脉冲微分系统周期解存在性与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章,简述脉冲微分方程在种群系统与生命科学及神经网络系统中的研究发展状况;介绍本文问题产生的背景和本文的主要工作以及一些预备知识。
     在第二章的第一节,利用Mawhin连续定理研究一类有扩散、时滞、周期环境以及脉冲影响的n-斑块竞争系统正周期解的存在性,然后利用Lyapunov泛函方法和一些分析技巧讨论得到了该系统全局吸引的充分条件,最后讨论了所得结果的一些应用;第二节利用脉冲微分方程比较原理、一个重要引理和一些分析技巧,讨论了一类具有脉冲扩散与功能反应的捕食-食饵系统边值周期解的存在性、全局吸引性以及系统持续生存的充分条件。
     第三章利用Floquet理论和脉冲微分方程的微小扰动技巧,考虑了一类具有Ivlev-型功能反应且食饵有病的捕食-食饵系统在有杀虫控制、投放天敌等脉冲影响下的综合控制(IPM控制)策略问题,得到食饵灭绝周期解存在且全局吸引以及系统持续生存的充分条件;通过数值分析进一步说明了生态系统动力学行为的复杂性。
     第四章利用Mawhin连续定理讨论得到了一类具有变时滞与脉冲的微分方程周期解的存在性,利用一个重要引理与一些分析技巧,得到周期解的唯一性、全局吸引性以及该系统持续生存的充分条件;所得结果推广或改进了一些已有成果。
     第五章首先构造了一类具有变时滞与脉冲影响的细胞神经网络系统,利用Young不等式并通过构造合适的Lyapunov函数,讨论该模型存在周期解及指数稳定的充分条件;然后讨论一类有变时滞与脉冲影响的BAM神经网络系统,利用Mawhin连续定理与矩阵分析技巧得到该系统存在周期解的充分条件,利用Lyapunov泛函方法讨论了周期解的稳定性,得到了系统存在周期吸引子的充分条件;最后介绍了所得结果的一些应用。
This Ph.D. thesis is divided into five chapters and main contents are as follows:
     In Chapter 1, a survey to the developments of the existence and stability of periodic solutions of impulsive differential equations, impulsive predator-prey system and impulsive neural networks is given. Then the background of problems, the main results of this dissertation are introduced and some preliminaries are also summarized.
     In Chapter 2, firstly a class of one predator n-patch-prey model with diffu-sion, impulsive and delays are established. By using Mawhin continuation theorem, Lyapunov functional method and some analysis techniques, the sufficient condi-tions ensuring the existence of positive periodic solutions and global attractivity are obtained in section 2.1. Secondly, by using impulsive comparison theorem, an important lemma and some analysis techniques, the sufficient conditions of the existence of boundary periodic solution, global attractivity and the permanence for a predator-prey system with impulsive diffusion and functional response are obtained in section 2.2.
     In Chapter 3, an impulsive predator-prey system with Ivlev-type functional response and disease in the prey is considered. By using Floquet theory and Lyapunov functional, the existence and global attractivity of the prey-extinction periodic solution and the permanence of the system are studied. Finally, the complexity of the dynamical behaviors for the predator-prey system is showed by numerical analysis. It is important and valuable for IPM control.
     In Chapter 4, by using Mawhin continuation theorem, an important lemma and some analysis techniques, the sufficient conditions ensuring the existence of the periodic solution, global attractivity and the permanence of a generalized delayed differential system with impulses are obtained. The main results generalize or improve the previously known results.
     In Chapter 5, a class of neural networks with delays and impulses is considered in section 5.1. By using Young inequality and constructing Lyapunov functional, Sufficient conditions ensuring the existence and exponential stability of periodic solutions are obtained. Next, a class of BAM neural networks with time-varying delays and impulses is considered in section 5.2. The existence and stability of periodic solution are studied by using continuation theorem, M-matrix theory and Lyapunov functional. Finally, some applications and examples are given to show the effectiveness of the main results.
引文
[1]Mil'man V D, Myshkis A D. On the stability of motion in Nonlinear Mechanics. Sib. Math. J.,1960,32:233-237.
    [2]Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore:World Scientific,1989.
    [3]Samoolenko A M, Perestyuk N A. Differential Equations with Impulsive Effects. ViskaSkola,1987.
    [4]Ballinger G, Liu X Z. Existence, uniqueness results for impulsive delay differential equations. Appl. Anal.,2000,74:71-93.
    [5]Fu X L, Yan B Q. The global solutions of impulsive retarded functional differential equations. Int. J. Appl. Math.,2000,3:359-363.
    [6]Fu X L, Yan B Q. The global solutions of impulsive functional differential equations in Banach spaces. Nonlinear Studies,2000,1:1-17.
    [7]闫宝强,傅希林.具有无限时滞脉冲泛函微分方程解的存在性.中国学术期刊文摘,1999。
    [8]傅希林,闫宝强,刘衍胜.《脉冲微分系统引论》.北京:科学出版社,2005。
    [9]Bainov D D, Simeonov P S. System with impulse Effect:Stability, Theory and Applications. New York:Halsted Press,1989.
    [10]Huo H F. Existence of positive periodic solutions of a neutral delay Lotka-Volterra system with impulses. Comput. Math. Appl.,2004,48:1833-1846.
    [11]Nieto J J, Rodriguez-Lopez R. Boundary value problems for a class of impulsive functional equations. Comp. Math. Appl.,2008,55:2715-2731.
    [12]Li Y K. Positive periodic solutions of nonlinear differential systems with impulses. Nonlinear Anal.,2008,68:2389-2405.
    [13]Luo Z G, Shen J H. Stability results for impulsive functional differential equations with infinite delays. J. Comput. Appl. Math.,2001,131:55-64.
    [14]Ouahab A. Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay. Nonlinear Anal.,2007,67:1027-1041.
    [15]Liu X S, Li G, Luo G L. Positive periodic solution for a two-species ratio-dependent predator-prey system with time delay and impulse. J. math. Anal. Appl.,2007,325: 715-723.
    [16]Yan J R, Zhao A M, Yan W P. Existence and global attractivity of periodic solution for an impulsive delay differential equation with Allee effect. J. Math. Anal. Appl., 2005,309:489-504.
    [17]Yan J R. Existence and global attractivity of positive periodic solution for an im-pulsive Lasota-Wazewska model. J. Math. Anal. Appl.,2003,279:111-120.
    [18]Xia Y H. Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition system with the effect of toxic substance. Nonlinear Anal. RWA,2007, 8:204-221.
    [19]Shen J H, Li J L, Wang Q. Boundedness and periodicity in impulsive ordinary and functional differential equations. Nonlinear Anal.,2006,65:1986-2002.
    [20]Li W T, Huo H F. Existence and global attractivity of positive periodic solutions of functional differential equations with impulses. Nonlinear Anal.,2004,59:857-877.
    [21]Liu X N, Chen L S. Global dynamics of the periodic Logistic system with periodic impulsive perturbations. J. Math. Anal. Appl.,2004,289:279-291.
    [22]Dou J W, Chen L S, Li K T. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction.2004, 4:555-562.
    [23]陈兰荪,王东达,杨启昌.阶段结构种群动力学模型.北华大学学报,2000,1:185-191.
    [24]Liu S Q, Chen L S, Agarwal R. Recent progress on stage-structured population dynamics. Math. Comput. Model.,2002,36:1319-1330.
    [25]Xiang D J, Liu B. Global attractivity in delay differential equations with impulsive effects. J. Biomath.,2003,18:146-158.
    [26]唐先华,庾建设Logistic型脉冲泛函微分方程零解的全局吸引性.数学学报,2002,45:941-952。
    [27]张志红,彭庆军.具有脉冲的红血球补充模型的全局吸引性.北华大学学报,2003,4:93-97。
    [28]Wang W D, Ma Z E. Harmless delays for uniform persistence. J. Math. Anal. Appl., 1991,158:256-268.
    [29]刘贤宁.一个离散单种群扩散模型的全局渐近稳定性.西南师范大学学报,1998,26:629-633.
    [30]Wang W D, Chen L S, Lu Z Y. Global stability of a population dispersal in a two-patch environment. Dyna. Sys. Appl.,1997,6:207-216.
    [31]Wang W D, Fergola P, Tenneriello C. Global attractivity of periodic solutions of populatiuon models. J. Math. Anal. Appl.,1997,211:498-511.
    [32]Takeuchi Y. Global Dynamical properties of Lotka-Volterra systems. Singa-pore:World Scientific,1996.
    [33]Teng Z, Lu Z. The effects of dispersal on single-species nonautonomous dispersal models with delays. J. Math. Biol.,2001,42:439-454.
    [34]Zeng G, Chen L, Chen J. Persistence and periodic orbits for two-species nonau-tonomous diffusion Lotka-Volterra models. Math. Comp. Model.,1994,20:69-80.
    [35]Cui J, Chen L, Wang W D. The effects of dispersal on population growth with stage-structure. Comp. Math. Appl.,2000,39:91-102.
    [36]陈兰荪.《数学生态学模型与研究方法》.北京:科学出版社,1988.
    [37]马知恩.《种群生态学的数学建模与研究》.合肥:安徽教育出版社,1996.
    [38]Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Popula-tion Dynamics. Dordrecht:Kluwer Academic Publishers,1992.
    [39]Liu X Z, Rohlf K. Impulsiuve control of a Lotka-Volterra system. IMA J. Math. Cont. Infor.,1988,15:269-284.
    [40]Ballinger G, Liu X. Permanence of population growth models with impulsive effects. Math. Comput. Model.,1997,26:59-72.
    [41]陈兰荪,陈健.《非线性生物动力系统》.北京:科学出版社,1993.
    [42]陆征一,周义仓.《数学生物学进展》.北京:科学出版社,2006.
    [43]Panetta J C. A mathematical model of periodically pulsed chemotherapy:tumor recurrence and metastasis in a competition environment. Bull. Math. Biol.,1996, 58:425-447.
    [44]Lakmeche A, Arino O. Bifucation of nontrivial periodic solutions of impulsive differ-ential equations arising chemotherapeutic treatment. Dyna. Cont. Disc. Impul. Syst., 2000,7:265-287.
    [45]Liu X N, Chen L S. Extinction and permanence of a Lotka-Volterra predator-prey system with impulsive effects on the predators. Math. Biosci.,1999,9:288-298.
    [46]Liu X N, Chen L S. Complex dynamics of Holling type II Lotka-Volterra predator-prey system witn impulsive perturbations on the predator. Chaos Solit. Fract.,2003, 16:311-320.
    [47]Tang S Y, Chen L S. Modelling and analysis of integrated pest management strategy. Disc. Conti. Dyna. Syst. Seties B,2004,4:759-768.
    [48]Tang Y S, Chen L S. The periodic predator-prey Lotka-Volterra model with impul-sive effect. J. Mech. Medi. Biol.,2002,2:267-296.
    [49]Liu B, Zhang Y J, Chen L S. Dynamic complexitiesof a Holing I predator-prey model concerning periodic biological and chemical control. Chaos Solit. Fract.,2004, 22:123-134.
    [50]Hui J, Chen L S. Existence of positive periodic solution of periodic time-dependent predator-prey system with impulsive effects. Acta. Math. Sinica.,2004,20:423-432.
    [51]Shulgin B. Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol., 1998,60:1-26.
    [52]Hui J, Chen L S. Impulsive vaccination of SIR epidemic models with nonlinear incidence rates. Disc. Cont. Dyna. Syst. Series B,2004,4:595-605.
    [53]吕淑娟.一级并行米氏消除药物最优给药方案的数值方法.生物数学学报,1992,7:127-132。
    [54]Funasaki E, Kot M. Invasion and chaos in a periodically pulsed Mass-Action Chemo-stat. Theor. Popul. Biol.,1993,44:203-224.
    [55]Tang S Y, Chen L S. Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol.,2002,44:185-199.
    [56]Mcculloch W, Pitts W. A logical calculus of the ideas immanent in neuron activity. Bull. Math. Biophys.,1943,5:115-133.
    [57]. Hopfield J. Neural networks and physical systems with emergent collective compu-tational abilities. Proc. Nat. Acad. Sci., USA, Biophysics,1982,79:2554-2558.
    [58]Hopfield J. Neurons with graded response collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. USA, Biophysics,1988,81:3088-3092.
    [59]Kosko B. Constructing an associative memory. Byte 1987,137-144.
    [60]Kosko B. Bidirectional associative memories. IEEE Trans. Syst. Man Cybernetics, 1988,18:49-60.
    [61]Cao J. On stability of delayed cellular neural networks. Phys. Lett. A,1999,261: 303-308.
    [62]Cao J, Wang J. Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE Tran. Circ. Syst. Ⅰ,2003,50:34-44.
    [63]Huang H, Cao J. On global asymptotic stability of recurrentneural networks with time-varying delays. Appl. Math. Comput.,2003,142:143-154.
    [64]Joy M. On the global convegence of a class oc functional differential equations with applications in neural network theory. J. Math. Anal. Appl.,1999,232:61-81.
    [65]Zhang Y. Absolute periodicity and absolute stability of delayed neural networks. IEEE Trans. Syst. Ⅰ,2002,49:256-261.
    [66]梁学斌, 吴立德Hopfield型神经网络的全局指数稳定性.中国科学A,1995,25:523-532.
    [67]Gopalsamy K, He X. Stability in asymmetric Hopfield nets with transmission delays. Phys. D,76:344-358.
    [68]Arik S. An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans. Neural Networks,2002,13:1239-1242.
    [69]Arik S. Global robust stsbility of delayed neural networks. IEEE Trans. Circuits Syst. I,2003,50:156-160.
    [70]Guan Z, Chen G. On the equilibria, stability and instability of Hopfield neural networks. IEEE Trans. Neural Networks,2000,11:534-540.
    [71]Hsu C, Li G. Small horseshoe of cellular neural networks. Int. J. Bifur. Chaos,2000, 10:2119-2127.
    [72]Dong Q, Matsui K, Huang X. Existence and stability of periodic solutions for Hop-field neural network equations with periodic input. Nonlinear Anal.,2002,49:471-479.
    [73]Guo S, Huang L, Dai B X, Zhang Z. Global existence of periodic solutions of BAM neural networks with variable coefficients. Phys. Lett. A,2003,317:97-106.
    [74]Jiang H, Li Z, Teng Z. Boundedness and stability for nonautonomous cellular neural networks with delay. Phys. Lett. A,2003,306:313-325.
    [75]Liang J, Cao J. Boundedness and stability for recurrent neural networks with vari-able coefficients and time-varying delays. Phys. Lett. A,2003,318:53-64.
    [76]Levin J A. Dispersion and population interaction. Amer. Nat.,1974,108:207-228.
    [77]Kishimoto K. Coexistence of any number of species in the Lotka-Volterra competi-tion system over two-patches. Theoret. Population Biol.,1990,38:149-158.
    [78]Takeuchi Y. Confict between the need to forage and the need to avoid competition: persistence of two-species model. Math. Biosci.,1990,99:181-184.
    [79]Zeng G, Chen L. Persistence and periodic orbits for two-species nonautonomous diffusion Lotka-Volterra models. Math. Comput Modelling,1994,20:69-80.
    [80]Gopalsamy K. Stability and Oscillation in Delay Differential Equation of Population Dynamics. Kluwer Academic Publishers, Dordrecht,1992.
    [81]Xu R, Chen L. Persistence and stability for two-species ration-dependent predator-prey system, with time delay in a two-patch environment. Comput. Math. Appl.,2000, 40:577-588.
    [82]Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York,1993.
    [83]Li Y K. On a periodic neutral delay Lotka-Volterrra system. Nonlinear Anal.,2000, 39:767-778.
    [84]Zhang J, Chen L, Chen X. Persistence and global stability for two-species nonau-tonomous competition Lotka-Volterrra patch-system with time delay. Nonlinear Anal., 1999.37:1019-1028.
    [85]Zhang Z, Wang Z. Periodic solution for a two-species nonautonomous competition Lotka-Volterra patch system with time delay. J. Math. Anal. Appl.,2002,265:38-48.
    [86]Chen S, Wang T, Zhang J. Positive periodic solution for non-autonomous com-petition Lotka-Volterra patch system with time delay. Nonlinear Anal. RWA,2004, 5:409-419.
    [87]Panetta J. A mathematical model of periodically pulsed chemotherapy:tumor re-currence and metastasis in a competition environment. Bull. Math. Biol.,1996,58:425-447.
    [88]Gaines R, Mawhin J. Coincidence Degree and Nonlinear Differential Equations. Berlin:Springer-Verlag,1977.
    [89]Chen F. On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay. J. Comp. Appl. Math.,2005,180:33-49.
    [90]Barbalat I. Systems d'equations diffferential d'oscillations nonlinearies. Rev Roum. Math. Pure Appl.,1959,4:267-270.
    [91]Xu R, Chaplain M, Davidson F. Periodic solution of a Lotka-Volterra predator-prey model with dispersion and time delay. Appl. Math. Comput.,2004,148:537-560.
    [92]Yan J, Zhao A. Oscillation and stability of linear impulsive delay differential equa-tion. J. Math. Anal. Appl.,1998,227:187-194.
    [93]Dong L, Chen L, Shi P. Periodic solutions for a two-species nonautonomous com-petition system with diffusion and impulses. Chao. Soli. Fract.,2007,32:1916-1926.
    [94]Lakmeche A, Arino 0. Bifurcation of nontrivial periodic solutions of impulsive dif-ferential equations arising chemotherapeutic treatment. Dyn. Contin. Discrete Impul. Syst.,2000,7:265-287.
    [95]Pang G P, Chen L S. A delayed SIRS epidemic model with pulse vaccination. Chaos Solit. Fract.,2007,34:1629-1635.
    [96]Tang S Y, Chen L S. Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol., 2002,44:85-99.
    [97]Zhang X, Shuai Z, Wang K. Optimal impulsive harvesting policy for single popula-tion. Nonlinear Anal.,2003,4:639-651.
    [98]Xu R, Ma Z E. The effect of dispersal on the permanence of a predator-prey system with time delay. Nonlinear Anal. RWA,2008,9:354-369.
    [99]Shen J H, Li J L. Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal. RWA,2009,10:227-243.
    [100]Cai L M, Li X Z, Yu J Y. Zhu G T. Danamics of a nonautonomous predator-prey dispersion-delay system with Beddington-DeAngelis functional response. Chaos Solit. Frac.,2009,40:2064-2075.
    [101]Hui J, Chen L S. A single species model with impulsive diffusion. Acta Math. Appl. Sini. English series,2005,21:43-48.
    [102]Wang L M, Chen L S. Impulsive diffusion in single species model. Chaos Solit. Fract.,2007,33:1213-1219.
    [103]Jiao J J, Yang X S, Cai S H, Chen L S. Dynamical analysis of a delayed predator-prey model with impulsive diffusion between two patches. Math. Comput. Simul., 2009,80:522-532.
    [104]Back H K, Kim S D, Kim P. Permanence and stability of an Ivlev-type predator-prey system_with impulsive control strategies. Math. Comp.Model.,2009,50:1385-1393.
    [105]Jiao J, Chen L, Cai S. A delayed stage-structured Holling II predator-prey model with mutual interference and impulsive perturbations on predator. Chaos Solit. Frac., 2009,40:1946-1955.
    [106]Wang W, Lin Y, Lin X. The dynamical complexity of an impulsive Watt-type prey-predator system. Chaos Solit. Fract.,2009,40:731-744.
    [107]Wang X Q, Wang W M, Lin X L. Dynamics of a two-prey one-predator system with Watt-type functional response and impulsive control strategy. Chaos Solit. Fract., 2009,40:2392-2404.
    [108]Li Z X, Wang T Y, Chen L S. Periodic solution of a chemostat model with Beddington-DeAnglis uptake function and impulsive state feedback control. J. Theor. Bio.,2009,261:23-32.
    [109]Baek H, Kim S, Kim P. Permanence and stability of an Ivlev-type predator-prey system with impulsive control strategies. Math. Comput. Model.,2009,50:1385-1393
    [110]Vayenas D V, Aggelis G, Tsagou V, Pavlou S. Dynamics of a two-prey-one-predator system with predator switching regulated by a catabolic repression control-like mode. Ecological Model.,2005,186:345-357
    [111]Liu K Y, Meng X Z, Chen L S. A new stage structured predator-prey Gomportz model with time delay and impulsive perturbations on the prey. Appl. Math. Comput., 2008,196:705-719.
    [112]Meng X Z, Chen L S, Li Q X. The dynamics of an impulsive delay predator-prey model with variable coefficients. Appl. Math. Comput.,2008,198:361-374.
    [113]Pei Y Z, Liu S Y, Li C G, Chen L S. The dynamics of an impulsive delay SI model with variable coefficients. Appl. Math. Model.,2009,33:2766-2776.
    [114]Wang W M, Wang H L, Li Z Q. Chaotic behavior of a three-species Beddington-type system with impulsive perturbations. Chaos Soli. Frac.,2008,37:438-443.
    [115]Wang X Q, Wang W M, Lin X L. Chaotic behavior of a Watt-type predator-prey system with impulsive control strategy. Chaos Soli. Frac.,2008,37:706-718.
    [116]Shi R Q, Chen L S. A predator-prey model with disease in the prey and two impulses for integrated pest management. Appl. Math. Model.,2009,33:2248-2256.
    [117]Doutt R L, DeBach P. Biological Control of Insect Pests and Weeds. New York:Reinhold Publishing Corporation,1964.
    [118]Falcon L A. Problem associated with the use of arthropod viruses in pest control. Annu. Rev. Entomol., 1976,21:305-324.
    [119]Burges H D, Hussey N W. Microbial Control of Insects and Mites. New York: Academic Press,1971.
    [120]Su H, Dai B X, Chen Y M, Li K W. Dynamic complexities of a predator-prey model with generalized Holling-type III functional response and impulsive effects. Comp. Math. Appl.,2008,56:1715-1725.
    [121]Song X Y, Xiang Z Y. The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects. J. Theo. Biol., 2006,242:683-698.
    [122]Wu X J, Huang W T. Dynamics analysis of a one-prey multi-predator impulsive system with Ivlev-type functional. Ecological Moddelling,2009,220:774-783.
    [123]Cost J. Comparing predator-prey models qualitatively and quantitatively with eco-logical time-series data. PhD thesis, Paris-Grignon, Institute National Agronomique, 1998.
    [124]陈兰荪,宋新语等.《生态学中的数学模型与方法》.成都:四川科技出版公司,2003.
    [125]邢春波,桂占吉Periodic solution of a delayed predator-prey system governed by impulsive differential equation with Michaelis-Menten type functional response海南师范大学学报(自然科学版),2008,3:240-245.
    [126]齐新社,窦霁虹,杨东升,李锋Persistence and periodic solution for the nonau-tonomous predator-prey system with holling functional response纯粹数学与应用数学,2008,3:529-533.
    [127]Zhang S, Chen L S. A Holling Ⅱ functional response food chain model with im-pulsive perturbations. Chaos Soli. Frac.,2005,24:1269-1278.
    [128]Liu B, Teng Z D, Chen L S. Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy. J. Comp. Appl. Math.,2006, 193:347-362.
    [129]李祖雄,黄健民,陈兰荪.Persistence and Periodicity of a Predator-Prey System with Holling-Ⅲ Functional Response and Impulsive Effect. 西南大学学报(自然科学 版),2008,8:13-18.
    [130]Liu B, Chen L S, Zhang Y. The effects of impulsive toxicant input on a population in a polluted environment. J. Biol. Syst.,2003, 11:265-274.
    [131]Wang F, Zhang S, Chen L, Sun L. Bifurcation and complexity of Monod type predator-prey system in a pulsed chemostat. Chaos Soli. Fract.,2006,27:447-458.
    [132]Li Z, Wang W, Wang H. The dynamics of a Beddington type system with impulsive control strategy. Chaos Soli. Frac.,2006,29:1229-1239.
    [133]Wang W, Wang H, Li Z. The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy. Chaos Soli. Fract.,2007,32:1772-1785.
    [134]王晓琴.含Watt-型功能反应的捕食-食饵系统的动力学分析.硕士论文,中国长春:东北师范大学,2005.
    [135]Wang X Q, Wang W M, Lin X L. Dynamics of a two-prey one predator system with Watt-type functional response and impulsive control strategy. Chaos Solit. Fract. 2009,40:2392-2404.
    [136]Wang X Q, Wang W M, Lin X L. Chaotic behavior of a Watt-type predator-prey system with impulsive control strategy. Chaos Solit. Fract.,2008,37:706-718.
    [137]Wang W M, Wang X Q, Lin Y Z. Complicated dynamics of a predator-prey system with Watt-type functional response and impulsive control strategy. Chaos Soli. Frac., 2008,37:1427-1441.
    [138]Feng J W, Chen L S. Global asymptotic behavior for the competing predator of the Ivlev type. J. Math. Anal. Appl.,2000,13:85-88.
    [139]Ling L, Wang W M. Dynamics of a Ivlev-type predator-prey system with constant rate harvesting. Chaos Solit. Fract.,2009,41:2139-2153.
    [140]Sugie J. Two-parameter bifurcation in a predator-prey system of Ivlev type. J. Math. Anal. Appl.,1998,217:350-371.
    [141]Alzabut J 0, Abdeljawad T. On existence of a globally attractive periodic solution of impulsive delay logarithmic population model. Appl. Math. Comp.,2008,198:463-469.
    [142]Saker S H, Alzabut J O. Periodic solution,global attractivity and oscillation of an impulsive delay host-macroparasite model. Math. Comp. Model.,2007,45:531-543.
    [143]Liu X L, Takeuchi Y. Periodicity and global dynamics of an impulsive delay Lasota-Wazewska model. J. Math. Anal. Appl.,2007,327:326-341.
    [144]Gyori I, Ladas G. Oscillation Theory of Delay Differential Equation with Applica-tions. Oxford:Clarendon,1991.
    [145]Kuang Y. Delay Differential Equation with Application in Population Dynamics. Boston:Academic Press,1993.
    [146]Kubiaczyk I, Saker S H. Oscillation and stability in nonlinear delay differential equations of population dynamics. Math. Comput. Moddelling,2002,35:295-301.
    [147]Saker S H, Alzabut J O. Existence of periodic solutions,global attractivity and oscillation of impulsive delay population model. Nonl. Anal. RWA,2007,8:1029-1039.
    [148]Zhang Y P. Stationary oscillation for cellular neural networks with time delays and impulses. Math. Comput. Simul.,2009,79:3174-3178.
    [149]Liang R, Shen J. Uniform stability theorems for delay differential equations with impulses. J. Math. Anal. Appl.,2007,326:62-74.
    [150]Ding X, Jiang J. Periodicity in a generalized semi-ratio-dependent predator-prey system with time delays and impulses. J. Math. Anal. Appl.,2009,360:223-234.
    [151]Chen A, Huang L H, Cao J D. Existence and stability of almost periodic solution for BAM neural networks with delays. Appl. Math. Comput.,2003,137:177-193.
    [152]Sun C Y, Feng C B. Exponential periodicity and stability of delayed neural net-works. Math. Comp. Simu.,2004,66:469-478.
    [153]Zhang J, Gui Z J. Periodic solutions of nonautonomous cellular neural networks with impulses and delays. Nonl Anal. RWA,2009,10:1891-1903.
    [154]Cao J D. New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys. Lett. A,2003,307:136-147.
    [155]Zhou J, Liu Z, Chen G. Dynamics of periodic delayed neural networks. Neural Networks,2004,17:87-101.
    [156]Sun J T, Wang Q G, Gao H Q. Periodic solution for nonautonomous cellular neural networks with impulses. Chaos Soli. Frac.,2009,40:1423-1427.
    [157]Han M A, Bi P. Existence and bifurcation of periodic solutions of high-dimensional delay differential equations. Chaos Solit. Fract.,2004,20:1027-1036.
    [158]Guo S J, Huang L H, Dai B X, Zhang Z Z. Global existence of periodic solutions of BAM neural networks with variable coefficients. Phys. Lett. A,2003,317:97-106.
    [159]Gu H B, Jiang H J, Teng Z D. Stability and periodicity in high-order neural networks with impulsive effects. Nonlinear Anal.,2008,68:3186-3200.
    [160]Wang H, Liao X F, Li C D. Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay. Chaos Solit. Frac.,2007, 33:1028-1039.
    [161]Jiang H J, Teng Z D. Global exponential stability of cellular neural networks with time-varying coefficient and delays. Neural Networks,2004,17:1415-1425.
    [162]Jiang H J, Cao J D. Global exponential stability of periodic neural networks with time-varying delays. Neurocomputing,2006,70:343-350.
    [163]Hong X, Yan K M, Wang B Y. Existence and global exponential stability of periodic solution for delayed high-order Hopfield-type neural networks. Phys. Lett. A,2006, 352:341-349.
    [164]Li Y K. Global exponential stability of BAM neural networks with delays and impulses. Chaos Solit. Fract.,2005,24:279-285.
    [165]Li Y K, Liu P. Existence and stability of periodic solutions for BAM neural net-works withdelays. Math. Comput. Model.,2004,40:757-770.
    [166]Yang Y Q, Cao J D. Stability and periodicity in delayed cellular neural networks with impulsive effects. Non. Anal. RWA,2007,8:362-374.
    [167]Gui Z J, Ge W G. Existence and uniqueness of periodic solutions of nonautonomous cellularneural networks with impulses. Phys. Lett. A.2006,354:84-94.
    [168]Gui Z J, Ge W G. Periodic solutions of nonautonomous cellular neural networks with impulses. Chaos Solit. Fract.,2007,32:1760-1771.
    [169]Gui Z J, Yang X.S, Ge W G. Existence and global exponential stability of periodic solutions of recurrent cellular neural networks with impulses and delays. Math. Comp. Simu., 2008,79:14-29.
    [170]Zhou T J, Chen A, Zhou Y Y. Existence and global exponential stability of pe-riodic solution to BAM neural networks with periodic coefficients and continuously distributed delays. Phys. lett. A,2005,343:336-350.
    [171]Zhao H Y. Global stability of bidirectional associative memory neural networks with distributed delays. Phys. Lett. A,2002,297:182-190.
    [172]Li C, Liao X, Zhang R. Delayed-dependent exponential stability analysis of bidi-rectional associative memory neural networks with time delays. Chaos Soli. Fract. 2005,24:1119-1134.
    [173]Song Q, Cao J. Global exponential stability and existence of periodic solutions in BAM networks with delays and reaction diffusion terms. Chaos Soli. Fract.,2005,23: 421-430.
    [174]Cao J, Wang L. Periodic oscillatory solution of bidirectional associative memory networks with delays. Phys. Rev E,2006,61:1825-1828.
    [175]Chen A, Cao J, Huang L. Exponential stability of BAM neural networks with transmission delays. Neurocomputing,2004,57:435-454.
    [176]Zhang Y. Global exponential stability and periodic solutions of delayed Hopfield neural networks. Int. J. Syst. Sci.,1996,27:227-231.
    [177]Zhou Q, Sun J, Chen G. Global exponential stability and periodic oscillations of reaction-diffusion BAM neural networks with periodic coefficients and general delays. Intern. J. Bifur. chaos,2007,17:129-142.
    [178]Cao J. Global asymptotical stability of delayed Bi-directional associative memory networks. Appl. Math. Comput.,2003,142:333-339.
    [179]Wu R C. Exponential convergence of BAM neural networks with time-varying coefficients and distributed delays. Nonlinear Anal. RWA,2010,11:562-573.
    [180]Tan M J, Tan Y. Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays. Appl. Math. Model.,2009,33:373-385.
    [181]Zhang Y, Pheng H, Vadakkepat P. Absolute periodicity and absolute stability of delayed neural networks. IEEE Trans. Circuits Syst.,2002,49:256-261.
    [182]Gu H B, Jiang H J, Teng Z D. Existence and globally exponential stability of periodic solution of BAM neural networks with impulses and recent-history distributed delays. Neurocomputing,2008,71:813-822.
    [183]Li Y T, Wang J Y. An analysis on the global exponential stability and the ex-istence of periodic solutions for non-autonomous hybrid BAM neural networks with distributed delays and impulses. Comput. Math. Appl.,2008,56:2256-2267.
    [184]Li Y, Xing W, Lu L. Existence and global exponential stability of periodic solution of a class of neural networks with impulses. Chaos Solit. Fract.,2006,27:437-445.
    [185]Li Y, Lu L. Global exponential stability and existence of periodic solution of Hopfield-type neural networks with impulses. Phys. Lett. A,2004,333:62-71.
    [186]Bai C Z. Global exponential stability and existence of periodic solution of Cohen-Grossberg type neural networks with delays and impulses. Nonlinear Anal. RWA,2008, 9:747-761.
    [187]Yang X S. Existence and global exponential stability of periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks with delays and impulses. Neu-rocomputing,2009,72:2219-2226.
    [188]Liu Z, Liao L. Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays. J. Math. Anal. Appl.,2004,290: 247-262.
    [189]Wang H, Liao X F, Li C D. Existence and exponential stability of periodic solution of BAM neural networks with impulses and time-varying delay. Chaos Solit. Fract., 2007,33:1028-1039.
    [190]Yang X S, Cui X Z, Long Y. Existence and global exponential stability of periodic solution of a cellular neural networks difference equation with delays and impulses. Neural Networks,2009,22:970-976.
    [191]周进,刘曾荣,向兰.具有时滞的双向联想记忆(BAM)的神经网络的全局动力学行为.应用数学和力学,2005,26:300-308.
    [192]Zhang N, Dai B X, Qian X Z. Periodic solutions for a class of higher-dimension functional differential equations with impulses. Nonlinear Anal. TMA,2008,68:629-638.
    [193]张丽娟,时宝.变时滞BAM神经网络的全局指数稳定性.数学的实践与认识,2008,38:148-153.
    [194]Chen J, Cui B T. Impulsive effects on global asymptotic stability of delay BAM neural networks. Chaos Solit. Fract.,2008,38:1115-1125.
    [195]Samidurai R, Sakthivel R, Anthoni S M. Global asymptotic stability of BAM neural networks with mixed delays and impulses. Appl. Math. Comput.,2009,212:113-119.
    [196]Zhou Q H. Global exponential stability of BAM neural networks with distributed delays and impulses. Nonlinear Anal. RWA,2009,10:144-153.
    [197]Mohamad S, Gopalsamy K, Acka H. Exponential stability of artificial neural net-works with distributed delays and large impulses. Nonl. Anal. RWA,2008,9:872-888.
    [198]Huang Z, Xia Y. Exponential periodic attractor of impulsive BAM networks with finite distributed delays. Chaos Solit. Fract.,2009,39:373-384.
    [199]Richard S Varga. Matrix Iterative Analysis. Singapore:Springer Press,2004.
    [200]Fang B, Zhou J, Li Y. Matrix Theory. Beijing:Tsinghua University Press and Springer Press,2004.
    [201]Liu Z, Tan R, Chen L. Global stability in a periodic delayed predator prey system. Appl. Math. Comput.,2007,186:389-403.
    [202]Lu S, Ge W. Periodic solutions for a kind of second order differential equation with multiple deviating arguments. Appl. Math. Comput.,2003,146:195-209.
    [203]Rudin W. Real and Complex Analysis. New-York:McGraw-Hill, 1987.
    [204]郭大钧.《非线性泛函分析》.济南:山东科学技术出版社,2002.
    [205]Beckenbach E F, Bellman R. Inequalities. Berlin:Springer,1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700