚婵妤.非线性发展方程(组)整体解及其渐近性态[D].上海:复旦大学,2009.
    [61]Miller R.K.. Almost periodic differential equations as dynamical systems with applications to the existence of almost periodic solutions[J]. J. Differential equations, 1965,1:337-345.
    [62]Miller R.K., Sell GR. Topological dynamical and its relation to integral and non-autonomous system[M]. New York, Intern.Symposium,1976,223-248.
    [63]张建文.非线性弹性无穷维动力系统的惯性流行与整体吸引子研究[D].太原:太原理工大学,2000.
    [64]马闪.关于非自治无穷维动力系统一致吸引子的存在性[D].兰州:兰州大学,2007.
    [65]Kirchhoff G.. Vorlesungen uber mechanic[M]. Sluttgar, Teubner:1883.
    [66]Woinowsky S.K.. The effect of axial force on the vibration of hinged bars[J]. J. Appl. Mech.,1950,17:35-36.
    [67]Chepyzhov V.V., Vishik M.I.. Non-autonomous evolutionary equations with translation-compact symbols and their attractors[J]. C.R.Acad.Sci Paris ser. I Math.,1995,321: 153-158.
    [68]Chepyzhov V.V., Vishik M.I.. Attractors of non-autonomous systems and processes[J]. J. Math. Pures Appl.,1994,73:279-333.
    [69]Sell G.R.. Non-autonomous differential equations and topological dynamics, Ⅰ,Ⅱ[J]. Trans. Amer. Math. Soc.,1967,127:241-262,263-283.
    [70]Ebihara Y.. Local solutions for a nonlinear degenerate hyperbolic equation[J]. Nonlinear Analysis, TMA,1986,10(1):27-40.
    [71]Yang Z.J.. Longtime behavior of the Kirchhoff type equation with strong damping on RN[J]. J. Differential Equations,2007,242:269-286.
    [72]Igor Ch.. Long-time dynamics of Kirchhoff wave models with strong nonlinear damping[J]. J. Differential Equations,2012,252:1229-1262.
    [73]张建文.具强迫项非线性梁方程解的渐近性[J].应用数学,2001,14(1):60-66.
    [74]Ball J.M.. Initial-boundary value problems for an extensible beam[J]. J. Math. Anal.Appl., 1973,42:61-90.
    [75]Dickey R.W.. Free vibrations and dynamic buckling of the extensible beam[J]. J. Math. Anal. Appl.,1970,29:443-454.
    [76]Fan X.M., Zhou S.F.. Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type[J]. Applied Mathematics and Computation, 2004,158:253-266.
    [77]陈小豹,马巧珍.非线性可拉伸梁方程强全局吸引子的存在性[M].西北师范大学学报,2008,44(6):1-10.
    [78]Claudio G., Vittorino P., Elena V.. On the extensible viscoelastic beam, Nonlinearity[J], 2008,21:713-733.
    [79]Deimling K.. Nonlinear functional analysis[M]. Berlin, Springer-Verlag,1985.
    [80]Cheban D.N., Duan J.. Almost periodic motions and global attractors of the non-autonomous Navier-Stokes equations[J]. Journal of Dynamical Differential Equations, 2004,16:1-34.
    [81]Pazy A.. Semigroups of linear operators and applications to partial differential equations [M]. New York, Springer, Appl.Math.Sci.,1983,44.
    [82]Cheban D.N.. Global attractors of non-autonomous dissipative dynamical systems[M], New Jersy, USA, Interdisciplinary Mathematical Sciences,2004,1.
    [83]Sun C.Y., Cao D.M., Duan J.Q.. Non-autonomous wave dynamics with memory-Asymptotic regularity and uniform attractor[J]. Discrete Contin. Dyn. Syst., Series B, 2008,9:743-761.
    [84]Sun C.Y., Cao D.M., Duan J.Q.. Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity[J]. Nonlinearity,2006,19:2645-2665.
    [85]Sun C.Y., Cao D.M., Duan J.Q.. Uniform attractors for non-autonomous wave equations with nonlinear damping[J]. SIAM Journal on Applied Dynamical Systems,2007,6: 293-318.
    [86]Zelik S.V.. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent[J]. Comm. Pure Appl. Anal.,2004,3:921-934.
    [87]Sell G.R., You Y. Dynamics of evolutionary equations[M]. New York, Springer:2002.
    [88]刘玉荣.用有限维约化和反可积方法对若干无穷维问题的研究[D].苏州:苏州大学,2001.
    [89]朱建民.几类非线性发展方程解的长时间性态[D].北京:国防科学技术大学,2006.
    [90]汪永海.非自治无穷维动力系统的拉回吸引子存在性的研究[D].兰州:兰州大学,2008.
    [91]王自强.理性力学基础[M].北京:科学出版社,2000.
    [92]Coleman B.D., Noll W.. Foundations of linear viscoelasticity[J]. Rev.Mod.Phys.,1961, 33:239-249.
    [93]Dafermos C.M.. On abstract Volterra equations with applications to linear viscoelacticity [J]. J. Differential Equations,1970,7:554-569.
    [94]Fabrizio M., Morro A.. Mathematical problem in linear viscoelasticity[M]. Philadelphia: SIAM Studies in Applied Mathematics,1992.
    [95]Renardy M., Hrusa W.J., Nohel J.A.. Mathematical problems in visoelasticity[J]. Pitam Monographs and Surveys in Pure and Applied Mathematics[J].1987,35:37-39.
    [96]Rivera J.E.M., Naso M.G, Vegni F.M.. Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory[J]. J. Math.Anal.Appl.,2003, 286:692-704.
    [97]汪璇.带衰退记忆的方程整体解的长时间动力行为[D].兰州:兰州大学,2009.
    [98]Claudio G., Vittorino P., Elena V.. On the extensible viscoelastic beam[J]. Nonlinearity, 2008,21:713-733.
    [99]Ma Qiaozheng. Global attractors of strong solutions for the beam equations of memory type[J]. J. mathematical research and exposition,2007,27(2):307-315.
    [100]Zhou Shengfan. Kernel sections for viscoelasticity and thermoviscoelasticity[J]. Nonlinear Analysis,2003,55:351-380.
    [101]Li Hongyan, Zhou Shenfan. Dimension of the uniform attractor for a non-autonomous semilinear thermoelastic problem[J], Northeast. Math. J.,2009,24:337-353.
    [102]冯涛.非线性弹性杆系统的整体吸引子[D].太原:太原理工大学,2010.
    [103]吴奕飞.一类耦合非线性系统解的整体存在性和渐近性[D].广州:华南理工大学,2008.
    [104]李金峰.强阻尼非线性热弹耦合杆系统的全局吸引子[D].太原:太原理工大学,2010.
    [105]李红艳,陈双全,周盛凡.具有年粘弹性和热粘弹性方程组的全局周期吸引子[J].系统科学与数学,2008,28:1275-1282.
    [106]Colli P., Frigeri S., Grasselli M.. Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system[J]. J. Math.Anal.Appl.,2012,386:428-444.
    [107]Skiba Y.N.. On the existence and uniqueness of solution to problems of fluid dynamics on a sphere[J]. J. Math.Anal.Appl.,2012,388:627-644.
    [108]Dunca A.A.. On the existence of global attractors of the approximate deconvolution models of turbulence [J]. J. Math.Anal.Appl.,2012,389:1128-1138.
    [109]Wu H.. Long-time behavior for a nonlinear plate equation with thermal memory[J]. J. Math.Anal.Appl.,2008,348:650-670.
    [110]Munoz J.E., Naso M.G., Vegni F.M.. Asymptotic behavior of the energy for a class weakly dissipative second-order systems with memory[J]. J. Math.Anal.Appl.,2003, 286:692-704.
    [111]Fang S.M., Qin H., Guo B.L.. The existence of global attractor for Zakharov equations arising form Ion-acoustic modes[J]. Chin.Quart. J.of Math.,2011,26(3):470-474.
    [112]张瑞凤,寇汴闽.非线性光学中薛定谔型方程的整体吸引子[J].数学学报,2012,55(1):17-26.
    [113]赵文强,李杨荣.随机耗散Camassa-Hlom方程的吸引子[J].应用数学学报,2012,35(1):73-87.
    [114]Wang B.X.. Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems[J]. J. Differential Equations,2012,253: 1544-1583.
    [115]Filippo D., Vittorino P.. Strongly damped wave equations with critical nonlinearities[J]. Nonlinear Analysis,2012,75:5723-5735.
    [116]Luo H., Zhang Q.. Regularity of global attractor for the fourth-order reaction-diffusion equation[J]. Commum Nonlinear Sci Numer Simulat,2012,17:3824-3831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700