基于几何形态测量学的蝎蛉科昆虫系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蝎蛉科昆虫Panorpidae是长翅目Mecoptera最大的科,已知约427种,是重要的生态指示昆虫,但其属级分类单元和系统发育关系迄今比较混乱,因此运用新的方法对蝎蛉科昆虫进行系统发育研究就显得尤为重要。
     本研究应用几何形态测量学方法,通过对翅脉地标点坐标做统计学分析,以蚊蝎蛉为外群,研究了长翅目蝎蛉科11种蝎蛉和1种华蝎蛉以及秦岭火地塘地区的10种蝎蛉的系统发育关系,同时针对刘氏蝎蛉与黑尾蝎蛉是否为同种的问题进行了研究,并结合形态学与分子数据,探讨了蝎蛉科的系统发育关系以及刘氏蝎蛉的多态性。主要研究结果如下:
     普式坐标的种间方差分析结果显示出极显著的差异。系统发育结果表明,染翅华蝎蛉Sinopanorpa tincta和缠绕蚊蝎蛉Bittacus implicatus被分成独立的两支,靠近树的基部,可能说明蚊蝎蛉科相对于蝎蛉科较为原始,同时也验证了华蝎蛉属的属级分类地位。吉林蝎蛉P. jilinensis和刘氏蝎蛉P. liui位于树的最基部,属于同一分支,可能为蝎蛉属中较原始的种类。太白蝎蛉P. obtusa,华山蝎蛉P. emarginata,南五台蝎蛉P. nanwutaina和拟华山蝎蛉P. dubia的亲缘关系较近,在传统分类中,它们均属于单角蝎蛉种团P. centralis group。秦岭蝎蛉P. qinlingensis和淡黄蝎蛉P. fulvastra关系最密切,均属于无角蝎蛉种团P. davidi group。所建系统发育树中六刺蝎蛉P. sexspinosa位于最顶部,与单角蝎蛉种团的种类相靠近,而与传统分类中隶属于无角蝎蛉种团的结果有所不同,这或许可以说明其相对更为进化的分类地位。
     火地塘地区的10种蝎蛉的系统发育同样证实了华蝎蛉属的属级分类地位。华山蝎蛉P. emarginata和六刺蝎蛉P. sexspinosa,双带蝎蛉P. bifasciata和任氏蝎蛉P. reni分别位于最相近的分支,说明其亲缘关系最近,且相对较为进化。
     主成分分析等结果显示,黑尾蝎蛉与刘氏蝎蛉很难分开,很可能是种内的不同变异,说明刘氏蝎蛉种内存在多态性,并探讨了种内多态性对蝎蛉生存的意义。
Panorpidae is the largest family in Mecoptera, consisting of 427 described species. They are known as the important ecological indicators. However, the generic taxonomy and phylogeny in the family of Panorpipae are disordered so far. Hence, it is critical to consider for the phylogeny of Panorpipae with a new method.
     Geometric morphometrics was used by statistical analysis of landmark coordinates on one species of Sinopanorpa, 11 species of Panorpa and 10 species of scorpionflies in Huoditang area, investigating their phylogeny with the Bittacus implicatus as the outgroup. Whether the black-tailed Panorpa is the same species with P. liui was also analyzed. Combining with the morphological characters and molecular data, we discussed the phylogeny of Panorpidae and polymorphism of P. liui. The main results are as follows:
     A one-way ANOVA of Procrustes coordinates shows highly significant differences between groups. The phylogenetic tree shows that Sinopanorpa tincta and Bittacus implicatus are divided into two branches separately, both of them close to the bottom of the tree, indicating that Bittacidae is more primitive than Panorpidae and confirm the establishment of the genus Sinopanorpa. The tree also suggests a close relationship between P. jilinensis and P. liui because they are located at the base of the tree, which could be an evidence for the relative primitive species. The P. obtusa, P. emarginata, P nanwutaina and P. dubia are clustered to the much close position, which belong to the P. centralis group. As members of the P. davidi group, P. qinlingensis and P. fulvastra are close to each other. P. sexspinosa lies to the top of the topology tree, to our surprise, it is close to the P. centralis group not P. davidi group, inconsistent with the morphological result, perhaps showing a relative primitive evolutionary status. The result of 10 species of scorpionflies from Huoditang area also confirms the erection of the genus of Sinopanorpa. P. emarginata and P. sexspinosa, P. bifasciata and P. reni were situated at the two nearest branches separately, likely indicating their close relationship in phologeny and comparatively evolutionary status.
     The principal component analysis shows that the black-tailed Panorpa is hardly separable from P. liui, so they are probably conspecific. The significance of polymorphism in the adaption of the scorpionfly is briefly discussed.
引文
侯小燕. 2007.蝎蛉科昆虫雌性生殖系统比较研究. [硕士学位论文].杨凌:西北农林科技大学.
    侯小燕,花保祯. 2007.刘氏蝎蛉雌性生殖系统构造.昆虫分类学报, 44: 237–240.
    花保祯. 1997.蝎蛉属Panorpa东北一新种(长翅目:蝎蛉科).昆虫分类学报, 19: 213–215.
    黄蓬英. 2005.中国长翅目昆虫系统分类研究. [博士学位论文].杨凌:西北农林科技大学.
    李雪. 2007.华山蝎蛉复合体Panorpa emarginata-complex分类研究. [硕士学位论文].杨凌:西北农林科技大学.
    潘鹏亮,沈佐锐,高灵旺,等. 2008[a].昆虫翅脉特征自动获取技术的初步研究.昆虫分类学报, 30: 72–80.
    潘鹏亮,沈佐锐,杨红珍,等. 2008[b].三种绢蝶翅脉数字化特征的提取及初步分析.动物分类学报, 33: 566–571.
    沈佐锐,于新文. 1998.昆虫数学形态学研究及其应用展望.昆虫学报, 41: 140–148.
    闫宝荣,花保祯.几何形态测量学及其在昆虫分类学和系统发育中的应用.昆虫分类学报, 2010, 32: 313-320.
    颜刚. 2010.长翅目蝎蛉科昆虫分子系统发育及单角蝎蛉物种分子界定[硕士学位论文].杨凌:西北农林科技大学.
    赵汗青,沈佐锐,于新文. 2002.数学形态特征应用于昆虫自动鉴别的研究.中国农业大学学报, 7: 38–42.
    Adams D C, Funk D J. 1997. Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beatles: multivariate applications of the thin-plate spline. Systematic Biology, 46: 180–194.
    Adams D C, Rohlf F J, Slice D. 2004. Geometric morphometrics: Ten years of progress following the “revolution”. Italian Journal of Zoology, 71: 5–16.
    Andrade C A C, Vieira R D, Ananina G A. 2009. Evolution of the male genitalia: morphological variation of the aedeagi in a natural population of Drosophila mediopunctata. Genetica, 135: 13–23.
    Ball S, Armstrong K F. 2006. DNA barcodes for insect pest identification: A test case with tussock moths (Lepidoptera: Lymantriidae), the ecology of forest insect invasions and advances in their management. Canadian Journal of Forest Research, 36: 337–350.
    Baylac M, Daufresne T. 1996. Wing venation variability in Monarthropalpus buxi (Diptera, Cecidomyiidae) and the quaternary coevolution of box (Buxus sempervirens L.) and its midge: a geometrical morphometric analysis. In: Marcus L F, Corti M, Loy A, Naylor G, Slice D, eds. Advances in morphometrics. Il Ciocco, Italy; New York: Plenum Press, 285–301.
    Bond A B. 2007. The evolution of color polymorphism: crypticity, searching images, and apostatic selection. Annual Review of Ecology, Evolution and Systematics, 38: 489–514.
    Bookstein F L. 1989.“Size and Shape”: a comment on semantics. Systematic Zoology, 38: 173–180.
    Bookstein F L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press.
    Bookstein F L. 1996. Applying landmark methods to biological outline data. In: Mardia K V, Gill C A, Dryden I L, eds. Proceedings in image fusion and shape variability techniques. Leeds: University ofLeeds Press, 59–70.
    Bookstein F. L, Morphometric Tools for Landmark Data:Geometry and Biology. Cambridge: Cambridge University Press, 1997.
    Bubliy O A, Tcheslavskaia K S, Kulikov A M, Lazebny O E, Mitrofanov V G. 2008. Variation of wing shape in the Drosophila virilis species group (Diptera: Drosophilidae). Journal of Zoological Systematics and Evolutionary Research, 46: 38–47.
    Byers G W. 1963. The life history of Panorpa nuptialis (Mecoptera: Panorpidae). Annals of the Entomological Society of America, 56: 142–149.
    Byers G.W. 1965. The Mecoptera of Indo-China. Pacific Insects, 7: 705–748.
    Byers G W, Thornhill R. 1983. Biology of the Mecoptera. Annual Review of Entomology, 28: 203–228.
    Byers G W. 1993. Autumnal Mecoptera of Southeastern United States. University of Kansas Science Bulletin, 55: 57–96.
    Cai L J, Huang P Y, Hua B Z. 2008. Sinopanorpa, a new genus of Panorpidae (Mecoptera) from the Oriental China with descriptions of two new species. Zootaxa, 1941: 43–54.
    Camero RE. 2003. Caracterización de la Fauna de Carábidos (Coleoptera: Carabidae) en un perfil altitudinal de la Sierra Nevadade Santa Marta, Colombia. Revista de la Academia Colombiana Ciencias, 27: 491–516.
    Carpenter F M. 1931. Revision of the Nearctic Mecoptera. Bulletin of the Musuem of Comparative Zoology, 72: 205–277.
    Cheng F Y. 1949. New species of Mecoptera from Northwest China. Psyche, 56: 139–173.
    Cheng F Y. 1957. Revision of the Chinese Mecoptera. Bulletin of the Museum of Comparative Zoology, 116: 1–118.
    Daly H V. 1985. Insect Morphometrics. Annual Review of Entomology, 30: 415–438.
    Dapporto L. 2008. Geometric morphometrics reveal male genitalia differences in the Lasiommata megera/ paramegaera complex (Lepidoptera, Nymphalidae) and the lack of a predicted hybridization area in the Tuscan Archipelago. Journal of Zoological Systematics and Evolutionary Research, 46: 224–230.
    Dearn J M. 1990. Color pattern polymorphism. In: Chapman RF, Joern A., eds. Biology of Grasshoppers. New York: John Wiley & Sons, 517–549.
    Dujardin J. P. 2008. Morphometrics applied to medical entomology. Infection, Genetics and Evolution, 8: 875–890.
    Edmunds M. 1976. The defensive behaviour of Ghanaian praying mantids with a discussion of territoriality. Zoological Journal of the Linnean Society, 58: 1–37.
    Esben-Peterson P. 1921. Mecoptera. Monographic Revision. Collection Zoologiques du Baron Edm. de Selys Longchamps. Catalogue Systematique et Descriptif, 5: 1–172.
    Feliciangeli M D, Sanchez-Martin M, Marrero R. 2007. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Tropica, 101: 169–177.
    Greene E. 1996. Effect of light quality and larval diet on morph induction in the polymorphic caterpillar Nemoria arizonaria (Lepidoptera: Geometridae). Biological Journal of Linnean Society, 58: 277–285.
    Güler Y, Aytekin A M, Ca?atay N. 2006. Systematical studies on Anthidiini (Hymenoptera: Megachilidae): A geometric morphometric approach. Acta Entomologica Sinica, 49: 474–483.
    Haas H L, Tolley K A. 1998. Geographic variation of wing morphology in three Eurasian populations of the fruit fly, Drosophila lummei. Zoology, 245: 197–203.
    Halkka O, Halkka L. 1990. Population genetics of the polymorphic meadow spittlebug, Philaenus spumarius (L). Evolutionary Biology, 24: 149–191.
    Hernández-Roldán J L, Munguira M L. 2008. Multivariate analysis techniques in the study of the male genitalia of Pyrgus bellieri (Oberthür 1910) and P. alveus (Hübner 1803) (Lepidoptera: Hesperiidae): Species discrimination and distribution in the Iberian Peninsula. Annales de la sociétéentomologique de France, 44: 145–155.
    Hoffman A A, Shirrifs J. 2002. Geographic variation for wing shape in Drosophila serrata. Evolution, 56: 1068–1073.
    Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6: 65–70.
    Issiki, S. 1933. Morphological studies on the Panorpidae of Japan and adjoining countries and comparison with American and European forms. Japanese Journal of Zoology, 4: 315–416.
    Joshua R J, Whiting M F. The phylogeny of scorpionflies (Mecoptera: Panorpidae) based on molecular evidence. Presented at 2002 ESA National Meeting to be submittes to Systematic Entomology.
    Kaliontzopoulou A, Carretero M A, Llorente G A. 2007. Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards. Journal of Morphology, 268: 152–165.
    Klingenberg C P. 2002. Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene, 287: 3–10.
    Kolev Z. 2005. New data on the taxonomic status and distribution of Polyommatus andronicus Coutsis & Ghavalas, 1995 (Lycaenidae). Nota Lepidopterologica, 28: 35–48.
    Lalis A, Evin A, Denys C. 2009. Morphological identification of sibling species: the case of West African Mastomys (Rodentia: Muridae) in sympatry. Comptes Rendus Biologies, 332: 480–488.
    Loy A, Busilacchi S, Costa C, Ferlin L, Cataudella S. 2000. Comparing geometric morphometrics and outline fitting methods to monitor fish shape variability of Diplodus puntazzo (Teleostea: Sparidae). Aquaculture Engineering, 21: 271–283.
    Ma N, Hua B Z. 2009. Fine structure and formation of the eggshell in scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae). Microscopy Research and Technique, 72: 495–500.
    Ma N, Hua B Z. 2010. Structure of ovarioles and oogenesis in Panorpa liui Hua(Mecoptera: Panorpidae). Acta Entomologica Sinica, 53: 1220–1226.
    Ma N, Hua BZ. 2011. Structural evidence why males of Panorpa liui offer prey rather than salivary mass as their nuptial gift. Acta Zoologica (Stockholm) 92: (in press).
    Mayr E. 1963. Animal species and evolution. Harvard University Press, Cambridge/MA.
    Melzer R R. 1994. Optic lobes of the larval and imaginal scorpion?y Panorpa vulgaris (Mecoptera, Panorpidae): A neuroanatomical study of neuropil organization, retinula axons, and lamina monopolar cells. Cell and Tissue Research, 275: 283–290.
    Misof B, Erpenbeck D, Sauer K P. 2000. Mitochondrial gene fragments suggest paraphyly of the genus Panorpa (Mecoptera, Panorpidae). Molecular Phylogenetics and Evolution, 17: 76–84.
    Mitteroecker P, Gunz P. 2009. Advances in geometric morphometrics. Evolutionary Biology, 36: 235–247. Nakagoshi M, Masada M, TsusuéM. 1984. The nature of the seasonal colour dimorphism in thescorpionfly, Panorpa japonica Thunberg. Insect Biochemistry, 14: 615–618.
    Nie X N, Hua B Z. 2004. Panorpidae (Mecoptera) from Huodotang in Qinling Mountains. Entomotaxonomia, 26: 187–192.
    Ogai H. 1999. Molecular evidence showing the specific identity between form japonica and form klugi of
    Panorpa japonica Thunberg (Mecoptera). The Entomological Scciety of Japan, 5:27–31.
    Paulus H F. 1979. Eye structure and the monophyly of the Arthropoda. In: Gupta AP, ed. Arthropod Phylogeny. New York: Van Nostrand Reinhold Co., 299–384.
    Paulus H F. 2000. Phylogeny of the Myriapoda– Crustacea– Insecta: a new attempt using photoreceptor structure. Journal of Zoological Systematics & Evolutionary Research, 38: 189–208.
    Penny N D, Byers G W. 1979. A checklist of the Mecoptera of the world. Acta Amazonica, 9: 365–388.
    Penny N D. 1997. World checklist of extant Mecoptera species. http://www.calacademy.org /research/entomology/Entomology_Resources/mecoptera/
    Rehn A C. 2003. Phylogenetic analysis of higher-level relationships of Odonata. Systematic Entomology, 28: 181–240.
    Roggero A, d’Entréves PP. 2005. Geometric morphometric analysis of wing variation between two populations of the Scythris obscurella species-group: geographic or interspecific differences? (Lepidoptera: Scythrididae). SHILAP Revista de Lepidopterología, 33: 101–112.
    Rohlf, F J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology, 47: 147–158.
    Rohlf F J. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16: 197–223.
    Rohlf, F J. 2002. Geometric morphometrics in systematics. In: N. Macleod & P. Forey, [Eds], Morphology, shape and phylogenetics. Taylor & Francis, London.
    Rohlf F J. 2004. Thin-plate spline, digitize landmarks and outlines, version 1.20. Available at: http://life.bio.sunysb.edu/morph
    Rohlf F J. 2007. tpsRelw, relative warps analysis, version 1.11. Available at: http://life.bio.sunysb.edu/morph
    Rohlf F J, Marcus L F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution, 8: 129–132.
    Rohlf F J, Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39: 40–59.
    Prieto C G, Munguira M L, Romo H. 2009. Morphometric analysis of genitalia and wing pattern elements in the genus Cupido (Lepidoptera, Lycaenidae): are Cupido minimus and C. carswelli different species? Deutsche Entomologische Zeitschrift, 56: 137–147.
    Sandoval C. P. 1994. Differential visual predation on morphs of Timema cristinae (Phasmatodeae: Timemidae) and its consequences for host range. Biological Journal of the Linnean Society, 52: 341–356.
    Sheets H D. 2000. Integrated Morphometrics Package (IMP). Available at: http://www3.canisius.edu/~sheets/moremorph.html
    Slice D E. 2001. Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Systematic Biology, 50: 141–149.
    Slice D E, Bookstein F L. 2007. A glossary for geometric morphometrics. Online,http://life.bio.sunysb.edu/morph/glossary/gloss1.html
    Smith D R, Crespi B J, Bookstein F L. 1997. Fluctuating asymmetry in the honey bee, Apis mellifera: Effects of ploidy and hybridization. Evolutionary Biology, 10: 551–574.
    Sokal R R, Rohlf F J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd edn, New York: W. H. Freeman and Co.
    Thornhill R. 1981. Panorpa (Mecoptera: Panorpidae) scorpionflies: systems for understanding resource-defense polygyny and alternative male reproductive efforts. Annual Review of Ecology and Systematics, 12: 355–386.
    Villemant C, Simbolotti G, Kenis M. 2007. Discrimination of Eubazus (Hymenoptera, Braconidae) sibling species using geometric morphometrics analysis of wing venation. Systematic Entomology, 32:625–634.
    Wakeham-Dawson A, Jaksic P, Holloway JD, Dennis RLH. 2004. Multivariate analysis of male genital structures in the Hipparchia semele-muelleri-delattini complex (Nymphalidae, Satyrinae) from the
    Balkans: how many taxa? Nota Lepidopterologica, 27: 103–124. Ward P H. 1979. Structure variation in the genitalia of the Panorpa alpina-complex (Mecoptera). Systematic Entomology, 4: 71–79.
    Ward P H. 1983. Scorpion-flies of the Panorpa cognata-complex in the western Palaearctic region (Mecoptera). Journal of Natural History, 17: 627–645.
    Whiting M F. 2000. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta, 31: 93–104.
    Zelditch M. 2004. Geometric Morphometrics for Biologists: A Primer. New York: Academic Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700