用户名: 密码: 验证码:
IBS-D肝郁脾虚型病证结合大鼠模型的建立与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肠易激综合征(irritable bowel syndrome, IBS)是一种以腹痛或腹部不适伴排便习惯改变和(或)粪便性状改变的功能性肠病,该病缺乏可解释症状的形态学改变和生化异常,其患病率逐年增高,与精神心理因素和感染因素密切相关。腹泻型肠易激综合征(IBS-D)是我国IBS最常见的类型,其发病机制复杂,包括内脏感觉过敏、肠道动力增强、脑肠作用异常、神经-内分泌-免疫网络异常等。近年来对IBS-D发病机制的研究逐渐深入到了分子水平,但还比较片面。中医学认为肝郁脾虚是其基本病机,肝郁脾虚证是其最主要的证型。西药作用靶点单一,难以解决IBS-D复杂的临床症状,中药复方具有多靶点作用整体治疗的优势。目前对IBS-D动物模型的研究尚处于探索阶段,其造模方法还不成熟,动物模型稳定性欠佳,深入全面研究IBS-D的发病机制需要建立一种稳定的重复性好的动物模型。进一步建立IBS-D肝郁脾虚型病证结合动物模型有利于研究中药复方的作用机理,对于开发新药,发挥中医药治疗IBS-D的优势具有推动作用。
     第一部分:IBS-D大鼠模型制作方法的探索
     目的:探索建立IBS-D大鼠模型的理想制作方法
     材料和方法:本部分研究采用新生雌性SD大鼠造模,分为正常对照组、番泻叶高剂量组、中剂量组、低剂量组、高乳糖饲料组、醋酸灌肠组和5-HT腹腔注射组,每组10只。除正常组外,其余各组大鼠采用新生期母子分离法建立内脏高敏感模型,即出生后第2-14天,每天与母鼠分离3h,2月后选择体重大于250g的大鼠进行致泻造模。番泻叶高剂量组给予番泻叶煎剂4.5g/kg、中剂量组给予3g/kg、低剂量组给予2g/kg灌胃,灌胃体积为10ml/kg,连续7天,给予普通饲料喂养;高乳糖组采用高乳糖饲料喂养,7天后换用普通饲料;醋酸灌肠组给予4%的醋酸灌肠1ml,灌肠1次,普通饲料喂养,此后不做任何处理;5-HT腹腔注射组给予5-HT2.1mg/kg腹腔注射,连续7天,普通饲料喂养;正常组不给于任何处理。观察各组大鼠造模期间的腹泻率,造模后1周每天的大便积分(硬便1分,软便2分,不成形便3分),造模前后的体重增长情况以及近端结肠的病理组织学变化。
     结果:(1)腹泻率:番泻叶高剂量组(4.5g/kg)、高乳糖饲料组和醋酸灌肠组大鼠腹泻率均为100%,其余各组均未出现腹泻。(2)体重增长量:与正常组大鼠相比,除番泻叶低剂量组大鼠体重无明显变化外,其余各组体重增长量均显著降低,具有显著性差异(P<0.01),其中高乳糖饲料组和醋酸灌肠组大鼠体重出现明显的负增长。(3)大便积分:造模后番泻叶高剂量组和醋酸灌肠组大鼠6天内的平均大便积分显著高于正常组,具有显著性差异(P<0.05,P<0.01)。(4)近端结肠病理:高乳糖组可见淋巴细胞、中性粒细胞和嗜酸性粒细胞浸润,细胞间质轻度水肿;醋酸灌肠组部分结肠与腹腔组织粘连、增厚,结肠缩短,近端结肠可见粘膜轻度充血,绒毛变钝,其余各组未见异常。
     结论:(1)母子分离+适当剂量的番泻叶灌胃是复制IBS-D动物模型较为合理的造模方法。(2)基于大便基本特征和病理组织学改变是判定IBS-D动物模型是否成功的重要依据之一。
     第二部分:IBS-D肝郁脾虚型病证结合大鼠模型的建立与评价
     目的:建立IBS-D肝郁脾虚型病证结合大鼠模型。
     材料和方法:本部分研究采用新生SD雄性大鼠造模,分为正常组、正常束缚组、母子分离组、分离+束缚组(模型组)和以方测证组,每组20只大鼠。基于第一部分研究结论选择母子分离+番泻叶灌胃复制IBS-D大鼠模型,采用慢性束缚应激复制肝郁脾虚证候模型,将二者叠加建立IBS-D肝郁脾虚型病证结合大鼠模型。分三步造模,第一步:正常组和正常束缚组大鼠新生期母子不分离,其余各组于出生后第2-14天,每天与母鼠分离3h;第二步:各组大鼠2月龄时,正常组和母子分离组不处理,其余各组采用自制束缚架,束缚肩部和腹部,使其固定不动,每天束缚3h,连续3周;第三步:束缚造模期第2周开始每天上午9点给予以方测证组大鼠灌服痛泻要方煎剂(3g/kg,10ml/kg),其余各组灌服生理盐水(10ml/kg),第3周开始,正常束缚组、母子分离组和模型组每天上午9点灌服生理盐水,下午4点灌服番泻叶煎剂(4.5g/kg,10ml/kg),乙方测证组上午灌服痛泻要方煎剂,下午灌服番泻叶煎剂,正常对照组上下午均灌服生理盐水。从宏观疾病特征、宏观证候特征和微观生物学指标三个方面对模型进行评价。宏观疾病特征评价方法:束缚造模前后检测各组大鼠的内脏敏感性(痛觉阈值)、测评束缚期间和造模后各组大鼠的大便积分(计分方法同前)。宏观证候特征评价方法:肝郁的评价于束缚造模期前后观察各组大鼠旷场行为学、糖水偏好率、悬尾不动时间,脾虚的评价通过观察各组大鼠在束缚期间的体重增长情况以及造模后的进食量。微观生物学指标评价:检测血清D-木糖、5-HT、BDNF、IgA、 IgG含量;采用流式细胞仪分析血液和胸腺组织的T淋巴细胞亚群分布,比较各组大鼠的脾脏指数;采用免疫组织化学的方法检测近端结肠和末端回肠组织中的肥大细胞和嗜铬细胞数目变化;评价近端结肠和末端回肠的病理组织学变化。
     结果:(1)痛觉阈值:造模结束后,母子分离组和模型组大鼠痛觉阈值较正常组明显降低(均P<0.01),正常束缚组痛觉阈值与正常组无显著性差异,痛泻要方可提高模型组大鼠的痛觉阈值(P<0.01)。(2)大便情况:短期束缚应激可使大鼠排便粒数明显增加,长期束缚应激对大鼠排便粒数无明显影响,但可使其大便含水量增加,甚至不成形。造模结束后,5天内的平均大便积分模型组显著高于正常组、正常束缚组和母子分离组(均P<0.01),痛泻要方对模型组大鼠的腹泻情况无明显改善。(3)体重增长量:造模结束后,正常束缚组、母子分离组和模型组大鼠的体重增长量均较正常组降低(均P<0.01),痛泻要方对模型组大鼠的体重无明显影响。(4)旷场实验:造模结束后,正常束缚组、母子分离组、模型组大鼠的穿格数和站立数均较正常组减少(均P<0.05),痛泻要方可提高模型组大鼠的穿格数和站立数(P<0.05)。(5)糖水偏好率:造模结束后,正常束缚组、母子分离组和模型组的糖水偏好率均较正常组降低(P<0.01,P<0.05,P<0.01),痛泻要方可提高模型组大鼠的糖水偏好率(P<0.05)。(6)悬尾不动时间:造模结束后,正常束缚组、母子分离组和模型组大鼠的悬尾不动时间较正常组延长(P<0.01,P<0.05,P<0.05),痛泻要方可缩短模型组大鼠的悬尾不动时间(P<0.05)。(7)进食量:造模后正常束缚组、母子分离组和模型组大鼠平均进食量与正常组比较无明显变化,痛泻要方可提高模型组的进食量(P<0.05)。(8)血清指标:造模结束后,血清D-木糖含量正常束缚组、母子分离组和模型组较正常组明显降低(均P<0.01),痛泻要方对模型组大鼠的血清D-木糖含量无明显影响。血清5-HT正常束缚组与正常组比较无显著性差异,母子分离组和模型组较正常组升高(均P<0.01),痛泻要方可降低模型组大鼠的血清5-HT含量(P<0.01)。血清BDNF各组之间无显著性差异。血清IgA母子分离组和模型组较正常组升高(均P<0.05),正常束缚组和正常组无显著性差异;痛泻要方对模型组大鼠血清IgA水平无明显影响。血清IgG母子分离组和模型组与正常组无显著性差异,痛泻要方对模型组血清IgG无明显影响。(9)T淋巴细胞亚群比例:造模结束后,血液Th (CD3+CD4+CD8-)亚群比例正常束缚组、母子分离组和模型组较正常组升高(均P<0.05),Tc (CD3+CD4-CD8+)亚群比例较正常组降低(均P<0.01),胸腺T总细胞比例较正常组升高(均P<0.05),痛泻要方对模型组的血液和胸腺T淋巴细胞亚群比例无明显影响。(10)脾脏指数:母子分离组和模型组较正常组降低(均P<0.01),正常束缚组和正常组无显著性差异,痛泻要方对模型组脾脏指数无明显影响。(11)近端结肠肥大细胞数目:模型组较正常组增多(P<0.01),正常束缚组和母子分离组与正常组无显著性差异,痛泻要方可显著减少模型组大鼠近端结肠的肥大细胞数目(P<0.01)。(12)嗜铬细胞数目:正常束缚组、母子分离组和模型组近端结肠和末端回肠中的肥大细胞数目均较正常组增多(均P<0.01),痛泻要方对模型组大鼠近端结肠组织中的嗜铬细胞数目无明显影响。(13)组织病理:各组大鼠近端结肠和末端回肠病理检查未见明显异常。
     结论:(1)采用母子分离+慢性束缚应激+番泻叶灌胃可成功建立IBS-D肝郁脾虚型病证结合大鼠模型。(2)采用慢性束缚联合母子分离法造模优于单一因素法。(3)本研究所建立的IBS-D肝郁脾虚型大鼠模型具有内脏高敏感性、肠道通透性增加、抑郁和免疫功能异常等多种特征。(4)根据IBS-D肝郁脾虚证患者的宏观疾病、证候特征和微观生物学指标评价动物模型是否成功的方法科学、合理,具有可行性。
     第三部分:IBS-D肝郁脾虚型大鼠模型结肠和脑的蛋白质组学研究
     目的:基于第二部分大鼠模型,从结肠和脑组织中筛选和鉴定与IBS-D发病相关的差异蛋白,并进行对比分析。
     材料和方法:采用第二部分正常组、正常束缚组、母子分离组和模型组大鼠的近端和远端结肠和全脑组织样本进行蛋白质组学分析。利用iTRAQ技术筛选各组样本中的差异蛋白,采用Mascot软件对差异蛋白的质谱信息进行鉴定和定量分析,然后基于Uniprot和Gene Ontology数据库对鉴定到的差异蛋白进行功能注释,采用IPA软件分析各组差异蛋白涉及到的生物通路和相互作用关系。并采用实时荧光定量RT-PCR技术从基因水平对选定差异蛋白进行验证。
     结果:(1)与正常组比较,在正常束缚组大鼠结肠组织中筛选和鉴定出了542个差异表达蛋白(差异倍数>1.2,P<0.05),其中309个上调,233个下调,脑组织中筛选和鉴定出了1884个差异蛋白,其中764个上调,1120个下调;母子分离组结肠组织中筛选和鉴定出了809个蛋白,其中415个上调,394个下调,脑组织筛选和鉴定出了2386个蛋白,其中1080个上调,1306个下调;模型组结肠组织中筛选和鉴定出了731个差异蛋白,其中424个上调,307个下调,脑组织中筛选和鉴定出了2567个差异蛋白,其中1187个上调,1380个下调。(2)正常束缚组、母子分离组和分离束缚组在结肠组织中有192个差异蛋白共同表达,在脑组织中有1501个差异蛋白共同表达。(3)在正常束缚组,有153个差异蛋白在脑和肠组织共同表达,母子分离组有280个差异蛋白在脑和肠组织共同表达,分离束缚组有239个蛋白在脑和肠组织中共同表达。三组均有55个差异蛋白在脑和肠组织中共同表达。(4)模型组结肠组织中差异倍数>3蛋白有6个,其中4个上调:S腺苷甲硫氨酸脱羧酶酶原、内凝集素蛋白、FH2区包含蛋白1、主要组织相溶性复合体Ⅱ类抗原;2个下调:磷脂酰肌醇特异的磷脂酶CX区包含蛋白3、血红蛋白α亚。这些蛋白主要参与了S腺苷甲硫氨酸合成、信号转导、肌动蛋白细胞骨架组装、免疫反应、脂质代谢、氧气转运过程。脑组织中差异倍数>4的蛋白有22个,其中4个上调:过氧化物酶膜蛋白PEX14、NADH泛醌氧化还原酶链2、唐氏综合症临界区域基因3、Lrba蛋白;18个下调:血红蛋白p亚基、胸腺旁腺素、神经生长因子、细胞色素C氧化酶6B1亚基、40s核糖体蛋白、ATP合成酶d亚基、线粒体输入内膜移位酶亚基Tim13、NADH脱氢酶黄素蛋白3、细胞色素C氧化酶5A亚基、浦肯野细胞蛋白4、ATP合酶藕联因子6、脂酰辅酶A结合蛋白、细胞色素C、金属硫蛋白3、肌动蛋白相互作用蛋白1、泛醌细胞色素C还原酶结合蛋白、甘油醛3磷酸脱氢酶、胸腺素p4。这些蛋白参与了蛋白质运输、电子传递、空泡运输、氧气转运、免疫、神经内分泌、rRNA转运、金属离子结合、肌动蛋白细胞骨架组装、核苷酸代谢等。在模型组肠组织中鉴定出的热休克蛋白27、免疫球蛋白J链表达上调、血红蛋白α亚基、血红蛋白β亚基表达下调,这些蛋白与临床报道一致。(5)模型组结肠组织的差异蛋白功能主要与细胞组织结构、细胞的功能和修复、细胞死亡和生存、细胞形态、组织发育、细胞发育、细胞的生长和增殖、神经系统发育和功能、细胞与细胞的信号传导和相互作用、小分子生物化学等有关,脑组织的差异蛋白功能主要与细胞的组织结构、细胞的功能和修复、细胞死亡和生存、细胞形态、小分子生物化学、神经系统发育和功能、小分子转运、细胞发育、组织发育和核苷酸代谢等有关。(6)模型组大鼠结肠组织中的差异蛋白主要涉及了整合素信号、5-HT降解信号、抗原呈递通路、白介素4信号等27个生物通路,脑组织的差异蛋白主要涉及了间隙连接信号、上皮黏着连接信号、线粒体功能障碍等26个生物通路。结肠组织中存在9类差异蛋白相互作用网络,脑组织中存在12类差异蛋白相互作用网络。(7)结肠组织AQP8mRNA、NHE3mRNA表达水平与蛋白表达水平一致,结肠和海马BDNFmRNA表达与蛋白表达水平不完全一致。
     结论:(1)IBS-D肝郁脾虚证大鼠模型结肠和脑组织中存在大量差异表达的蛋白,部分蛋白与临床报道一致,该模型具备IBS-D的病理特征。(2) IBS-D肝郁脾虚证大鼠模型结肠和脑组织中存在大量共同表达的差异蛋白,表达方式多样,印证了IBS-D脑肠相互作用异常的机制。(3)慢性束缚应激、母子分离应激以及二者联合作用具有共同的分子生物学基础,二者联合对脑组织差异蛋白表达的影响具有协同作用。(4)IBS-D发病与多种蛋白质分子改变有关,深入研究各差异蛋白的功能可进一步阐明IBS-D的发病机制。
BACKGROUND:Irritable bowel syndrome(IBS) is a functional gastrointestinal disorder characterized by abdominal discomfort and altered bowel habits in the absence of structural or biochemical disorders to account for these symptoms. It's prevalence rate is increasing every year, which is related to psychological factor and infectious factor. Diarrhea-predominant IBS is the major type of IBS in China, the pathogenetic mechanisms of IBS-D are complicated, including visceral hyperesthesia, enhanced colonic motility, brain-gut dysfunction, abnormal neuro-immuno-endocrine network and so on. Recently, some molecular mechanisms are studied. Liver depression and spleen deficiency is the basic pathogenesis of IBS-D in traditional Chinese medicine, liver depression and spleen deficiency syndrome is the main syndrome. There is no an effective drug to treatment all the symptoms of IBS-D in the western medicine, TCM has advantages in comprehensive treatment. Now, the research on the model of IBS-D is still at a groping stage. A reliable and repeatable animal model of IBS-D is needed to study it's pathogenesis. The establishment of an animal model of IBS-D with liver depression and spleen deficiency syndrome is necessary for the research on mechanisms of Chinese herbal compound prescription, which will promote the development of new drugs.
     Part1:Study of methods of establishing an ideal rat model of IBS-D
     Aims:To explore a reliable method of establishing a rat model of IBS-D
     Materials and methods:The Sprague Dawley(SD) female rats were used in this part and were divided into7groups:normal group, high dose senna group, middle dose senna group, low dose senna group, lactose group, acetic acid group,5-HT group, there are10rats in each group. Pups were exposed to a3h period of daily maternal separation on postnatal day2-14except the normal group. The following treatments were performed at2month of age(>250g). The high dose senna group was given4.5g/kg Senna decoction by gavage for7days, the middle dose senna group was given3g/kg Senna decoction, low dose senna group was given2g/kg Senna decoction, the lactose group was given lactose enriched diet for7days, the acetic acid group was given4%acetic acid1ml by anus once, the5-HT group was given2.1mg/kg5-HT by intraperitoneal injection for7days. The diarrhea rate was evaluated during the process, the stool consistency was observed and the fecal score was calculated after the modeling for1week, score of stool consistency was classified as follows:normal1, soft2, watery3. Body weight was evaluated before and after the modeling, the histopathologic evaluation of the proximal colon was did after the modeling.
     Results:(1) Diarrhea rate:the diarrhea rate of the high dose senna group, lactose group and acetic acid group was100%, there was no diarrhea in the other groups.(2) Weight growth:Except the low dose senna group, the weight growth of all the other groups decreased significantly compared to the normal group(P<0.01).Negative growth was observed in the lactose group and acetic acid group.(3) Fecal score:the average fecal score of the high dose senna group and acetic acid group was significantly higher compared to the normal group after the modeling (P<0.05, P<0.01).(4) Histopathologic evaluation:the infiltration of lymphocytes, neutrophils, Eosnophils and interstitial edema were observed in colon of the lactose group, tissue adhesions and proliferation were observed in the acetic acid group. The other groups had no abnormal changes.
     Conclusions:(1) Maternal separation and senna by gavage were reliable to duplicate a rat model of IBS-D.(2) The character of stools and histopathologic evaluation of the colon were important to judge the rationality of methods to establish the animal model of IBS-D.
     Part2:Establishment and evaluation of a rat model of IBS-D with liver depression and spleen deficiency syndrome
     Aims:To establish a rat model of IBS-D with liver depression and spleen deficiency syndrome
     Materials and methods:The male SD rats were used in this part and were divided into5groups. The normal group (N), chronic restraint group(R), maternal separation group(S), maternal separation and chronic restraint (SR), Tongxieyaofang group (TX), each group has20rats. The establishment of IBS-D is based on the part 1.There were three steps in the process of modeling. Firstly, the pups in the S, SR and TX group were exposed to a3h period of daily maternal separation on postnatal day2-14, the N and R group didn't exposed to maternal separation. Secondly, the R, SR and TX group were exposed to chronic restraint stress by specially designed restraint frame for3weeks at2month of ages, the N and S group received no treatment. Thirdly, from the second week of the restraint period, the TX group was given Tongxieyaofang decoction (3g/kg) by gavage on9:00am for2weeks, the other groups were given normal saline (10ml/kg) instead, on the last week of the restraint period, all the groups were given Senna decoction(4.5g/kg) by gavage on the4:00pm except the normal group. The models were evaluated by the features of IBS-D, liver depression and spleen deficiency syndrome, some biomarkers also were tested. The visceral sensitivity was tested before and after the restraint stress; the fecal scores were calculated during the restraint period and after the modeling. The liver depression syndrome was evaluated by open field test, sucrose preference test and tail suspension test. The spleen deficiency syndrome was evaluated by body weight and food consumption. The level of serum D-xylose,5-HT, BDNF, IgA, IgG were tested after the modeling. T lymphocyte subpopulation analysis of blood and thymus were did after the modeling by flow cytometry. The number of mast cells(MC) and enterochromaffin cell(EC) of colon and small intestinal was tested by immunohisto-chemistry. The histopathologic evaluation of the proximal colon and distal ileum was done after the modeling.
     Results:(1)Pain threshold:after the modeling, the pain threshold of the S group and SR group was lower compared to the N group(P<0.01),there was no significant difference between the R and N group,Tongxieyaofang could enhance the pain threshold of the model(P<0.01).(2)Fecal score:acute restraint stress could increase the number of fecal pellet output, chronic restraint stress didn't influence the number of fecal pellet output, but could increase the water content. The average fecal score of the SR group was significantly higher than the N,R, and S group(P<0.01), Tongxieyaofang had no obvious effect on improving the diarrhea.(3)Weight growth:the weight growth of the R, S and SR was lower compared to the N group(P<0.01). Tongxieyaofang had no obvious effect on the weight growth.(4) Open field test:the horizontal and vertical motion of the rats in the R, S and SR group were decreased compared to the N group(P<0.05). Tongxieyaofang could improve this presentation of the rat model.(5) Sucrose preference test:the sucrose preference rate of the rats in the R, S and SR group was decreased compared to the N group(P<0.01, P<0.05, P<0.01). Tongxieyaofang could increase the sucrose preference rate of the rat model (P<0.05).(6) Tail suspension test:the still time in the R, S and SR group was longer compared to the N group(P<0.01, P<0.05, P<0.05).Tongxieyaofang could shorten the still time of the rat model(P<0.05).(7) Food consumption:There was no significant difference of the food consumption in the SR group compared to the normal group. Tongxieyaofang could increase the food consumption of the rat model(P<0.05).(8)Serum markers:The level of serum D-xylose decreased in the R,S and SR group compared to the N group(P<0.01).Tongxieyaofang had no effect on the serum D-xylose.The level of serum5-HT increased in the S and SR group compared to the N group(P<0.01).Tongxieyaofang could decrease the serum5-HT of the rat model(P<0.01). The level of serum IgA increased in the S and SR group compared to the N group(P<0.05). Tongxieyaofang had no effect on the serum IgA.There was no significant change in the level of serum BDNF, IgG in the SR group.(9)The proportion of T lymphocyte subpopulation:the proportion of blood CD3+CD4+CD8-increased, and the subpopulation CD3+CD4-CD8+decreased in the R,S and SR group compared to the N group(P<0.01). The proportion of thymus total T lymphocytes increased in the R,S and SR group compared to the N group(P<0.05). Tongxieyaofang had no significant effect on the proportion of T lymphocyte subpopulation.(10)Spleen index:the spleen index in the S and SR group decreased compared to the N group(P<0.01). Tongxieyaofang had no effect on the spleen index of the rat model.(11)The number of MC:the number of the MC increased significantly in the SR group compared to the N group(p<0.01), tongxieyaofang could decrease the number of MC of the rat model(P<0.01).(12) The number of EC:the number of EC in the R,S and SR group increased significantly compared to the N group (P<0.01). Tongxieyaofang had no effect on the number of EC of the rat model.(13)There was no obvious abnormal change of proximal colon and distal ileum in all the groups.
     Conclusions:(1)The maternal separation stress, chronic restraint stress and senna decoction by gavage could duplicate the IBS-D rat model with liver depression and spleen deficiency.(2)The combination of chronic restraint stress and maternal separation was superior to one factor.(3)The model was characterized by visceral hypersensitivity, increased permeability of intestinal epithelial cell, depression and immune dysfunction.(3) It's scientific, reasonable and feasible to evaluate the rat model according to the character of IBS-D patients.
     Part3:Proteomic analysis of colon and brain in the rat model of IBS-D with liver depression and spleen deficiency syndrome
     Aims:To screen the differential proteins in the colon and brain based on the rat models in the part2, contrastive analysis was did between the two tissues.
     Materials and methods:The colon and brain tissue of the part2rats were used to analysis. The differential proteins were screened based on the technology of isobaric tags for relative and absolute quantitation (iTRAQ). Protein identification was performed by mass spectrum. Mascot software was used to search the related information of the differential proteins based on the Uniprot and Gene Ontology database. The pathways and functional networks of the differential proteins were analysed by the ingenuity pathway analysis software(IPA).Selected proteins were validated by realtime RT-PCR.
     Results:(1) In the chronic restraint stress group(R),542proteins were identified in the colon tissue(ratio>1.2, P<0.05),309proteins were significantly up-regulated and233proteins were significantly down-regulated,1884proteins were identified in the brain tissue,764proteins were significantly up-regulated and1120proteins were significantly down-regulated. In the maternal separation group(S),809proteins were identified in the colon tissue,415proteins were significantly up-regulated and394proteins were significantly down-regulated,2386proteins were identified in the brain tissue,1080proteins were significantly up-regulated and1306proteins were significantly down-regulated. In the maternal separation and chronic restraint group (SR),731proteins were identified in the colon tissue,424proteins were significantly up-regulated and307proteins were significantly down-regulated,2567proteins were identified in the brain tissue,1187proteins were significantly up-regulated and1380 proteins were significantly down-regulated.(2) In the three groups,192proteins co-expressed in the colon tissue,1501proteins co-expressed in the brain tissue.(3)153proteins co-expressed in the colon and brain tissue in the R group,280proteins co-expressed in the colon and brain tissue in the S group, and239proteins co-expressed in the colon and brain tissue.in the SR group.55proteins of the colon and brain tissue co-expressed in the three groups.(4) In the SR group, there were6proteins differentially expressing with the the ratio>3in the colon tissue,4proteins were up-regulated:S-adenosylmethionine decarboxylase proenzyme, protein Itlnl, FH2domain-containing protein1, MHC class Ⅱ antigen;2proteins were down-regulated:PI-PLC X domain-containing protein3, Hemoglobin subunit alpha. They involved in the S-adenosylmethioninamine biosynthetic process, signal transduction, actin cytoskeleton organization, immune response, lipid metabolic process, oxygen transport. There were22proteins differentially expressing with the the ratio>3in the brain tissue.4proteins were up-regulated:peroxisomal membrane protein PEX14, NADH-ubiquinone oxidoreductase chain2, down syndrome critical region gene3, protein Lrba;18proteins were down-regulated:protein Hbb-bl, parathymosin, neurosecretory protein VGF, Cytochrome c oxidase subunit6B1,40S ribosomal protein S28, ATP synthase subunit d, mitochondrial import inner membrane translocase subunit Tim13, NADH dehydrogenase flavoprotein3, cytochrome c oxidase subunit5A, Pcp411protein, ATP synthase-coupling factor6, Acyl-CoA-binding protein, cytochrome c, metallothionein-3, AIP1, protein uqcrb, glyceraldehyde-3-phosphate dehydrogenase, thymosin beta4. They involved in protein transport, electron transport, vacuolar transport, oxygen transport, immunity, rRNA export from nucleus, hydrogen ion transport, protein import into mitochondrial inner membrane, cadmium ion binding, endosomal transport, actin cytoskeleton organization. Heat shock27kDa protein1and immunoglobulin joining chain were up-regulated, hemoglobin subunit alpha and protein Hbb-b1were down-regulated in the colon of the model rat, which were in accord with the clinical report.(5) The differential proteins in the colon tissue of the SR group mainly involved in cellular assembly and organization, cellular function and maintenance, cell death and survival, cell morphology, tissue development, cellular development, cellular growth and proliferation, nervous system development and function, cell to cell signaling and interaction, small molecule biochemistry.The differential proteins in the brain tissue of the SR group mainly involved in cellular assembly and organization, cellular function and maintenance, cell death and survival, cell morphology, small molecule biochemistry, nervous system development and function, molecular transport, cellular development, tissue development, nucleic acid metabolism.(6) The differential proteins in the colon tissue of the SR group could be assigned to27pathways, including integrin signaling, serotonin degradation, antigen presentation pathway, IL-4signaling, and so on. The differential proteins in the brain tissue involved26pathways, including gap junction siganling, epithelia adherens junction signling, mitochondrial dysfuncion, etc. The differential proteins in the colon tissue of the SR group included9interaction networks, and12interaction networks in the brain tissue.(7) The expression of AQP8mRNA and Na+/H+exchanger3(NHE3) mRNA in the colon tissue were in accordance with the expression of homologous proteins, while the expression of brain-derived neurotrophic factor (BDNF) mRNA in the colon and hippocampus tissue were different from the expression of homologous protein.
     Conclusions:(1) There were a large number of differential proteins in the colon and brain tissue of the rat model of IBS-D with liver depression and spleen deficiency syndrome, some of them were in accord with the clinical report.(2) The rat model of IBS-D had some proteins co-expressed in the colon and brain tissue, which indicated abnormal interaction between colon and brain.(3) The models induced by chronic restraint stress, maternal separation stress, and the combination of the two factors had the same molecule biological basis, mental stimulation mainly changed the proteins expression in the brain tissue.(4) The pathogenesis of IBS-D was related to changes of a number of proteins, studying the function of the differential proteins could gain a deeper understanding in the pathogenesis of IBS-D.
引文
[1]Drossman DA, Camilleri M, Mayer EA, et al. AGA technical review on irritable bowel syndrome. Gastroenterology,123:2108-2131.
    [2]柯美云,方秀才.罗马Ⅲ功能性胃肠病(中文翻译版).北京:科学出版社,2008:434-436.
    [3]熊理守,陈湖,陈惠新,等.广东省社区人群肠易激综合征的流行病学研究.中华医学杂志,2004,84(4):278-281.
    [4]吴芳.杭州社区人群肠易激综合征发病相关因素分析.浙江:浙江大学,2011.
    [5]谢汝欢,林振威.广东阳江地区肠易激综合征患者临床特征的评估.中国实用医药,2012,7(24):38-40.
    [6]Yao X, Yang YS, Cui LH,et al. Subtypes of irritable bowel syndrome on Rome III criteria:a multicenter study. J Gastroenterol Hepatol,2012,27(4):760-765.
    [7]Rey E, Talley NJ. Irritable bowel syndrome:novel views on the epidemiology and potential risk factors. Dig Liver Dis,2009,41(11):772-780.
    [8]Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome:a meta-analysis. Clin Gastroenterol Hepatol,2012,10(7):712-721.
    [9]Chitkara DK, van Tilburg MA, Blois-Martin N,et al. Early life risk factors that contribute to irritable bowel syndrome in adults:a systematic review. Am J Gastroenterol,2008,103(3):765-774.
    [10]Bradford K, Shih W, Videlock EJ,et al. Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol,2012,10 (4): 385-390.
    [11]付朝伟,徐飚,陈维清,等.中国大城市肠易激综合征和功能性消化不良患者抑郁、焦虑现况研究.中华消化杂志,2006,26(3):151-154.
    [12]Shen L, Kong H, Hou X. Prevalence of irritable bowel syndrome and its relationship with psychological stress status in Chinese university students. J Gastroenterol Hepatol,2009,24(12):1885-1890.
    [13]Dong YY, Zuo XL, Li CQ,et al. Prevalence of irritable bowel syndrome in Chinese college and university students assessed using Rome III criteria. World J Gastroenterol,2010,16(33):4221-4226.
    [14]Okami Y, Kato T, Nin Qet al. Lifestyle and psychological factors related to irritable bowel syndrome in nursing and medical school students. J Gastroe-nterol,2011,46(12):1403-1410.
    [15]Choung RS, Locke GR 3rd, Zinsmeister AR,et al. Psychosocial distress and somatic symptoms in community subjects with irritable bowel syndrome:a psychological component is the rule. Am J Gastroenterol,2009,104(7): 1772-1779.
    [16]Butt AS, Salih M, Jafri W, et al. Irritable bowel syndrome and psychiatric disorders in pakistan:a case control study. Gastroenterol Res Pract, 2012;2012:291452.
    [17]Ford AC, Talley NJ, Schoenfeld PS,et al. Efficacy of antidepressants and psychological therapies in irritable bowel syndrome:systematic review and meta-analysis. Gut.2009,58(3):367-378.
    [18]李定国,刘栋,许小幸,等.青少年儿童肠易激综合征的流行病学调查.中华消化杂志,2005,25(5):266-269.
    [19]周惠清,李定国,宋艳艳,等.全国城市中小学生肠易激综合征危险因素研究.中华儿科杂志,2008,46(2):136-138.
    [20]沈峰,李定国,周惠清,等.上海市松江社区居民肠易激综合征流行病学调查.中华消化杂志,2011,31(10):663-668.
    [21]Thabane M, Simunovic M, Akhtar-Danesh N,et al. An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol,2010,105(4):933-939.
    [22]Koh SJ, Lee DH, Lee SH,et al. Incidence and risk factors of irritable bowel syndrome in community subjects with culture-proven bacterial gastroenteritis. Korean J Gastroenterol,2012,60(1):13-18.
    [23]Dai C, Jiang M. The incidence and risk factors of post-infectious irritable bowel syndrome:a meta-analysis. Hepatogastroenterology,2012,59(113):67-72.
    [24]杨崇美,寇毅,李延青,等.腹泻型肠易激综合征患者食物过敏的研究.中华内科杂志,2006,45(1):50-51.
    [25]Uz E, Turkay C, Aytac S,et al. Risk factors for irritable bowel syndrome in Turkish population:role of food allergy. J Clin Gastroenterol,2007,41(4): 380-383.
    [26]Eswaran S, Tack J, Chey WD. Food:the forgotten factor in the irritable bowel syndrome. Gastroenterol Clin North Am,2011,40(1):141-162.
    [27]Zhou H, Li D, Cheng G,et al. An epidemiologic study of irritable bowel syndrome in adolescents and children in South China:a school-based study. Child Care Health Dev.2010,36(6):781-786.
    [28]Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol,1998,10(1):59-62.
    [29]Maxwell PR, Rink E, Kumar D,et al. Antibiotics increase functional abdom-inal symptoms. Am J Gastroenterol,2002,97(1):104-108.
    [30]Locke GR 3rd, Zinsmeister AR, Talley NJ,et al. Risk factors for irritable bowel syndrome:role of analgesics and food sensitivities. Am J Gastroenterol, 2000,95(1):157-165.
    [31]Saito YA, Talley NJ. Genetics of irritable bowel syndrome. Am J Gastroenterol, 2008,103(8):2100-2104.
    [32]Saito YA, Zimmerman JM, Harmsen WS,et al. Irritable bowel syndrome aggregates strongly in families:a family-based case-control study. Neurogastroenterol Motil,2008,20(7):790-797.
    [33]Saito YA, Petersen GM, Larson JJ,et al. Familial aggregation of irritable bowel syndrome:a family case-control study. Am J Gastroenterol,2010,105(4): 833-41.
    [34]Nam SY, Kim BC, Ryu KH, et al. Prevalence and risk factors of irritable bowel syndrome in healthy screenee undergoing colonoscopy and laboratory tests. J Neurogastroenterol Motil,2010,16(1):47-51.
    [35]Kubo M, Fujiwara Y, Shiba M, et al. Differences between risk factors among irritable bowel syndrome subtypes in Japanese adults. Neurogastroenterol Motil,2011,23(3):249-254.
    [36]Khademolhosseini F, Mehrabani D, Nejabat M,et al. Irritable bowel syndrome in adults over 35 years in Shiraz, southern Iran:prevalence and associated factors. J Res Med Sci,2011,16(2):200-206.
    [37]Sheikh Sajjadieh MR, Kuznetsova LV, Bojenko VB. Affects of ionizing radiation on T-cell population lymphocyte:a risk factor of irritable bowel syndrome.. Toxicol Ind Health,2010,26(6):323-330.
    [38]张旭东,邓敏,李梅,等.食物不耐受与腹泻型肠易激综合征的关系.世界华人消化杂志,2007,15(36):3877-3879.
    [39]汪红兵,张声生,李振华,等.360例腹泻型肠易激综合征主要证候分布与不同因素关系的研究.中国中医药信息杂志,2010,17(3):18-20.
    [40]Barbara G, Stanghellini V, De Giorgio R,et al. Activated mast cells in proxy-mity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology,2004,126(3):693-702.
    [41]Greenwood B, Rodriguez S, Decktor D,et al. Irritable bowel syndrome:a study to investigate the mechanism(s) of visceral hypersensitivity. J Okla State Med Assoc,1996,89(2):47-50.
    [42]Gupta V, Sheffield D, Verne GN. Evidence for autonomic dysregulation in the irritable bowel syndrome. Dig Dis Sci,2002,47(8):1716-1722.
    [43]姜敏,张仪侠,傅宝玉,等.大鼠结肠对理化刺激的内脏神经的敏感性.世界华人消化杂志,2002,10(11):1278-1281.
    [44]Sinhamahapatra P, Saha SP, Chowdhury A,et al. Visceral afferent hypersensi-tivity in irritable bowel syndrome--evaluation by cerebral evoked potential after rectal stimulation. Am J Gastroenterol,2001,96(7):2150-2157.
    [45]Blomhoff S, Spetalen S, Jacobsen MB,et al. Phobic anxiety changes the function of brain-gut axis in irritable bowel syndrome. Psychosom Med, 2001,63(6):959-965.
    [46]Gunter WD, Shepard JD, Foreman RD,et al. Evidence for visceral hypersensit-ivity in high-anxiety rats. Physiol Behav,2000,69(3):379-382.
    [47]袁耀宗,陶然君,许斌,等.肠易激综合征患者直肠气囊扩张时的功能脑显像研究.胃肠病学,2003,8:A4.
    [48]Mertz H, Morgan V, Tanner G,et al. Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology,2000,118(5):842-848.
    [49]Hutchinson R, Notghi A, Smith NB,et al. Scintigraphic measurement of ileocaecal transit in irritable bowel syndrome and chronic idiopathic constipation. Gut,1995,36(4):585-589.
    [50]刘谦民,郭荣斌,郑文尧,等.肠易激综合征患者直肠肛管测压的研究.解放军医学杂志,2001,26(3):232-234.
    [51]Drossman DA, Camilleri M, Mayer EA,et al. AGA technical review on irritable bowel syndrome. Gastroenterology,2002,123(6):2108-2131.
    [52]Vesa TH, Seppo LM, Marteau PR,et al. Role of irritable bowel syndrome in subjective lactose intolerance. Am J Clin Nutr,1998,67(4):710-715.
    [53]Smith MJ, Cherian P, Raju GS,et al. Bile acid malabsorption in persistent diarrhoea. J R Coll Physicians Lond,2000,34(5):448-451.
    [54]Del Valle-Pinero AY, Van Deventer HE, Fourie NH,et al. Gastrointestinal permeability in patients with irritable bowel syndrome assessed using a four probe permeability solution. Clin Chim Acta,2013,418C:97-101.
    [55]Park JH, Park DI, Kim HJ,et al. The Relationship between Small-Intestinal Bacterial Overgrowth and Intestinal Permeability in Patients with Irritable Bowel Syndrome. Gut Liver,2009,3(3):174-179.
    [56]Turcotte JF, Kao D, Mah SJ,et al. Breaks in the wall:increased gaps in the intestinal epithelium of irritable bowel syndrome patients identified by confocal laser endomicroscopy (with videos). Gastrointest Endosc,2013, pii: S0016-5107(12)02875-1.
    [57]Yakoob J, Abbas Z, Khan R,et al. Small intestinal bacterial overgrowth and lactose intolerance contribute to irritable bowel syndrome symptomatology in Pakistan. Saudi J Gastroenterol,2011,17(6):371-375.
    [58]Pyleris E, Giamarellos-Bourboulis EJ, Tzivras D,et al. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome. Dig Dis Sci,2012,57(5): 1321-1329.
    [59]张川,李定国,王彝康,等.肠易激综合征患者5-羟色胺含量的变化.上海第二医科大学学报,2001,21(1):66-68.
    [60]詹丽杏,许国铭,李兆申,等.肠易激综合征患者活动期和缓解期血浆 5-HT、5-HIAA的变化.第二军医大学学报,2003,24(2):152-154.
    [61]夏頔,刘希双,鞠辉.肠易激综合征患者肠黏膜SP、SPR和5-HT的变化.世界华人消化杂志,2009,17(30):3169-3173.
    [62]李运红,朱晓蕾,徐肇敏.腹泻型肠易激综合征患者结肠粘膜5-羟色胺和5-羟色胺3受体的研究.胃肠病学,2006,11(8):477-480.
    [63]Coates MD, Mahoney CR, Linden DR,et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology,2004,126(7):1657-1664.
    [64]Zhang LY, Dong X, Liu ZL,et al. Luminal serotonin time-dependently modulates vagal afferent driven antinociception in response to colorectal distention in rats. Neurogastroenterol Motil,2011,23(1):62-69,e6.
    [65]Tonini M, Vicini R, Cervio E,et al.5-HT7 receptors modulate peristalsis and accommodation in the guinea pig ileum. Gastroenterology,2005,129(5):1557-1566.
    [66]Crowell MD. Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br J Pharmacol,2004,141(8):1285-1293.
    [67]陈晓敏,张燕华,毛峻岭,等.肠易激综合征患者结肠粘膜P物质、血管活性肠肽和肥大细胞的变化.胃肠病学,2008,13(4):228-230.
    [68]王巧民,宋继中,贾勇,等.肠易激综合征患者结肠粘膜T细胞、B细胞、神经肽、细胞因子变化及其相关性.中华消化内镜杂志,2008,25(1):31-34.
    [69]王艳杰,王德山,关洪全,等.眼针对肠易激综合征大鼠血清和结肠组织中P物质及血管活性肠肽含量的影响.针刺研究,2010,35(1):8-11.
    [70]Tillisch K, Labus J, Nam B,et al. Neurokinin-1-receptor antagonism decreases anxiety and emotional arousal circuit response to noxious visceral distension in women with irritable bowel syndrome:a pilot study. Aliment Pharmacol Ther,2012,35(3):360-367.
    [71]Palsson OS, Morteau O, Bozymski EM,et al. Elevated vasoactive intestinal peptide concentrations in patients with irritable bowel syndrome. Dig Dis Sci, 2004,49(7-8):1236-1243.
    [72]沈骏,诸琦,袁耀宗,等.肠易激综合征患者血浆脑肠肽水平的变化.胃肠病学,2005,10(5):290-292.
    [73]Zhang H, Yan Y, Shi R,et al. Correlation of gut hormones with irritable bowel syndrome. Digestion,2008,78(2-3):72-76.
    [74]李任峰,王德山,王艳杰,等.匹维溴胺对腹泻型肠易激综合征模型大鼠结肠组织血管活性肠肽及受体1表达的影响.中国中西医结合消化杂志,2010,18(2):89-92.
    [75]张茹.肠易激综合征血浆及乙状结肠粘膜中VIP及SS的含量.中国内镜杂志,2004,10(3):41-43.
    [76]钱英强,郭佳念,沈溪明,等SSTR1和SSTR2在肠易激综合征和活动期溃疡性结肠炎患者结肠粘膜中的表达及其临床意义.胃肠病学,2009,14(12):721-725.
    [77]Kuiken SD, Klooker TK, Tytgat GN,et al. Possible role of nitric oxide in visceral hypersensitivity in patients with irritable bowel syndrome. Neurogas-troenterol Motil,2006,18(2):115-122.
    [78]穆标,王邦茂,刘之武,等.一氧化氮能神经调节异常在腹泻型肠易激综合征患者中的作用.中华消化杂志,2002,22(2):88-91.
    [79]吕妍,李丹,唐方.藿香正气提取物对腹泻型肠易激综合征模型大鼠肠动力调控机理研究.中国中西医结合杂志,2011,31(7):941-945.
    [80]Xu JR, Luo JY, Shang L,et al. Effect of change in an inhibitory neurotran-smitter of the myenteric plexus on the pathogenetic mechanism of irritable bowel syndrome subgroups in rat models. Chin J Dig Dis,2006,7(2):89-96.
    [81]Tjong YW, Ip SP, Lao L,et al. Role of neuronal nitric oxide synthase in colonic distension-induced hyperalgesia in distal colon of neonatal maternal separated male rats. Neurogastroenterol Motil,2011,23(7):666-e278.
    [82]Shamshiri H, Paragomi P, Paydar MJ,et al. Antinociceptive effect of chronic lithium on visceral hypersensitivity in a rat model of diarrhea-predominant irritable bowel syndrome:The role of nitric oxide pathway. J Gastroenterol Hepatol,2009,24(4):672-680.
    [83]Dai C, Guandalini S, Zhao DH,et al. Antinociceptive effect of VSL#3 on visceral hypersensitivity in a rat model of irritable bowel syndrome:a possible action through nitric oxide pathway and enhance barrier function. Mol Cell Biochem,2012,362(1-2):43-53.
    [84]Ortiz-Lucas M, Saz-Peiro P, Sebastian-Domingo JJ. Irritable bowel syndrome immune hypothesis. Part one:the role of lymphocytes and mast cells. Rev Esp Enferm Dig,2010,102(11):637-647.
    [85]O'Sullivan M, Clayton N, Breslin NP,et al. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol Motil,2000,12(5):449-457.
    [86]Park JH, Rhee PL, Kim HS,et al. Mucosal mast cell counts correlate with visceral hypersensitivity in patients with diarrhea predominant irritable bowel syndrome. J Gastroenterol Hepatol,2006,21(1 Pt 1):71-78.
    [87]Guilarte M, Santos J, de Torres I,et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut,2007,56(2):203-209.
    [88]Goral V, Kucukoner M, Buyukbayram H. Mast cells count and serum cytokine levels in patients with irritable bowel syndrome. Hepatogastroenterology, 2010,57(101):751-754.
    [89]Lee KJ, Kim YB, Kim JH,et al. The alteration of enterochromaffin cell, mast cell, and lamina propria T lymphocyte numbers in irritable bowel syndrome and its relationship with psychological factors. J Gastroenterol Hepatol, 2008,23(11):1689-1694.
    [90]Barbara G, Wang B, Stanghellini V,et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology,2007,132(1):26-37.
    [91]Klooker TK, Braak B, Koopman KE,et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut,2010,59(9):1213-1221.
    [92]Ohman L, Lindmark AC, Isaksson S,et al. B-cell activation in patients with irritable bowel syndrome (IBS). Neurogastroenterol Motil,2009,21 (6):644-50, e27.
    [93]Ohman L, Isaksson S, Lindmark AC,et al. T-cell activation in patients with irritable bowel syndrome. Am J Gastroenterol,2009,104(5):1205-1212.
    [94]金杭斌,顾竹影,赵虹雯,等.腹泻型肠易激综合征患者外周血T淋巴细胞亚群及血清微量元素含量变化研究.浙江大学学报(医学版),2008,37(6):634-637.
    [95]Liebregts T, Adam B, Bredack C,et al. Immune activation in patients with irritable bowel syndrome. J Gastroenterol,2009,44(7):666-674.
    [96]Hua MC, Lai MW, Kuo ML,et al. Decreased interleukin-10 secretion by peripheral blood mononuclear cells in children with irritable bowel syndrome. J Pediatr Gastroenterol Nutr,2011,52(4):376-381.
    [97]Chen J, Zhang Y, Deng Z. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Thl/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol,2012,12:91.
    [98]Chang L, Adeyemo M, Karagiannides I,et al. Serum and colonic mucosal immune markers in irritable bowel syndrome. Am J Gastroenterol,2012,107(2): 262-272.
    [99]Schmulson M, Pulido-London D, Rodriguez O,et al. Lower serum IL-10 is an independent predictor of IBS among volunteers in Mexico. Am J Gastroenterol, 2012,107(5):747-753.
    [100]Ortiz-Lucas M, Saz-Peiro P, Sebastian-Domingo JJ. Irritable bowel syndrome immune hypothesis. Part two:the role of cytokines. Rev Esp Enferm Dig, 2010,102(12):711-717.
    [101]Yu YB, Zuo XL, Zhao QJ,et al. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut,2012,61 (5):685-694.
    [102]Akbar A, Yiangou Y, Facer P,et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut,2008,57(7):923-929.
    [103]Jones RC 3rd, Otsuka E, Wagstrom E,et al. Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology,2007,133(1):184-194.
    [104]Bian ZX, Li Z, Huang ZX, et al. Unbalanced expression of protease-activated receptors-1 and -2 in the colon of diarrhea-predominant irritable bowel syndrome patients. J Gastroenterol,2009,44(7):666-674.
    [105]Han W, Wang Z, Lu X, et al. Protease activated receptor 4 status of mast cells in post infectious irritable bowel syndrome. Neurogastroenterol Motil,2012, 24(2):113-9, e82.
    [106]祝捷,罗和生,陈玲,等.腹泻型肠易激综合征大鼠结肠L-型钙通道α 1C亚基及a 1D亚基的表达变化.中华医学杂志,2009,89(38):2713-2717.
    [107]Marger F, Gelot A, Alloui A,et al. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci U S A,2011,108(27):11268-11273.
    [108]王亚雷,袁耀宗,徐天乐.电压门控钠离子通道在大鼠肠易激综合征模型中的变化.诊断学理论与实践,2005,4(2):140-144.
    [109]Zhang R, Zou N, Li J,et al. Elevated expression of c-fos in central nervous system correlates with visceral hypersensitivity in irritable bowel syndrome (IBS):a new target for IBS treatment. Int J Colorectal Dis,2011,26(8):1035-44.
    [110]Qi DB, Li WM. Effects of electroacupuncture on expression of c-fos protein in the spinal dorsal horn of rats with chronic visceral hyperalgesia. Zhong Xi Yi Jie He Xue Bao,2012,10(12):1490-1496.
    [111]Chen Y, Li Z, Yang Y,et al. Role of glucagon-like peptide-1 in the pathogenesis of experimental irritable bowel syndrome rat models. Int J Mol Med, 2013,31(3):607-613.
    [112]Nozu T, Kudaira M. Corticotropin-releasing factor induces rectal hypersen-sitivity after repetitive painful rectal distention in healthy humans. J Gastroenterol,2006,41 (8):740-744.
    [113]Overman EL, Rivier JE, Moeser AJ. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-a. PLoS One.2012,7(6): e39935.
    [114]牛庆慧,张翠萍,鞠辉,等.肠道粘膜肥大细胞和降钙素基因相关肽在肠易激综合征的表达.世界华人消化杂志,2009,17(2):213-217.
    [115]Bourdu S, Dapoigny M, Chapuy E,et al. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology,2005,128(7):1996-2008.
    [116]van den Wijngaard RM, Klooker TK, Welting O,et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil,2009,21(10):1107-e94.
    [117]Willot S, Gauthier C, Patey N,et al. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil,2012,24(8):734-9, e347.
    [118]Wang JP, Hou XH. Expression of aquaporin 8 in colonic epithelium with diarrhoea-predominant irritable bowel syndrome. Chin Med J (Engl), 2007,120(4):313-316.
    [119]马瑞军,陈星,汪嵘,等.水通道蛋白8与肠易激综合征相关性表达研究.中华消化杂志,2007,27(5):354-355.
    [120]赵志忠,王俊平,刘俊.肠易激综合征患者结肠粘膜AQP8的表达.胃肠病学和肝病学杂志,2010,19(11):1029-1031.
    [121]刘慧慧,王艳杰,刘旭东,等.匹维溴铵对腹泻型肠易激综合征模型大鼠结肠组织AQP3表达影响.第三军医大学学报,2011,33(3):233-236.
    [122]孔武明,龚均,董蕾,等.肠易激综合征患者肠道屏障——紧密连接改变的示踪电镜观察.南方医科大学学报,2007,27(8):1167-1172.
    [123]孔武明,李光,龚均.紧密连接蛋白claudin-1在肠易激综合征患者肠粘膜中的表达及意义.山东医药,2008,48(2):27-29.
    [124]Bertiaux-Vandaele N, Youmba SB, Belmonte L,et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol,2011,106(12):2165-2173.
    [125]E1-Salhy M, Lomholt-Beck B, Hausken T. Chromogranin A as a possible tool in the diagnosis of irritable bowel syndrome. Scand J Gastroenterol, 2010,45(12):1435-1439.
    [126]El-Salhy M, Wendelbo IH, Gundersen D. Reduced chromogranin A cell density in the ileum of patients with irritable bowel syndrome. Mol Med Rep,2013, doi:10.3892/mmr.2013.1325.
    [1]黄穗平.梁乃津从肝论治肠易激综合征经验.新中医,1996,5:9-10.
    [2]李振彬.周仲瑛教授治疗肠易激综合征的经验.新中医,1997,29(8):6-7.
    [3]罗先涛.张耀治疗肠易激综合征的经验.四川中医,2000,18(11):4.
    [4]陆木兴.蔡淦治疗肠易激综合征经验.中医杂志,2001,42(5):268-269.
    [5]张雅静.张小萍从肝脾论治肠易激综合征经验.安徽中医学院学报,2001,20(4):36-37.
    [6]许筱颖,李德魁.崔英珉教授治疗肠易激综合征经验.河南中医,2004,24(3):24-25.
    [7]王丽.张贵元教授治疗肠易激综合征经验总结.沈阳:辽宁中医学院,2005.
    [8]陈波,李卫东.王福仁主任医师治疗肠易激综合征经验撷菁.实用中医内科杂志,2005,19(3):214.
    [9]彭慕斌,彭应涛.彭景星老中医治疗肠易激综合征经验.中国中医急症,2005,14(11):1084-1085.
    [10]李翌萌.白长川教授治疗肠易激综合征经验.沈阳:辽宁中医学院,2005.
    [11]程彬彬.谢昌仁治疗肠易激综合征经验.中医杂志,2006,47(10):739-740.
    [12]张小琴.单兆伟教授治疗泄泻型肠易激综合征经验拾萃.江西中医药,2006,4:9-10.
    [13]张涛.谢建群从肝脾论治肠易激综合征经验拾萃.上海中医药杂志,2007,41(2):17-18.
    [14]李卫强,朱西杰.朱西杰应用脱敏法治疗肠易激综合征经验.辽宁中医杂志,2007,34(12):1689-1690.
    [15]谢文松,张运希.闫清海主任医师胃肠病验案举隅.实用中医内科杂志,2007,21(9):24-25.
    [16]刘敏,林穗芳.余绍源教授临证治验举隅.辽宁中医药大学学报,2008,10(12):175-176.
    [17]寺崎真,王垂杰.王垂杰治疗腹泻型肠易激综合征临床经验.世界中西医结合杂志,2008,3(4):193-194.
    [18]巩阳.王长洪教授从肝脾肾论治肠易激综合征的临床经验.中国中西医结合消化杂志,2008,17(3):195-196.
    [19]高文艳.王长洪教授治疗腹泻型肠易激综合征学术经验研究.北京:军医进修学院,2009.
    [20]林媚.唐旭东教授治疗腹泻型肠易激综合征经验述要.实用中医内科杂志,2009,23(11):9-11.
    [21]赵运.沈舒文治疗肠易激综合征举隅.中国中医药信息杂志,2009,16(12):80-81.
    [22]陈笑腾.马伟明辨治肠易激综合征的经验.浙江中医杂志,2009,44(9):637.
    [23]庄苏.黄大钦老中医治疗肠易激综合征临床经验.海峡科学,2009,6:163,165.
    [24]范文杰,薛大力.郭喜军教授治疗肠易激综合征经验.光明中医,2009,24(5):821-822.
    [25]李宗庭.张继泽从肝脾不和论治肠易激综合征经验.河北中医,2010,32(1):11-12.
    [26]程宏辉.周福生治疗肠易激综合征经验.中医杂志,2004,45(3):175,203.
    [27]柳红盼.田振国教授治疗肠易激综合征经验总结.沈阳:辽宁中医药大学,2008.
    [28]牛晓玲.孙志广教授辨治肠易激综合征的临床经验.四川中医,2009,27(11):13-14
    [29]王志坤,白海燕.刘启泉辨治腹泻型肠易激综合征经验.中医杂志,2010,51(5):404,408.
    [30]陆敏,王德明.王德明以心肾不交论治肠易激综合征经验.辽宁中医杂志,2011,38(1):37-38.
    [31]李敏雅.陆维宏辨证治疗肠易激综合征(IBS)经验拾萃.浙江中医药大学学报,2009,33(6):830-831.
    [32]高志远,张正利.蔡淦治疗腹泻型肠易激综合征经验.辽宁中医杂志,2008,35(10):1474-1475.
    [33]孙洁.于淑芬教授论治肠易激综合征的经验.陕西中医,2010,31(11):1506-1507.
    [34]刘果.王新月治疗腹泻型肠易激综合征经验.中医杂志,2010,51(1):23-24.
    [35]肖成,胡连海,李燕.李国栋教授辨治肠易激综合征经验.贵阳中医学院学报,2010,32(3):6-7.
    [36]周秉舵,谭宝.谢建群辨治腹泻型肠易激综合征经验.上海中医药杂志,2011,45(9):9-10.
    [37]周荣,唐永贵.彭墩辨治肠易激综合征经验.四川中医,2012,30(6):1-2.
    [38]林刚.洪善贻治疗腹泻型肠易激综合征经验撷英.天津中医药,2010,27(3):185-186.
    [39]胡明丽.白兆芝教授治疗肠易激综合征经验.世界中西医结合杂志,2010,5(2):105-106.
    [40]赵金婷.王长洪教授应用疏肝健脾补肾法治疗腹泻型肠易激综合征临床经验.辽宁中医药大学学报,2011,13(6):164-166.
    [41]马玉萍,苏进义,丁乾,等.施奠邦治疗肠易激综合征临床经验浅谈.辽宁中医杂志,2011,38(2):230-231.
    [42]马玉萍,苏进义,丁乾,等.施奠邦应用升阳益胃汤治疗肠易激综合征验案举隅.四川中医,2011,29(1):3-4.
    [43]路广林,张秋霞,郭华.聂惠民教授治疗肠易激综合征的经验.北京中医药大学学报,2011,34(9):637-638.
    [44]李薇,于家军.李寿山主任医师治疗肠易激综合征经验.中国中医急症,2011,20(4):574,589.
    [45]焦敏.党中勤教授治疗腹泻型肠易激综合征经验.中国中医急症,2011,20(2):242-243.
    [46]陈聪,叶柏.叶柏教授辨治肠易激综合征经验.吉林中医药,2012,32(5):458-459.
    [47]李佳泽.隗继武教授应用柴胡桂枝汤治疗腹泻型肠易激综合征的临床经验.中医药学报,2012,40(3):128-129.
    [48]叶柏,陈静.刘沈林教授运用调肝运脾法治疗腹泻型肠易激综合征经验.光 明中医,2012,27(8):1513-1515.
    [49]吴晶晶.姜树民教授治疗肠易激综合征腹泻经验.辽宁中医药大学学报,2012,14(5):168-169.
    [50]徐萍.陈大权教授对腹泻型肠易激综合征的中医药治疗特色.现代中西医结合杂志,2012,21(15):1625-1626.
    [51]桑红灵.童昌珍治疗腹泻型肠易激综合征的经验.湖北中医杂志,2005,27(8):26-27.
    [52]翟敏,金炜,吴炯.孙建华辨治肠易激综合征经验.上海中医药杂志,2008,42(2):44-45.
    [53]苏晓兰,魏玮,林琳.魏玮教授论治腹泻型肠易激综合征经验.吉林中医药,2012,32(2):142-146.
    [54]中华中医药学会脾胃病分会.肠易激综合征中医诊疗共识意见.中华中医药杂志,2010,25(7):1062-1065.
    [55]中国中西医结合学会消化系统疾病专业委员会.肠易激综合征中西医结合诊疗共识意见.中国中西医结合杂志,2011,31(5):587-590.
    [56]周福生,吴文江,张庆宏.胃肠功能性疾病证型分布的统计分析.中华国际医学杂志,2002,2(5):438-439.
    [57]国家技术监督局.中华人民共和国国家标准中医临床诊疗术语证候部分.中国标准出版社,1997:1-40.
    [58]朱文锋.证素辨证学.北京:人民卫生出版社,2008:162-228.
    [1]Williams CL, Villar RG, Peterson JM,et al. Stress-induced changes in intestinal transit in the rat:a model for irritable bowel syndrome. Gastroenterology,1988, 94(3):611-621.
    [2]吕红,王伟岸,钱家鸣.传统束缚应激动物模型内脏感觉的新评价.胃肠病学和肝病学杂志,2005,14(2):111-113.
    [3]Gue M, Del Rio-Lacheze C, Eutamene H,et al. Stress-induced visceral hypersensitivity to rectal distension in rats:role of CRF and mast cells. Neurogastroenterol Motil,1997,9(4):271-279.
    [4]Muraoka M, Mine K, Kubo C. A study of intestinal dysfunction induced by restraint stress in rats. Scand J Gastroenterol,1998,33(8):806-810.
    [5]Bradesi S, Eutamene H, Garcia-Villar R,et al. Acute and chronic stress differe-ntly affect visceral sensitivity to rectal distension in female rats. Neurogastroen-terol Motil,2002,14(1):75-82.
    [6]孙燕,柳锋霖,宋耿青,等.急性和慢性束缚应激对大鼠内脏敏感性和神经内分泌的影响.中华消化杂志,2006,26(1):38-41.
    [7]Coutinho SV, Plotsky PM, Sablad M,et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol,2002,282(2):G307-316.
    [8]Kalinichev M, Easterling KW, Plotsky PM,et al. Long-lasting changes in stress-induced corticosterone response and anxiety-like behaviors as a consequence of neonatal maternal separation in Long-Evans rats. Pharmacol Biochem Behav,2002,73(1):131-140.
    [9]Ren TH, Wu J, Yew D,et al. Effects of neonatal maternal separation on neuroch-emical and sensory response to colonic distension in a rat model of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol,2007,292(3):G849-856.
    [10]Bian ZX, Qin HY, Tian SL,et al. Combined effect of early life stress and acute stress on colonic sensory and motor responses through serotonin pathways: differences between proximal and distal colon in rats. Stress,2011,14(4): 448-58.
    [11]O'Mahony SM, Hyland NP, Dinan TQet al. Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl).2011,214(1):71-88.
    [12]吕红,钱家鸣,金光亮,等.肠易激综合征慢急性联合应激动物模型的建立及其感觉、动力和心理行为的评价.中华内科杂志,2009,48(12):1035-1039.
    [13]Winston JH, Xu GY, Sarna SK. Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology,2010,138(1):294-304.e3.
    [14]Myers B, Greenwood-Van Meerveld B. Differential involvement of amygdala corticosteroid receptors in visceral hyperalgesia following acute or repeated stress. Am J Physiol Gastrointest Liver Physiol,2012,302(2):G260-266.
    [15]Tran L, Chaloner A, Sawalha AH,et al. Importance of epigenetic mechanisms in visceral pain induced by chronic water avoidance stress. Psychoneuroendocrin-ology,2012, pii:S0306-4530(12)00332-0.
    [16]严茂祥,占宏伟,陈芝芸,等.游泳致疲劳对大鼠血和结肠组织中胃肠激素的影响.浙江中医学院学报,2000,24(4):44-45.
    [17]孙哗,孙晓宁.肠易激综合征大鼠模型肠神经元可塑性改变的观察.海南医学院学报,2011,17(1):27-30.
    [18]Bercik P, Wang L, Verdu EF,et al. Visceral hyperalgesia and intestinal dysmo-tility in a mouse model of postinfective gut dysfunction. Gastroenterology, 2004,127 (1):179-187.
    [19]Pimentel M, Chatterjee S, Chang C,et al. A new rat model links two contempo-rary theories in irritable bowel syndrome. Dig Dis Sci,2008,53(4):982-989.
    [20]郭敏,李延青,于秀娟,等.大鼠急性肠道感染后肠功能紊乱动物模型的建立.山东大学学报(医学版),2006,44(6):586-589.
    [21]La JH, Kim TW, Sung TS,et al. Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis. World J Gastroenterol,2003,9(12):2791-2795.
    [22]刘雁冰,袁耀宗,陶然君,等.大鼠肠道高敏性模型的建立及其内脏敏感性评估.中华消化杂志,2003,23(1):34-37.
    [23]Winston J, Shenoy M, Medley D,et al. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology,2007,132(2):615-627.
    [24]Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hyper-sensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology,2000,119(5):1276-1285.
    [25]Greenwood-Van Meerveld B, Johnson AC, Foreman RD,et al. Spinal cord stim-ulation attenuates visceromotor reflexes in a rat model of post-inflammatory colonic hypersensitivity. Auton Neurosci,2005,122(1-2):69-76.
    [26]Traub RJ, Tang B, Ji Y,et al. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology,2008,135(6):2075-2083.
    [27]Bourdu S, Dapoigny M, Chapuy E,et al. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology,2005,128(7):1996-2008.
    [28]Jones RC 3rd, Otsuka E, Wagstrom E,et al. Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology,2007,133(1):184-194.
    [29]李延青,郭玉婷,左秀丽,等.肠易激综合征内脏感觉过敏动物模型的建立.胃肠病学和肝病学杂志,2003,12(4):332-335.
    [30]姜敏,徐秀英,傅宝玉,等.机械和化学刺激对大鼠内脏神经敏感性的影响中国医科大学学报,2003,32(5):405-407.
    [31]Gao J, Wu X, Owyang C,et al. Enhanced responses of the anterior cingulate cortex neurones to colonic distension in viscerally hypersensitive rats. J Physiol, 2006,570(Pt 1):169-183.
    [32]李兆申,詹丽杏,邹多武,等.腹腔注射卵清白蛋白致大鼠内脏高敏感的研究.第二军医大学学报,2003,24(2):127-130.
    [33]晁冠群,吕宾,孟立娜,等.痛泻要方对内脏高敏感大鼠脑、脊髓CRF表达的影响.中国中药杂志,2010,35(15):2012-2016.
    [34]Tache Y, Garrick T, Raybould H. Central nervous system action of peptides to influence gastrointestinal motor function. Gastroenterology.1990,98(2):517-528.
    [35]Monnikes H, Schmidt BG, Tebbe J,et al. Microinfusion of corticotropin releasing factor into the locus coeruleus/subcoeruleus nuclei stimulates colonic motor function in rats. Brain Res,1994,644(1):101-108.
    [36]王伟岸,钱家鸣,潘国宗,等.脑-肠互动指向性条件应激肠易激综合征动物模型的建立.中华消化杂志,2004,24(10):590-593.
    [37]Coelho AM, Jacob L, Fioramonti J,et al. Rectal antinociceptive properties of alverine citrate are linked to antagonism at the 5-HT1A receptor subtype. J Pharm Pharmacol,2001,53(10):1419-1426.
    [38]刘俊康,陈杰,吴小兰,等.细菌潜生体相关的IBS动物模型建立实验研究.胃肠病学和肝病学杂志,2007,16(3):243-246.
    [39]Chen JJ, Li Z, Pan H,et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter:Abnormal intestinal motility and the expression of cation transporters. J Neurosci,2001,21 (16):6348-6361.
    [40]郭玉婷,李延青,庄明蕊,等.替加色罗治疗内脏高敏感大鼠前后感觉阈值的变化.胃肠病学和肝病学杂志,2004,13(4):377-380.
    [41]Barbara G, Vallance BA, Collins SM. Persistent intestinal neuromuscular dysfunction after acute nematode infection in mice. Gastroenterology, 1997,113(4):1224-1232.
    [42]姜敏,张义侠,傅宝玉,等.大鼠结肠对理化刺激的内脏神经的敏感性.世界华人消化杂志,2002,10(11):1278-1281.
    [43]王金贵,王艳国,骆雄飞,等.摩腹法对肠易激综合征白兔模型不同脑区激活特征的影响.天津中医药,2008,25(5):377-379.
    [44]Johnson AC, Myers B, Lazovic J,et al. Brain activation in response to visceral stimulation in rats with amygdala implants of corticosterone:an FMRI study. PLoS One,2010,5(1):e8573.
    [45]袁耀宗,刘雁冰,陶然君,等.肥大细胞在应激所致大鼠直肠高敏感性中的作用.中华消化杂志,2003,23(12):727-730.
    [46]Barone FC, Deegan JF, Price WJ,et al. Cold-restraint stress increases rat fecal pellet output and colonic transit. Am J Physiol,1990,258(3 Pt 1):G329-337.
    [47]杨银芳,楚更五,张建英,等.痛泻要方对寒冷-束缚肠易激综合征模型大 鼠作用的实验研究.中华中医药学刊,2008,26(9):1984-1986.
    [48]代子艳,王巧民,徐雪梅,等.冷-束缚应激诱导肠功能紊乱大鼠肠粘膜屏障变化的实验研究.胃肠病学和肝病学杂志,2010,19(1):61-64.
    [49]胡瑞,唐方.肝脾不调所致腹泻型肠易激综合征的动物模型研究.中医杂志,2010,51(6):547-550.
    [50]胡瑞,张桐茂,唐方.胃肠安丸对肠易激综合征大鼠消化酶、水通道蛋白的影响.中国中药杂志,2010,35(21):2899-2903.
    [51]袁秀荣,谢燕,李国文,等.肠安颗粒治疗肠易激综合征的药效学研究.中国新药与临床杂志,2008,27(3):180-183.
    [52]李丹,吕妍,唐方.腹泻型肠易激综合征大鼠模型的建立.天津中医药,2009,26(3):240-242.
    [53]费晓燕,谢建群,郑昱,等.疏肝饮对腹泻型肠易激综合征模型大鼠胃动素和胆囊收缩素的影响.上海中医药杂志,2008,42(4):63-65.
    [54]赵文娟,王垂杰.腹泻型肠易激综合征大鼠模型的建立.国际中医中药杂志,2008,30(1):16-17.
    [55]李任锋,王德山,王艳杰,等.匹维溴铵对腹泻型肠易激综合征模型大鼠结肠组织血管活性肠肽及受体1表达的影响.中国中西医结合消化杂志,2010,18(2):89-92.
    [56]刘慧慧,王艳杰,刘旭东,等.匹维溴铵对腹泻型肠易激综合征模型大鼠结肠组织AQP3表达影响.第三军医大学学报,2011,33(3):233-236.
    [57]徐惠娟,滕超,钱永清,等.痛泻要方对腹泻型肠易激综合征模型大鼠结肠组织血管活性肠肽及受体1表达影响.中华中医药学刊,2012,30(2):268-270.
    [58]刘美荣,肖瑞飞,彭芝配,等.针刺“足三里”“太冲”穴对腹泻型肠易激综合征大鼠胃肠激素的影响.针刺研究,2012,37(5):363-368.
    [59]祝捷,罗和生,陈玲,等.腹泻型肠易激综合征大鼠结肠L-型钙通道α 1C亚基及α 1D亚基的表达变化.中华医学杂志,2009,89(38):2713-2717.
    [60]Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol,1997,32(9):920-924.
    [61]周干南,胡芝华,汪亚先,等.小鼠腹泻模型的制备与腹泻指数的应用.中草药,1994,25(4):195-196.
    [62]赵慧辉,郭书文,王伟.病证结合动物模型判定标准的建立.北京中医药大学学报,2009,32(6):365-368.
    [63]吕爱平.病证结合动物模型研究:从理论创新到技术挑战.中国中西医结合杂志,2013,33(1):6-7.
    [64]唐洪梅,廖小红,房财富,等.肝郁脾虚型大鼠肠易激综合征模型的建立及评价.中国实验方剂学杂志,2012,18(6):138-140.
    [65]谢建群,潘相学.健脾温中法对脾胃虚寒型肠易激综合征模型大鼠生长抑素的影响.中医杂志,2004,45(9):697-699.
    [66]王迎寒,陈光晖,刘玉玲,等.健脾化湿颗粒对IBS模型大鼠结肠NO和NOS的影响.承德医学院学报,2010,27(2):129-131.
    [67]马薇,彭芝配,滕久祥,等.九香止泻片对湿热泄泻型肠易激综合征大鼠肠道组织肥大细胞与五羟色胺表达的影响.中国中医药信息杂志,2011,18(4):36-37.
    [1]Rey E, Talley NJ. Irritable bowel syndrome:novel views on the epidemiology and potential risk factors.Dig Liver Dis,2009,41(11):772-780.
    [2]Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome:a meta-analysis. Clin Gastroenterol Hepatol,2012,10(7):712-721.e4.
    [3]熊理守,陈湖,陈惠新,等.广东省社区人群肠易激综合征的流行病学研究.中华医学杂志,2004,84(4):278-281.
    [4]Yao X, Yang YS, Cui LH,et al. Subtypes of irritable bowel syndrome on Rome III criteria:a multicenter study. J Gastroenterol Hepatol,2012,27(4):760-765.
    [5]Hulisz D. The burden of illness of irritable bowel syndrome:current challenges and hope for the future. J Manag Care Pharm,2004,10(4):299-309.
    [6]Spiller R, Aziz Q, Creed F,et al. Guidelines on the irritable bowel syndrome: mechanisms and practical management.Gut,2007,56(12):1770-1798.
    [7]Suzuki H, Hibi T. Overlap syndrome of functional dyspepsia and irritable bowel syndrome-are both diseases mutually exclusive? J Neurogastroenterol Motil,2011,17(4):360-365.
    [8]Chang JY, Talley NJ. Current and emerging therapies in irritable bowel syndrome:from pathophysiology to treatment. Trends Pharmacol Sci,2010, 31(7):326-334.
    [9]Enck P, Junne F, Klosterhalfen S, et al.Therapy options in irritable bowel syndrome. Eur J Gastroenterol hepatol,2010,22(12):1402-1411.
    [10]张声生,汪红兵,李振华,等.中医药辨证治疗腹泻型肠易激综合征多中心随机对照研究.中国中西医结合杂志,2010,30(1):9-12.
    [11]苏冬梅,张声生,刘建平,等.中医药治疗腹泻型肠易激综合征的系统评价研究.中华中医药杂志,2009,24(4):532-535.
    [12]张正利,蔡淦.20年来中医药治疗肠易激综合征回顾分析.中医杂志,2001,42(6):373-375.
    [13]Bian Z, Wu T, Liu L, et al.Effectiveness of the Chinese herbal formula Tong XieYaoFang for irritable bowel syndrome:a systematic review.J Altern Comple- ment Med,2006,12(4):401-407.
    [14]苏国彬,刘文华,陈海滨,等.以痛泻要方为基本方治疗肠易激综合征随机对照试验的系统评价.广州中医药大学学报,2009,26(2):113-119.
    [15]陈可冀.病证结合治疗观与临床实践.中国中西医结合杂志,2011,31(8):1016-1017.
    [16]徐浩.病证结合临床研究的关键问题.中国中西医结合杂志,2011,31(8):1020-1021.
    [17]赵慧辉,郭书文,王伟.病证结合动物模型判定标准的建立.北京中医药大学学报,2009,32(6):365-368.
    [18]江松敏,李军,孙庆文.蛋白质组学.北京:军事医学科学出版社,2010:16-35.
    [19]Hanash S.Disease proteomics.Nature,2003,422(6928):226-232.
    [20]Kraemer K H.From proteomics to disease.Nat Genet,2004,36(7):677-678.
    [21]周红光,陈海彬,周学平,等.蛋白质组学是中医病机研究的重要技术平台.中国中西医结合杂志,2012,32(7):990-993.
    [22]钟小兰,吕志平,钱令嘉,等.肝郁证模型大鼠血清蛋白质组的差异表达研究.中华中医药杂志,2006,21(7):399-401.
    [23]李治国,肖诚,李平.蛋白质组学是中医药现代化研究的重要工具.世界科学技术—中医药现代化.2007,9(3):81-85.
    [1]Coutinho SV, Plotsky PM, Sablad M,et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol,2002,282(2):G307-316.
    [2]Bercik P, Wang L, Verdu EF,et al. Visceral hyperalgesia and intestinal dysmo-tility in a mouse model of postinfective gut dysfunction. Gastroenterology, 2004,127 (1):179-187.
    [3]Pimentel M, Chatterjee S, Chang C,et al. A new rat model links two contempo-rary theories in irritable bowel syndrome. Dig Dis Sci,2008,53(4):982-989.
    [4]Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology,2000,119(5):1276-1285.
    [5]La JH, Kim TW, Sung TS,et al. Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis. World J Gastroenterol,2003,9(12):2791-2795.
    [6]Greenwood-Van Meerveld B, Johnson AC, Foreman RD,et al. Spinal cord stimulation attenuates visceromotor reflexes in a rat model of post-inflammatory colonic hypersensitivity. Auton Neurosci,2005,122(1-2):69-76.
    [7]Winston J, Shenoy M, Medley D,et al. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology,2007,132(2):615-627.
    [8]Traub RJ, Tang B, Ji Y,et al. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology,2008,135(6):2075-2083.
    [9]胡瑞,唐方.肝脾不调所致腹泻型肠易激综合征的动物模型研究.中医杂志,2010,51(6):547-550.
    [10]费晓燕,谢建群,郑昱,等.疏肝饮对腹泻型肠易激综合征模型大鼠胃动素和胆囊收缩素的影响.上海中医药杂志,2008,42(4):63-65.
    [11]祝捷,罗和生,陈玲,等.腹泻型肠易激综合征大鼠结肠L-型钙通道a 1C亚基及α1D亚基的表达变化.中华医学杂志,2009,89(38):2713-2717.
    [12]Kobayashi S, Ikeda K, Suzuki M,et al. Effects of YM905, a novel muscarinic M3-receptor antagonist, on experimental models of bowel dysfunction in vivo. Jpn J Pharmacol,2001,86(3):281-288.
    [13]Saito T, Mizutani F, Iwanaga Y,et al. Laxative and anti-diarrheal activity of polycarbophil in mice and rats. Jpn J Pharmacol,2002,89(2):133-141.
    [14]Juckett G, Trivedi R. Evaluation of chronic diarrhea. Am Fam Physician,2011, 84(10):1119-26.
    [15]李延青,郭玉婷,左秀丽,等.肠易激综合征内脏感觉过敏动物模型的建立.胃肠病学和肝病学杂志,2003,12(4):332-335.
    [16]Varghese AK, Verdu EF, Bercik P,et al. Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology, 2006,130(6):1743-1753.
    [17]Bian ZX, Qin HY, Tian SL,et al. Combined effect of early life stress and acute stress on colonic sensory and motor responses through serotonin pathways: differences between proximal and distal colon in rats. Stress,2011,14(4):448-458.
    [18]Monroy E, Hernandez-Torres E, Flores G. Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. J Chem Neuroanat,2010,40(2):93-101.
    [19]O'Malley D, Dinan TG, Cryan JF. Neonatal maternal separation in the rat impacts on the stress responsivity of central corticotropin-releasing factor receptors in adulthood. Psychopharmacology (Berl),2011,214(1):221-229.
    [20]Tjong YW, Ip SP, Lao L,et al. Neonatal maternal separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rat. Neuro Endocrinol Lett.2010;31(2):215-220.
    [21]Chung EK, Bian ZX, Xu HX,et al. Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals,2009,17(3):213-221.
    [22]Gareau MG, Jury J, Perdue MH. Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol,2007,293(1):G198-203.
    [23]Gareau MG, Jury J, MacQueen G,et al. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut,2007,56(11):1522-1528.
    [24]Lee JH, Kim HJ, Kim JG,et al. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res,2007,58(1):32-39.
    [25]Ren TH, Wu J, Yew D,et al. Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol,2007,292(3): G849-856.
    [26]李丹,吕妍,唐方.腹泻型肠易激综合征大鼠模型的建立.天津中医药,2009,26(3):240-242.
    [27]祝捷,罗和生,陈玲,等.腹泻型肠易激综合征大鼠结肠L-型钙通道α 1C亚基及α 1D亚基的表达变化.中华医学杂志,2009,89(38):2713-2717.
    [28]袁秀荣,谢燕,李国文,等.肠安颗粒治疗肠易激综合征的药效学研究.中国新药与临床杂志,2008,27(3):180-183.
    [29]王迎寒,陈光晖,刘玉玲,等.健脾化湿颗粒对IBS模型大鼠结肠NO和NOS的影响.承德医学院学报,2010,27(2):129-131.
    [30]滕茜华,李德勤.不同浸出时间和方法对番泻叶有效成分的影响.时珍国药研究,1991,2(2):75-76.
    [31]林观样,潘晓军,蔡进章.不同浸泡方法对番泻叶中番泻苷A浸出率的影响比较.医药导报,2006,25(8):816-817.
    [32]Hirotani Y, Mikajiri K, Ikeda K,et al. Changes of intestinal mucosal and plasma PYY in a diarrhea model rat and influence of loperamide as the treatment agent for diarrhea. Yakugaku Zasshi,2008,128(9):1311-1316.
    [33]李翠萍.番泻叶致泻作用时间观察.山西中医,2010,26(3):59.
    [34]李卫东.长期应用番泻叶对大鼠结肠电及Cajal间质细胞的影响.广州中医药大学学报,2005,22(5):408-409.
    [35]Uz E, Turkay C, Aytac S,et al. Risk factors for irritable bowel syndrome in Turkish population:role of food allergy. J Clin Gastroenterol,2007,41(4):380-383.
    [36]Eswaran S, Tack J, Chey WD. Food:the forgotten factor in the irritable bowel syndrome. Gastroenterol Clin North Am,2011,40(1):141-162.
    [37]Nieto N, Lopez-Pedrosa JM, Mesa MD,et al. Chronic diarrhea impairs intestinal antioxidant defense system in rats at weaning. Dig Dis Sci,2000,45(10):2044-2050.
    [38]刘雁冰,袁耀宗,陶然君,等.大鼠肠道高敏性模型的建立及其内脏敏感性评估.中华消化杂志,2003,23(1):34-37.
    [39]Winston J, Shenoy M, Medley D,et al. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology,2007,132(2):615-627.
    [40]唐洪梅,何嘉仑,闫雪,等.醋酸刺激加母婴分离致大鼠肠易激综合征模型的建立及评价.中医研究,2010,23(10):19-21.
    [41]张川,李定国,王彝康,等.肠易激综合征患者5-羟色胺含量的变化.上海第二医科大学学报,2001,21(1):66-68.
    [42]詹丽杏,许国铭,李兆申,等.肠易激综合征患者活动期和缓解期血浆5-HT、 5-HIAA的变化.第二军医大学学报,2003,24(2):152-154.
    [43]李运红,朱晓蕾,徐肇敏.腹泻型肠易激综合征患者结构粘膜5-羟色胺和5-羟色胺3受体的研究.胃肠病学,2006,11(8):477-480.
    [44]马瑞军,陈星,汪嵘,等.水通道蛋白8与肠易激综合征相关性表达研究.中华消化杂志,2007,27(5):354-355.
    [45]赵志忠,王俊平,刘俊.肠易激综合征患者结肠粘膜AQP8的表达.胃肠病学和肝病学杂志,2010,19(11):1029-1031.
    [46]孔武明,龚均,董蕾,等.肠易激综合征患者肠道屏障——紧密连接改变的示踪电镜观察.南方医科大学学报,2007,27(8):1167-1172.
    [47]孔武明,李光,龚均.紧密连接蛋白claudin-1在肠易激综合征患者肠粘膜中的表达及意义.山东医药,2008,48(2):27-29.
    [48]Bertiaux-Vandaele N, Youmba SB, Belmonte L,et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol,2011,106(12):2165-2173.
    [49]Barone FC, Deegan JF, Price WJ,et al. Cold-restraint stress increases rat fecal pellet output and colonic transit. Am J Physiol,1990,258(3 Pt 1):G329-337.
    [1]吕爱平.病证结合动物模型研究:从理论创新到技术挑战.中国中西医结合杂志,2013,33(1):6-7.
    [2]胡瑞,唐方.肝脾不调所致腹泻型肠易激综合征的动物模型研究.中医杂志,2010,51(6):547-550.
    [3]唐洪梅,廖小红,房财富,等.肝郁脾虚型大鼠肠易激综合征模型的建立及评价.中国实验方剂学杂志,2012,18(6):138-140.
    [4]湖南医学院第一附属医院中医基础理论研究室.肝郁脾虚的理论与实验研究.中南大学学报(医学版),1979,4(3):131-143.
    [5]李艳彦,谢鸣,陈禹,等.一种运用复合病因造模法复制大鼠肝郁脾虚证模型的研究.中国中医基础医学杂志,2006,12(6):439-442.
    [6]岳利锋,丁杰,陈家旭,等.肝郁脾虚证大鼠模型的建立与评价.北京中医药大学学报,2008,31(6):396-400.
    [7]雷云霞,刘新,蔡淦,等.两种肝郁脾虚动物模型的对比研究.新疆中医药,2012,30(1):10-12.
    [8]李健,赵志付.中医肝郁证动物造模方法多样性研究.中华中医药杂志,2012,27(11):2842-2847.
    [9]曲长江,林庶如,夏淑杰.苦寒泻下两种脾虚模型的免疫学比较研究.辽宁中医杂志,1999,26(3):133-134.
    [10]Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology,2000,119(5):1276-1285.
    [11]Saito T, Mizutani F, Iwanaga Y,et al. Laxative and anti-diarrheal activity of polycarbophil in mice and rats. Jpn J Pharmacol,2002,89(2):133-141.
    [12]Willner P, To well A, Sampson D,et al. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl),1987,93(3):358-364.
    [13]Steru L, Chermat R, Thierry B,et al. The tail suspension test:a new method for screening antidepressants in mice. Psychopharmacology (Berl).1985,85(3): 367-370.
    [14]Choung RS, Locke GR 3rd, Zinsmeister AR,et al. Psychosocial distress and somatic symptoms in community subjects with irritable bowel syndrome:a psychological component is the rule. Am J Gastroenterol,2009,104(7): 1772-1779.
    [15]Butt AS, Salih M, Jafri W, et al. Irritable bowel syndrome and psychiatric disorders in pakistan:a case control study. Gastroenterol Res Pract, 2012;2012:291452.
    [16]Chitkara DK, van Tilburg MA, Blois-Martin N,et al. Early life risk factors that contribute to irritable bowel syndrome in adults:a systematic review. Am J Gastroenterol,2008,103(3):765-774.
    [17]Lu CL, Chang FY. Placebo effect in patients with irritable bowel syndrome. J Gastroenterol Hepatol,2011,Suppl 3:116-118.
    [18]Lackner JM, Gudleski GD, Keefer L,et al. Rapid response to cognitive beha-vior therapy predicts treatment outcome in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol,2010,8(5):426-432.
    [19]Ford AC, Talley NJ, Schoenfeld PS,et al. Efficacy of antidepressants and psyc-hological therapies in irritable bowel syndrome:systematic review and meta-analysis. Gut.2009,58(3):367-378.
    [20]吕红,钱家鸣,金光亮,等.肠易激综合征慢急性联合应激动物模型的建立及其感觉、动力和心理行为的评价.中华内科杂志,2009,48(12):1035-1039.
    [21]Coutinho SV, Plotsky PM, Sablad M,et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol,2002,282(2):G307-316.
    [22]Ritchie J. Pain from distension of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut.1973 Feb; 14(2):125-32.
    [23]Mertz H, Naliboff B, Munakata J,et al. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology, 1995,109(1):40-52.
    [24]Slater BJ, Plusa SM, Smith AN,et al. Rectal hypersensitivity in the irritable bowel syndrome. Int J Colorectal Dis,1997,12(1):29-32.
    [25]袁秀荣,谢燕,李国文,等.肠安颗粒治疗肠易激综合征的药效学研究.中国新药与临床杂志,2008,27(3):180-183.
    [26]李丹,吕妍,唐方.腹泻型肠易激综合征大鼠模型的建立.天津中医药,2009,26(3):240-242.
    [27]祝捷,罗和生,陈玲,等.腹泻型肠易激综合征大鼠结肠L-型钙通道α1C亚基及a1D亚基的表达变化.中华医学杂志,2009,89(38):2713-2717.
    [28]Williams CL, Villar RG, Peterson JM,et al. Stress-induced changes in intestinal transit in the rat:a model for irritable bowel syndrome. Gastroenterology,1988, 94(3):611-621.
    [29]中华中医药学会脾胃病分会.肠易激综合征中医诊疗共识意见.中华中医药杂志,2010,25(7):1062-1065.
    [30]中国中西医结合学会消化系统疾病专业委员会.肠易激综合征中西医结合诊疗共识意见.中国中西医结合杂志,2011,31(5):587-590.
    [31]郭建丽,冯玛莉.中医肝郁证动物模型评价指标概述.光明.中医,2011,26(10):1996-1999.
    [32]Lee JH, Kim HJ, Kim JG,et al. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res,2007,58(1):32-39.
    [33]唐仕欢,杨洪军,黄璐琦.“以方测证”方法应用的反思.中国中西医结合杂志,2007,27(3):259-262.
    [34]Bian Z, Wu T, Liu L, et al.Effectiveness of the Chinese herbal formula TongXie YaoFang for irritable bowel syndrome:a systematic review.J Altern Comple-ment Med,2006,12(4):401-407.
    [35]苏国彬,刘文华,陈海滨,等.以痛泻要方为基本方治疗肠易激综合征随机对照试验的系统评价.广州中医药大学学报,2009,26(2):113-119.
    [36]张川,李定国,王彝康,等.肠易激综合征患者5-羟色胺含量的变化.上海第二医科大学学报,2001,21(1):66-68.
    [37]詹丽杏,许国铭,李兆申,等.肠易激综合征患者活动期和缓解期血浆5-HT、 5-HIAA的变化.第二军医大学学报,2003,24(2):152-154.
    [38]夏頔,刘希双,鞠辉.肠易激综合征患者肠黏膜SP、SPR和5-HT的变化.世界华人消化杂志,2009,17(30):3169-3173.
    [39]李运红,朱晓蕾,徐肇敏.腹泻型肠易激综合征患者结肠粘膜5-羟色胺和 5-羟色胺3受体的研究.胃肠病学,2006,11(8):477-480.
    [40]O'Sullivan M, Clayton N, Breslin NP,et al. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol Motil,2000,12(5):449-457.
    [41]Park JH, Rhee PL, Kim HS,et al. Mucosal mast cell counts correlate with visceral hypersensitivity in patients with diarrhea predominant irritable bowel syndrome. J Gastroenterol Hepatol,2006,21(1 Pt 1):71-78.
    [42]Guilarte M, Santos J, de Torres I,et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut,2007,56(2):203-209.
    [43]Goral V, Kucukoner M, Buyukbayram H. Mast cells count and serum cytokine levels in patients with irritable bowel syndrome. Hepatogastroenterology, 2010,57(101):751-754.
    [44]Kimpton J. The brain derived neurotrophic factor and influences of stress in depression. Psychiatr Danub,2012,Suppl 1:S169-171.
    [45]Nugraha B, Korallus C, Gutenbrunner C. Serum level of brain-derived neurotrophic factor in fibromyalgia syndrome correlates with depression but not anxiety. Neurochem Int,2013,62(3):281-286.
    [46]陶正宇.抑郁症患者血清BDNF水平及相关分析.兰州,兰州大学,2006.
    [47]Matricon J, Meleine M, Gelot A,et al. Review article:Associations between immune activation, intestinal permeability and the irritable bowel syndrome. Aliment Pharmacol Ther,2012,36(11-12):1009-1031.
    [48]Chen J, Zhang Y, Deng Z. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Thl/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol,2012,12:91.
    [49]贾勇,王巧民,戴海明.肠易激综合征T淋巴细胞亚群变化及其意义.临床消化病杂志,2002,14(2):60-61.
    [50]金杭斌,顾竹影,赵虹霞,等.腹泻型肠易激综合征患者外周血T淋巴细胞亚群及血清微量元素含量变化研究.浙江大学学报(医学版),2008,37(6):635-637.
    [51]韩炜,孙昭辉,李延青,等.肠易激综合征患者细胞和体液免疫网络失调及其临床意义.新医学,2003,34(7):420-422.
    [52]孙昭辉,王正起,王芳,等.肠易激综合征病人体液免疫指标检测的意义.齐鲁医学检验,2003,14(4):9-11.
    [1]Kozlowski CM, Green A, Grundy D,et al. The 5-HT(3) receptor antagonist alosetron inhibits the colorectal distention induced depressor response and spinal c-fos expression in the anaesthetised rat. Gut,2000,46(4):474-480.
    [2]Coates MD, Mahoney CR, Linden DR,et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology,2004,126(7):1657-1664.
    [3]Wu JC, Ziea ET, Lao L,et al. Effect of electroacupuncture on visceral hyperalgesia, serotonin and fos expression in an animal model of irritable bowel syndrome. J Neurogastroenterol Moti,2010,16(3):306-314.
    [4]Nozu T, Kudaira M. Corticotropin-releasing factor induces rectal hypersensiti-vity after repetitive painful rectal distention in healthy humans. J Gastroenterol, 2006,41(8):740-744.
    [5]Yu YB, Zuo XL, Zhao QJ,et al. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut,2012,61(5):685-694.
    [6]Akbar A, Yiangou Y, Facer P,et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut,2008,57(7):923-929.
    [7]Bian ZX, Li Z, Huang ZX, Zhang M,et al. Unbalanced expression of protease-activated receptors-1 and -2 in the colon of diarrhea-predominant irritable bowel syndrome patients. J Gastroenterol,2009,44(7):666-674.
    [8]Marger F, Gelot A, Alloui A,et al. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci USA,2011,108(27):11268-11273.
    [9]Zhang R, Zou N, Li J,et al. Elevated expression of c-fos in central nervous system correlates with visceral hypersensitivity in irritable bowel syndrome (IBS):a new target for IBS treatment. Int J Colorectal Dis,2011,26(8):1035-44.
    [10]Liebregts T, Adam B, Bredack C,et al. Immune activation in patients with irritable bowel syndrome. J Gastroenterol,2009,44(7):666-674.
    [11]Bourdu S, Dapoigny M, Chapuy E,et al. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology,2005,128(7):1996-2008.
    [12]Willot S, Gauthier C, Patey N,et al. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil,2012,24(8):734-9, e347.
    [13]Wang JP, Hou XH. Expression of aquaporin 8 in colonic epithelium with diarrhoea-predominant irritable bowel syndrome. Chin Med J (Engl), 2007,120(4):313-316.
    [14]Chen Y, Li Z, Yang Y,et al. Role of glucagon-like peptide-1 in the pathogenesis of experimental irritable bowel syndrome rat models. Int J Mol Med, 2013,31(3):607-613.
    [15]Bertiaux-Vandaele N, Youmba SB, Belmonte L,et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol,2011,106(12):2165-2173.
    [16]江松敏,李军,孙庆文.蛋白质组学.北京:军事医学科学出版社,2010:2-21.
    [17]郭旭.腹泻型肠易激综合征患者结肠异常表达蛋白质的筛选及鉴定.北京:中国人民解放军军医进修学院,2006.
    [18]Lopes LV, Marvin-Guy LF, Fuerholz A,et al. Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life. J Proteomics,2008,71(1):80-88.
    [19]Ding Y, Lu B, Chen D.et al. Proteomic analysis of colonic mucosa in a rat model of irritable bowel syndrome. Proteomics,2010,10(14):2620-2630.
    [20]Marvin-Guy L, Lopes LV, Affolter M,et al. Proteomics of the rat gut:analysis of the myenteric plexus-longitudinal muscle preparation.Proteomics,2005, 5(10):2561-2569.
    [21]Brophy CM, Beall A, Mannes K,et al. Heat shock protein expression in umbili-cal artery smooth muscle. J Reprod Fertil,1998,114(2):351-355.
    [22]Larsen JK, Yamboliev IA, Weber LA,et al. Phosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle. Am J Physiol,1997,273(5 Pt 1):L930-940.
    [23]Fuchs LC, Giulumian AD, Knoepp L,et al. Stress causes decrease in vascular relaxation linked with altered phosphorylation of heat shock proteins. Am J Physiol Regul Integr Comp Physiol,2000,279(2):R492-498.
    [24]郭旭,杨云生,罗莹.腹泻型肠易激综合征患者结肠粘膜组织异常表达蛋白质的筛选与鉴定.解放军医学杂志,2007,32(12):1257-1259.
    [25]姚欣.腹泻型肠易激综合征患者结肠异常表达蛋白质的筛选及鉴定.北京:中国人民解放军军医进修学院,2008.
    [26]张茹,吕红,钱家鸣,等.肠易激综合征脑-肠交互作用模型结肠组织蛋白指纹图谱初探.中华内科杂志,2010,49(2):134-137.
    [27]Gershon MD, Tack J. The serotonin signaling system:from basic understand-ding to drug development for functional GI disorders. Gastroenterology,2007, 132(1):397-414.
    [28]Tonini M.5-Hydroxytryptamine effects in the gut:the 3,4, and 7 receptors. Neurogastroenterol Motil,2005,17(5):637-642.
    [29]Chung EK, Bian ZX, Xu HX,et al. Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals,2009,17(3):213-221.
    [30]Chen HS, Zhou ZH, Li M,et al. Contribution of brain-derived neurotrophic factor to mechanical hyperalgesia induced by ventral root transection in rats. Neuroreport,2013,24(4):167-170.
    [31]Willot S, Gauthier C, Patey N,et al. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil,2012,24(8):734-9, e347.
    [32]Akbar A, Yiangou Y, Facer P,et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut,2008,57(7):923-929.
    [33]Marger F, Gelot A, Alloui A,et al. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci USA,2011,108(27):11268-11273.
    [34]Surawicz CM. Mechanisms of diarrhea. Curr Gastroenterol Rep,2010,12(4):236-241.
    [35]Woo AL, Gildea LA, Tack LM,et al. In vivo evidence for interferon-gamma-mediated homeostatic mechanisms in small intestine of the NHE3 Na+/H+ exchanger knockout model of congenital diarrhea. J Biol Chem,2002,277 (50):49036-49046.
    [36]Zachos NC, Kovbasnjuk O, Donowitz M. Regulation of intestinal electroneu-tral sodium absorption and the brush border Na+/H+ exchanger by intracellular calcium. Ann N Y Acad Sci,2009,1165:240-248.
    [37]Agre P, King LS, Yasui M,et al. Aquaporin water channels-from atomic structure to clinical medicine. J Physiol,2002,542(Pt 1):3-16.
    [38]Wang JP, Hou XH. Expression of aquaporin 8 in colonic epithelium with diarrhoea-predominant irritable bowel syndrome. Chin Med J (Engl), 2007,120(4):313-316.
    [39]马瑞军,陈星,汪嵘,等.水通道蛋白8与肠易激综合征相关性表达研究.中华消化杂志,2007,27(5):354-355.
    [40]赵志忠,王俊平,刘俊.肠易激综合征患者结肠粘膜AQP8的表达.胃肠病学和肝病学杂志,2010,19(11):1029-1031.
    [41]金杭斌,顾竹影,赵虹霞,等.腹泻型肠易激综合征患者外周血T淋巴细胞亚群及血清微量元素含量变化研究.浙江大学学报(医学版),2008,37(6):635-637.
    [42]孙昭辉,王正起,王芳,等.肠易激综合征病人体液免疫指标检测的意义.齐鲁医学检验,2003,14(4):9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700