转Bt基因棉压力下靶标害虫及其天敌的波动性不对称
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫(Helicoverpa armigera)属鳞翅目夜蛾科,广泛分布于南北纬50度之间,是一种世界范围的重要农业害虫。近年来,转Bt基因棉以其良好的抗虫性,在降低生产成本,减少农药污染等方面都发挥了重要作用,因此得到了广泛的应用。然而,随着转Bt基因棉的大规模商业化释放,其潜在的生态风险也越来越受到重视,主要集中在对靶标生物抗性的产生以及对天敌昆虫安全性评估两方面。
     以往用于检测棉铃虫抗性产生及转基因棉对天敌昆虫安全性的方法都需要花费大量的人力和金钱,是否存在一种简便、快捷,易操作、花费低,但同时又对环境压力十分灵敏的生物指标,能够对生物所受到这种不利影响作出指示呢?波动性不对称(Fluctuating asymmetry,FA)被许多国外学者认为是最有希望能够成为这种环境压力的生态指标。
     本文针对转Bt基因棉压力下棉铃虫及其天敌的FA开展研究,探索了以FA作为转基因棉安全性指标的可能性。主要研究结果如下:
     一、靶标害虫的FA
     在实验室内,利用Bt棉叶片饲喂法对棉铃虫幼虫进行了连续13代的筛选,逐代记录种群的各适合度参数,同时选择了前足腿节、翅脉L1、后翅翅长这三个特征作为FA的研究对象。适合度的研究结果表明,转Bt基因棉对棉铃虫的生长发育产生了诸多不利影响:与对照种群相比,幼虫的存活率显著降低、发育历期延长、雌成虫产卵量减少、卵的孵化率降低以及成虫寿命缩短。虽然在连续13代的筛选过程中,幼虫存活率表现出逐渐增加的趋势,但是雌虫产卵量、卵孵化率与成虫寿命仍然呈下降趋势;对照种群在连续12代的饲养过程中幼虫的存活率略有上升,而适合度参数却略微下降,但并不如处理种群明显。对FA的研究结果表明,除对照种群中第一代的L1未表现出FA外,其它各特征在不同种群与世代中都表现出FA。无论在处理种群还是对照种群中,随着筛选代数的增加,前足腿节、L1、后翅翅长的FA值均出现下降的趋势,将其与适合度各参数进行相关性分析后发现,处理种群中,后翅的FA4值与种群的存活率间存在显著的负相关关系(r=-0.64,p<0.05);在对照种群中,后翅翅长的FA3和FA4值与存活率间同样也存在显著的负相关关系(r=-0.61,p<0.05;r=-0.63,p<0.05)。据此,可以认为FA水平的变化能够反映出棉铃虫种群对转基因棉压力存在
    
    转Bt基因棉压力下靶标害虫及其大敌的波动性不对称
    适应性的趋势。对Bt毒蛋白及Bt杀虫剂高杭品系棉铃虫的FA研究发现,其与敏感
    品系间无显著差异。同时,对照种群在个体水平上雄成虫翅脉L1的不对称与幼虫发
    育历期呈极显著的正相关关系,而与蛹重呈极显著的负相关关系。
     对转基因棉筛选了8代后的棉铃虫种群,牙J用亲子回归系数法估算了棉铃虫前足
    腿节与翅脉L1的FA与其长度的狭义遗传力矿,结果表明:前足腿节与翅脉的FA均
    不表现出遗传效应,即尸的值与零的差异不显著;但这两个特征的大小具有显著的遗
    传力。结合上面的研究结果,得出FA是反映转基因棉的选择压力对棉铃虫发育稳定
    性影响的理想指标,但前足腿节与翅脉的FA不适于作为指示棉铃虫遗传质量的指标。
     2002年上半年在我国北方棉区选取了有1一5年Bt棉种植史的4省13个县、市作
    为田间棉铃虫种群FA研究的虫源地:河南省的郸城、新乡、安阳、民权,河北省的
    辛集、大成、抚宁、饶阳、任丘,山东省的汉上和巨野,以及江苏省的享宁和丰县。
    矛){用黑光灯诱蛾法采集了各点棉铃虫上灯蛾,在实验室内测定了各点成虫后足腿节的
    FA。结果表明,除河北省辛集外,十二个采集地的棉铃虫后足腿节均表现出FA;相关
    性分析发现,各采集点的FA值与Bt棉的种植年代间存在着显著的负相关关系
    (:一0.77,P    而渐增的趋势。
     在研究转基因棉压力下棉铃虫各特征FA的同时,我们在室内种群中发现前翅副
    室与翅脉存在多种不同类型的变异:副室端部不能封闭;中室下底Cul:与Cu】b间的
    一段翅脉变异为两条;Cul。上多出一条崎形的附加翅脉;Cula与Culb这两条翅脉的中
    部多出一条肘横脉;副室的前方,由中室基部发出的分径脉又形成另一个封闭的翅室。
    同时还发现,取食转基因棉的种群中变异个体的数量要多于取食常规棉的数量。结合
    其他相关报道,认为极端环境压力可能是诱导变异产生的原因之一。
    二、捕食性与寄生性天敌的FA
     以取食转Bt基因棉上的蚜虫(APhis 905卿11)的异色瓢虫(Harmonia axxri苗s)
    作为研究对象,考察了其适合度、功能反应以及后翅的FA值与取食常规棉上蚜虫的
    对照种群间的差异。结果表明,取食了转Bt基因棉上的蚜虫后对瓢虫的适合度各参
    数及各虫龄的捕食功能反应均无不良影响;处理种群与对照种群的后翅均表现出FA,
    前者的FA值略高于后者,但经F检验后发现差异不显著(F(28,19)=1 .2119,P>0.05)。
    
    转Bt基因棉压力下靶标害虫及其天敌的波动性不对称·摘要
    说明,FA能够正确反映转基因棉对异色瓢虫的影响。
     再以棉铃虫体内寄生蜂斑痣悬茧蜂(MetooruspulchricoI’nis)为研究对象,考察
    了其在转Bt基因棉压力下的适合度及FA,及两者在个体水?
The cotton bollworm, Helicoverpa ormigera(Lepidoptera: Noctuidae), is a worldwide pest. Bt-transgenic cotton that express insecticidal proteins from Bacillus thuringiensis is rapidly developing as a novel control measure for the cotton bollworm. As the large scale commercial released of Bt-transgenic cotton, the possible ecological risks focused on the evolution of pest resistance to Bt cotton and the effects to target and non-target insects have received more and more concern and have been assessed by various approaches. But the traditional methods to monitoring the bio-safety of transgenic crops (say life-table or bioassay) are usually time-consuming, laborious and costly, so we should try to find a simple, easy and sensitive measure to get early-prediction of the trade-off of population status or environmental pressure. Fluctuating asymmetry, small random differences between left and right and with a low level of heritability, is advocated by some scientists as an "early warning system" for stress-mediate
    d changes in developmental instability.
    In this paper, we explored the possibilities that using the fluctuating asymmetry in target pest and natural enemies under the stress of transgenic cottons a simple and sensitive indicator to monitoring the ecological safety of Bt-transgenic cotton.
    1. FA in the target pest
    In the laboratory, the Bt-transgenic cotton leaves were used to feed cotton bollworm (CB) larva for 13 generations under resistance monitoring. The fitness and the FA in three traits in every generation were observed. The results show that there were significantly fewer eggs per female, lower egg hatchability, shorter adult longevity, and longer duration of larva in treatment population than that in control population. The rate of larva survival had an ascending tendency when CB continuously feed Bt-cotton and conventional cotton for 13 generations, but the fitness had a reverse tendency. To test the fluctuating asymmetry (FA) in fore femur, special vein L1 and hind wing under the stress and control, the result
    
    
    
    show that all traits except for L1 in first generation of control population demonstrated FA, and a majority of FA values were larger in treatment compare to those in control. We also found there was a tendency for the level of FA to decrease both in treatment and control population. We also tested if there was a relationship between FA and any fitness components at the population level. Significantly negative relationship was found between the FA in hind wing and the rate of larva survival in stress treatment (r=-0.64, p<0.05 ) , there is also a negative relationship in control too. According to these results, we believe FA can indicate the adaptation of lab population of CB to Bt cotton. We also tested the FA in CB with high resistance to Bt-protein and Bt-insecticide, the result shown, there is no significant difference between resistant strain and susceptive strain. At the individual level, the FA in L1 of the control population was significant positively related to larval duration and inversely related to pupa weight.
    Fluctuating asymmetry (FA) has been proposed as a tool to measure levels of stress experienced by populations of organisms during development, so it is important that variation in FA levels is due to environmental variation and not genetic variation among populations and families. So we assess the narrow-sense heritability (h2) of FA and size in fore femur and cross vein of laboratory population CB using parent-offspring regressions after selected by Bt-cotton for 8 generations. The result show, FA was not significantly heritable for any of the individual traits, that is to say that heritability of FA was low under laboratory conditions; on the other hand, the length of two traits have significant levels of additive genetic variance. According with those results, we considered that FA can be used as an indicator of Bt stress, however, FA in fore femur and L1 may therefore be a poor indicator of genetic quality in CB.
    After having studied the FA in laborator
引文
1.崔金杰,夏敬源.转Bt基因棉对天敌种群动态的影响.棉花学报,1999,11(2):84-91
    2.程福如,2003.转Bt及(Bt+CpTI)基因抗虫棉抗性研究与利用.30(6):6-9.
    3.高惠璇,李东风,耿直,栾世武,张平,1995.SAS系统与基础统计分析.北京大学出版社,pp65
    4.李保平,2002.转基因抗虫植物对天敌昆虫的影响.中国生物防治,18(3):97-105
    5.马海芹,2003.转Bt基因棉对棉田非靶标生物及次要害虫的影响研究.南京农业大学硕士学位论文
    6.张建军,张知彬,2003.动物的性选择.生态学杂志,22(4):60-64.
    7.张天真,唐灿明,2000.转Bt基因抗虫棉品种的推广利用与棉铃虫抗性的治理.科学通报,45(2):119-127.
    8.赵建周,赵奎军.卢美光等,1998.华北地区棉铃虫与转Bt杀虫蛋白基因棉花间的互作研究.中国农业科学,31(5):1-6
    9.沈晋良,周威君,吴益东等,1998.棉铃虫对Bt生物农药早期抗性及与转Bt基因抗虫性的关系.昆虫学报,4(1):8-14
    10.卢美光,赵建周,范贤林等,2002.华北地区棉铃虫对Bt杀虫蛋白的抗性监测.棉花学报,12(4):180-183
    11.陈锦绣,章东方,许仲武等,1998.棉铃虫对苏云金杆菌(Bt)的抗性监测及延缓抗性策略.安徽农业科学,26(4):356-359
    12.崔学芬,夏敬源,王春义等,2001.对Bt毒蛋白不同抗性水平的棉铃虫种群(品系)的生物学研究.中国棉花学会第六届代表大会及第十二次学术研讨会论文集.114.
    13.吴孔明,郭予元,王武,2000.部分GK品系Bt棉对棉铃虫抗性的田间评价.植物保护学报,24(4):317-321
    14.马艳,2003.转基因抗虫棉生物安全研究进展.棉花学报,15(1):59-64
    15.周冬生,吴振廷,王学林等,2001.生长前期转Bt基因棉对棉铃虫的抗性研究.棉花学报,13(3):174-176
    16 李娜,孟玲,翟保平,吴孔明.2004,在转Bt基因棉压力下棉铃虫和异色瓢虫的波动性不对称.昆虫学报,47(2):198-205.
    17. Alekseeva T A, Zinichev V V, Zotin A I, 1992. Energy criteria of reliability and stability developmental. Acta Zoologica Fennica 191 : 159-165.
    18. Andersson M, 1994. Sexual selection. Princeton University Press, Princeton, N.J.
    19. Angus R A, Schultz R H, 1983. Meristic variation in homozygous and heterozygous fish. Copeia
    
    287-299.
    20. Antipin MI, Imasheva AG, 2001. Genetic variability and fluctuating asymmetry of morphological traits in Drosophila melanogaster reared on a pesticide-containing medium. Russian Journal of Genetics, 37(3): 247-252.
    21. Arcese P, 1994. Harem size and horn symmetry in oribi. Animal Behaviour, 45: 1485-1488.
    22. Bader R S, 1965. A partition of variance in dental traits of the house mouse. J. Mammal. 46:384-388.
    23. Baur M E, Boethel D J,2002. Effect of Bt-cotton expressing CryIA (c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biological control, in press.
    24. Beardmore J A, 1960. Developmental stability in constant and fluctuating temperatures. Heredity, 14: 411-422.
    25. Bjrklund M, 1996. The effect of male presence on nestling groeth and fluctuating asymmetry in the blue tit. Condor, 98: 172-175.
    26. Bjorksten T, David P, Pomiankowski A, Fowler K, 2000. Fluctuating asymmetry of sexual and nonsexual traits in stalk-eyed flies: a poor indicator of developmental stress and genetic quality. J.Evol. Biol., 13: 89-97.
    27. Blumberg D, Navon A, Keren S, Goldenerg S, Ferkovich S M, Interactions among Helicoverpa armigera (Lepidoptera: Noctuidae), its laval endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae), and Bacillus thuringiensis. J. Econ. Entomol. 1997, 90: 1181-1186
    28. Brain L, Mark R F, 1996. Fluctuating asymmetry in relation to stress and fitness: Effects of traits type as revealed by meta-analysis. Ecoscience, 3 (4): 400-413.
    29. Cadée N, 2000. Genetic and environmental effects on morphology and fluctuating asymmetry in nestling barn swallows. J. Evol. Biol., 13: 359-370.
    30. Clarke G M, 1992, Fluctuating asymmetry: a technique for measuring developmental stress of genetic and environmental origin. Acta Zool. Fenn., 191:31-35.
    31. Clarke G M, McKenize L J, 1992. Fluctuating asymmetry as a quality control indicator for insect mass rearing processes. Journal of Economical Entomology, 85: 2045-2050.
    32. Clarke G M, 1993. Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality. Environmental pollution, 82:207-211.
    33. Clarke G M, 1995. Relationships between developmental stability and fitness: application for conservation biology. Conservation Biology, 9: 18-24.
    34. Córdoba- Aguilar R, 1995. Fluctuating asymmetry in paired and unpaired damselfly males Ischnura
    
    denticollis(Burmeister)( Odonata: Coenagrionidae). Journal of Entology, 13:129-132.
    35. David P, Hingle A, Fowler K, Pomiankowski A, 1999. Measurement bias and fluctuating asymmetry estimates. Animal Behaviour, 57:251-253.
    36. Dogan E B, Berry R E, Reed G L, et al., Biological parameters of convergent lady beetle (Coleoptera: Coccinellidae) feeding on Aphids (Homoptera: Aphididae) on transgenic potato. Journal of Economic Entomology. 1996, 89 (5): 1105-1108.
    37. Eggert A K, Sakaluk S K, 1994. Fluctuating asymmetry and variation in the size of courtship food gifts in decorated crichets. American Naturalist, 144:708-716.
    38. Fiske P, Kalas J A, Sather S A, 1994. Correlates of male mating success in the lekking great snipe (Gallinago media): results from a four- year study. Animal Behaviour, 5:210-218.
    39. Govind C K, Pearce, J, 1986. Differential reflex activity determines claw and close muscle asymmetry in developing lobsters. Science. 233: 354-356.
    40. Govind C K, Pearce, J, 1992. Mechanoreceptors and minimal reflex activity determining claw laterality in developing lobsters. Journal of Experimental Biology. 171: 149-162.
    41. Graham J H, Felley J D, 1985. Genomic coadaptation and developmental stability within introgressed populations of Enneacanthus glorious and E. obesus (Pisces, Centrarchidea). Evolution 39: 104-114.
    42. Graham J H, Roe K E, West T B, 1993. Effects of lead and benzene on developmental stability of Drosophila melanogaster. Ecotoxicology, 2: 185-195.
    43. Hagen K S, Mills N, Gorden G et al., 1999 Handbook of Biological Control :Principles and Applications [M] San Diego: Academic Press. 383-503.
    44. Harvey I F, Walsh K J, 1993. Fluctuating asymmetry and lifetime mating success are correlated in males of damselfly Coenagrious puella (Odonata: Coenagrionidae). Ecological Entomology, 18: 198-202.
    45. Hasegawa M, 1995. Sexual selection among peafowl: Fluctuating asymmetry and parasite resistance. Bulletin of the Association of the Natural Science of Senshu University, 26:19-25.
    46. Hill G E, 1995. Ornamental traits as indicators of environmental health. BioScience, 45:25-31.
    47. Hoffman A A, Parsons P A, 1991.Evolutionary genetics and environmental and stress .Oxford University Press,Oxford.
    48. Houle D, 1989. Allozyme - associates heterosis in Drosophila melanogaster. Genetics, 123: 789-801.
    49. Jason W C, Dave G, 2000. Enviromental versus genetic influences on fluctuating asymmetry in the house fly, Musca domestica. Biological Journal of Linnean Society 70:403-413
    50. Jervis M A, Kidd N A C Insect Natural enemies. London Chapman & Hall 1996 375-394
    
    
    51. Joseph L T, Leigh W S, 1999. Heritability of size but not symmetry in a sexually selected trait chosen by female earwigs. Heredity 82:151-157
    52. Kevin F, Michael C W, 1994. Fluctuating asymmetry does not increase with moderate inbreeding in Drosophila melanogaster. Heredity, 73: 373-376.
    53. Kieser J A, Groeneveld H T, 1991. Fluctuating odontometric asymmetry, morphological variability, and genetic monomorphism in the cheetah Acinoyx jubatus. Evolution, 45:1175-1183.
    54. Kripichnikov V S, 1981. Genetic bases of fish selection. Springer, Berlin.
    55. Leamy L, 1997. Is developmental stability heritable? J. Evol. Biol.,10:21-29
    56. Leary R F, Allendorf F W, Knudsen K L, 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature, 301: 71-72.
    57. Leary R F, Allendorf F W, Knudsen K L, 1984. Superior developmental stability of heterozygotes of enzyme loci in salmonid fishes. Am. Nat., 124: 540-551.
    58. Leary R F, Allendorft F W, 1989. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends in Ecology and Evolution, 4: 214-217.
    59. Leary R F, Allendorf F W, Knudsen K L, 1992. Genetic, environmental and developmental causes of meristic variation in rainbow trout. Acta. Zool. Fennica, 191: 79-95.
    60. Lens L, Dongen S V, Matthysen E, 2002. Fluctuating asymmetry as early warning system in the critically endangered Taita Thrush. Conservation biology, 16: 479-487.
    61. Liggett A C, Harvey I F, Manning J T, 1993. Fluctuating asymmetry in Scatophaga stercoraria: successful males are more symmetrical, Animal Bahaviour, 45: 1041-1043.
    62. Manning J T, Koukourakis K, Brodie D A, 1996. Fluctuating asymmetry, metabolic rate and sexual selection. Ethology and Sociobiology.
    63. Manning J T, Chamberlain A T, 1994. Fluctuating asymmetry in gorilla canines: A sensitive indicator of environmental stress. Proceedings of the royal society of London series B, 255:189-193.
    64. Markow T A, Clarke G M, 1997. Meta-analysis of the heretibility of developmental stability: a giant step backward. J. Evol. Biol., 10: 31-37.
    65. Markow T, Clarke J P, 1992. Male size, developmental stability, and mating success in natural populations of three Drosophila species. Heredity, 69:122-127.
    66. Mason L G, Ehrlich P R, Emmel T C, 1976. The population biology of the butterfly, Euphydryas editha. V. Character clusters and asymmetry. Evolution. 21: 85-91.
    67. Mather K, 1953. Genetical control of stability in developmental. Heredity 7: 297-336.
    68. Mckenzie J A, Clarke G M, 1988. Diazonon resistance, fluctuating asymmetry and fitness in the Australian sheep blowfly, Lucilia cuprina. Genetics, 120:213-220
    
    
    69. McKenzie J A, O'Farrell K, 1993. Modification of developmental instability and fitness: malathion-resistance in the Australian sheep blowfly. Genetics, 120: 213-220.
    70. McLachlan A, Gant M, 1995. Small males are symmetrical: mating success in the midge Chironomus plumosus L.(Diptera: Chironomidae). Animal Behaviour, 50:841-846.
    71. Mitton J B, 1993. Enzyme heterozygosity, metabolism, and developmental stability. Genetic 89: 47-65.
    72. Mitton J B, Koehn R K, 1985. Shell shape variation in the bule mussel, Mytilus edulis L., and its association with enzyme heterozygosity. Journal of Experimental Marine Biology and Ecology, 90: 73-80.
    73. Moller A P, 1990. Fluctuating asymmetry in male sexual ornaments may veliably reveal male quality. Animal Behaviour, 40: 1185-1187.
    74. Moller A P, 1992a. Females prefer large and symmetrical ornaments. Nature, 357: 238-240.
    75. Moller A P, 1992. Fluctuating asymmetry evolution of signals. Page 96-98 in P. Bateson and M. Gomendioels Workshop on behavioural mechanisms in evolutionary perspective. Institute Juan March de Estudiose Investigacions, Madrid.
    76. Moller A P, 1992. Patterns of fluctuating asymmetry in weapons: evidence for reliable signaling of quality in beetle horns and bird spurs. Proc.R Soc. Lond. B Biol. Sci.,248: 199-208.
    77. Moller A P, 1993a. Female preference for apparently symmetrical male sexual ornaments in the barn swallow Hirundo rustica. Behav. Ecol. Sociobiol., 32: 371-376.
    78. Moller A P, 1993b. Developmental stability, sexual selection, and speciation. Journal of evolution biology. 6: 493-509.
    79. Moller A P, 1993c. Developmental stability, sexual selection, and the evolution of secondary sexual characters. Etologīa, 3:199-208.
    80. Moller A P, 1994. Symmetrical male sexual ornaments, paternal care, and offspring quality. Behavioral Ecology, 5:188-194.
    81. Moller A P, 1996. Parasitism and developmental stability of hosts: a review. Oikos, 77:189-196.
    82. Moller A P, 1997. Developmental stability and fitness: A review. The American Naturalist. 149(5): 917-931.
    83. Moller A P, 1999. Asymmetry as a predictor of growth, fecundity and survival. Ecology Letters, 2: 149-156.
    84. Moller A P, Cuervo J J, Soler J J, Munoz C Z, 1996. Horn asymmetry and fitness in gemsbok, Oryx g. Gazella. Behav. Ecol., 7:247-253
    85. Moller A P, Thornahill R, 1997. Heritability of fluctuating asymmetry: a meta-analysis of the
    
    heritability of developmental stability. J. Evol. Biol., 10:1-16
    86. Moller A P, Thornahill R, 1998. Bilateral symmetry and sexual selection: A meta-analysis. The American naturalist, 151 : 174-192.
    87. Moller A P, Sanotra G S, Vestergaard S, 1995b. Developmental stability in relation to population density and breed of chickens Gallus gallus. Poultry Science, 74:1761-1771.
    88. Moller A P, Soler M, Thornhill R, 1995a. Breast asymmetry, sexual selection, and human reproductive success. Ethology and Sociobiology, 16:207-219.
    89. Moller A P, Swaddle J, 1997, Developmental stability and evolution. Oxford University Press: Oxford.
    90. Mpho M, Callaghan A, Holloway G J, 2002. Temperature and genotypic effects on life history and fluctuating asymmetry in a field strain of Culex pipiens. Heredity 88:307-312.
    91. Naugler CT, Leech SM, 1994. Fluctuating asymmetry and survival ability in the forest tent caterpillar moth Malacosoma disstria: implications for pest management. Ent. Exp. Appl., 70: 295-298.
    92. Novak J M, Rhodes O E, Smith M H, Chesser R K, 1993. Morphological asymmetry in mammals: Genetics and homeostasis reconsidered. Acta Theriologica, 38: 7-18.
    93. Ozernyuk N D, 1989. The principle of minimum of energy in ontogenesis and canalization of developmental processes. Ontogenesis 20:117-127.
    94. Packer C, Pusey A E, 1993. Should a lion change its spots? Nature, 362: 595.
    95. Palmer A R, 1994. Fluctuating asymmetry analyses: a primer. In: Markow TA ed. Developmental Instability: Its Origins and Evolutionary Implications. Dordrecht: Kluwer, 335-364.
    96. Palmer A R, 1996. Waltzing with asymmetry. Bioscience. 46(7): 518-532.
    97. Palmer A R, Strobeck C, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. Syst., 17: 391-421.
    98. Palmer A R, Strobeck C, 1992. Fluctuating asymmetry as a measure of developmental stability: implications of non-normal distributions and power of statistical tests. Acta Zoologica Fennica 191:57-72.
    99. Parsons P A, 1961. Fly size emergence time and sternopleural chaeta number in Drosophila. Heredity, 16: 455-473.
    100. Parsons P A, 1990. Fluctuating asymmetry: an epigenetic measure of stress. Biol.Rev., 65:131-145
    101. Parsons P A, 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity, 68: 361-364.
    102. Pankakoski E, Koivisto, I, Hyvarinen H, 1992. Reduced developmental stability as an indicator of heavy metal pollution in the common shrew Sorex araneus. Acta. Zool. Fennica, 191:
    
    137-144.
    103. Pilcher C D, Obrycki J J, Lewis L C. Preimaginal development, survival, and impact of natural enemy populations in transgenic versus isogenic corn. Journal of Economic Entomology. 1997, 26 (2): 446-454
    104. Polak M, Trivers R R, 1994. The science of symmetry in biology. Trends in Ecology and Evolution, 9: 122-124.
    105. Raymond J A, William J, Lisa J B, Cheryl B, 2003. Resistances to the Cry1AC δ- Endotoxin of Bacillus thuringiensis in the Cotton bollworm, Helicoverpa armigera(Lepidoptera: Noctuidae). J. Econ. Entomol. 96(4): 1290-1299.
    106. Reeve E C R, 1960. Some genetic tests on asymmetry of sternopleural chaeta number in Drosophila. Genet. Res., 1 : 151-172.
    107. Richard E W, Miriam J H, Ary A H, 1998. Estimating the heritability of fluctuating asymmetry in field Drosophila. 52(3): 816-824
    108. Rettig E J, Fuller R C, Corbett A L, Getty T, 1997. Fluctuating asymmetry indicates levels of competition in an even-aged poplar clone. Oikos, 80: 123-127.
    109. Sommer C, 1996. Ecotoxicology and developmental stability as an insitu monitor of adaptation. Ambio, 25: 374-376.
    110. Snke, H, 2000. Effects of carbaryl exposure on the last larval instar of Xanthocnemis zealandicafluctuating asymmetry and adult emergence. Entomologia Experimentalis et Applicata, 96: 221-230.
    111. Soulé M, Baker B,1968. Phenetics of natural populations. Ⅳ. The population asymmetry parameter in the butterfly Coenonympha tullia. Heredity, 23:611-614.
    112. Stefan V D, Ellen S, Christer L, Erik M, 1999. Heritability of tibia fluctuating asymmetry and developmental instability in the winter moth (Operophtera brumata L.) (Lepidoptera, Geometridae). Heredity 82:535-542
    113. Swaddle J P, Cuthill I C, 1994a. Female zebra finches prefer males with symmetric chest plumage. Proceeding of the Royal Society of London B. Biological Science, 258: 267-271.
    114. Swaddle J P, Cuthill I C, 1994b. Preference for symmetric males by female zebra finches. Nature(London), 367:165-166.
    115. Swaddle J P, Witter M S, Cuthill I C, 1994. The analysis of fluctuating asymmetry. Anim. Behav., 48: 986-989.
    116. Swaddle J P, 1996. Reproductive success and symmetry in zebra finches. Animal Behavior, 51: 203-210.
    
    
    117. Thoday J M, 1956. Balance, heterozygosity and developmental stability. Cold spring harbor symposium in quantitative biology, 21 : 318-326.
    118. Thornhill R, 1992. Fluctuating asymmetry and mating system of the Japanese scorpionfly. Panorpa japonica. Animal Behaviour, 44: 867-879.
    119. Thornhill R, 1992. Female preference for the pheromone of males with low fluctuating asymmetry in the Japanese scorpionfly (Panorpa japonica: Mecoptera). Behav.Ecol. 3:277-283
    120. Thornhill R, Gandestad S W, 1993. Human facial beauty: averageness, symmetry and parasite resistance. Human Nature 4:237-267
    121. Thornhill R, Gangestad S W, 1994. Human fluctuating asymmetry and sexual behavior. Psychological Science, 5: 297-302.
    122. Thornhill R, Gangestad S W, Comer R, 1995. Human female orgasm and mate fluctuating asymmetry. Animal Behaviour, 50:1601 - 1615.
    123. Thornhill R, Moller A P, 1997. Developmental stability, disease and medicine. Biological Reviews(Cambridge)
    124. Thornhill R, Sauer P, 1992. Genetic sire effects on the fighting ability of sons and daughters and mating success of sons in a scorpionfly. Anim. Behav., 43:255-264
    125. Timofe é f-Ressovsky N W, 1934. über den Einfluss des gentyoischen Milieus und der Aussenbedingungen auf die Realisation des Genotyps. Nachrichten Gottingen Gesell. Math. Physik. KI(6): 53-104.
    126. Ueno H, 1994. Fluctuating asymmetry in relation to two fitness components, adult longevity and male mating success in a ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Ecol. Ent., 19: 87-88.
    127. Valentine D W, Soulé M E, 1973. Effect of p p'- DDT on developmental stability of pectoral fin rays in the grunion, Leuresthes tenuis. Fish. Bull. 71:921-926.
    128. Van Valen L, 1962. A study of fluctuating asymmetry. Evolution 16: 125-142.
    129.Velders R M,崔金杰,夏敬源,Vander,W W.中国北方棉区转基因抗虫棉对棉苗蚜及其两种天敌的影响 棉花学报,2002,14(3):175-179.
    130. Vrijenhoek R C, Lerman S, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution, 36: 768-776.
    131. Waddington C., 1957, The strategy of the genes. Allen and Unwin, London.
    132. Watson P J, Thornhill R, 1994. Fluctuating asymmetry and sexual selection. Trends in ecology and evolution, 9:21-25.
    133. Whitlock M C, 1993. Lack of correlation between heterozygosity and fitness in forked fungus
    
    beetles. Heredity, 70:574-581.
    134. Whitlock M C, 1996. The heritability of fluctuating asymmetry and the control of developmental stability. Proc. R. Soc. Lond. B BIOL. Sci., 263:849-854
    135. Whitlock M C, Fowler K 1997. The instability of studies of instability. Journal of Evolutionary Biology 10:63-67
    136. Wilson J M, Manning J T, 1996. Fluctuating asymmetry and age in children: evolutionary implications for the control of developmental stability . Journal of Human Evolution, 30: 529-537.
    137. Windig J J, 1998. Evolutionary genetics of fluctuating asymmetry in the peacock butterfly (Inachisio). Heredity, 80: 382-392.
    138. Windig J J, Nylin S, 2002. Genetics of fluctuating asymmetry in pupal traits of the Speckled Wood butterfly (pararge aegeria). Heredity, 89: 225-234.
    139. Witter M S, Swaddle J P, 1994. Fluctuating asymmetries, competition and dominance. Proc. R. Soc. Lond., B256: 299-303.
    140. Woods R E, Hercus M J, Hoffmann A A, 1998. Estimating the heritability of fluctuating asymmetry in field Drosophila. Evolution, 52:816-824.
    141. Woods R E, Sgro CM, Hercus M J, Hoffmann A A, 2002. Fluctuating asymmetry, fecundity and development time in Drosophila: is there an association under optimal and stress condition? J. Evol. Biol., 15: 146-157.
    142. Wooten M C, Smith M H, 1986. Fluctuating asymmetry and genetic variability in a natural population of Mus musculus. Journal of Mammalogy, 67: 725-732.
    143. Zakharov V M, 1989. Future prospects for population phenogenetic. Sov. Sci. Rev. F. Physiol. Gen. Biol.,4: 1-79.
    144. Zakharov V M, 1992. Population phenogenetics: analysis of developmental stability in natural populations. Acta. Zool. Fennica, 191:7-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700