金属离子与核苷分子相互作用的质谱实验和量子化学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属离子在生物体内起着重要的作用,例如,金属离子对DNA双螺旋结构起着非常重要的稳定作用;核苷是DNA和RNA的基本结构单位,核苷类化合物具有重要的生物学功能,它们参与了生物体内几乎所有的生化反应过程,而这些反应过程的发挥往往离不开金属离子,金属离子在核苷类化合物的生物合成、构象维持、功能发挥与调控等方面起着重要的作用。因此,研究金属离子与核苷分子的相互作用一直受到人们的关注,但是关于金属离子和核苷在气相条件下的相互作用研究的报道却很少。
     质谱技术可用于气相中研究金属离子与生物相关的分子配合物,特别是电喷雾质谱技术(ESI-MS)已成为一系列关于氨基酸等小生物分子甚至是复杂生物分子如多肽和蛋白质分析研究的重要实验手段;而量子化学方法可以从理论上解释某些实验现象,预测一些反应的过程和结果,并且能从理论上给出实验中难以观测到的如寿命很短的反应中间体或过渡态的结构,从而为实验研究提供帮助和理论支持。本文采用ESI-MS结合密度泛函理论计算(DFT)进行本课题的分析研究。将通过气相条件下环境中常见的重金属铜离子与五种核苷分子相互作用的ESI-MS实验分析,考察一系列的铜-核苷相互作用产物的构型,能量等各种特性,研究铜离子与核苷分子的相互作用机制,同时还对相互作用产物的碰撞诱导解离(CID)过程进行了系统研究,为讨论在相关生命现象中这种相互作用的机理提供一定的科学依据。
     主要研究内容和结论如下:
     1)通过ESI-MS实验分析了五种核苷与Cu(NO_3)_2的水/甲醇(30/70)溶液,各种离子[CuLn]~(2+),[Cu(L-H)Ln]~+,[LH]~+,[L2H]~+,[BH]~+,[CuL(MeOH)_n]~(2+)和[CuL(NO_3)_n]~+基本都可以在质谱图中观察到;在铜离子与核苷分子的相互作用中,共价配位键作用在铜离子与胞苷和鸟苷分子的相互作用中表现突出,且铜离子与胞苷的ESI-MS图谱清晰,谱图识别产物匹配度高。
     2)对铜离子与胞苷相互作用的ESI-MS谱图中离子峰强度产物的结构及特征进行了CID研究发现:[L+H]~+的CID分析可以观察到脱去NH_3, H_2O和CONH等小分子的反应,而[Cu(L-H)Ln]~+(n=0,1)仅观察到糖甙键断开脱去糖环基团或糖环被打破后脱去某个小分子基团的反应;配体间质子转移在所有的[CuLn]~(2+)(n=2-6) CID过程中均可发生,而其他解离反应则包括电荷减少的裂解和中性小分子基团的脱去等;[CuL(MeOH)]~(2+)的CID可以看到中性甲醇分子的脱去和三种电荷减少的解离过程;[CuLn]~(2+)(n=4-6)的CID过程中有质子化胞苷二聚体[L2H]~+的产生,其结构是由两个胞苷通过氢键作用形成的。
     3)对铜离子与胞苷相互作用的ESI-MS谱图产物中[CuLn]~(2+)与[LnH]~+的配合物构型的稳定性进行DFT理论分析发现:Cu~(2+)易于与胞苷分子以共价配位键结合形成较为稳定的配合物[CuLn]~(2+)(n=1-4),[CuLn]~(2+)由Cu~(2+)以4配位形式在一个平面形成配合物形式较为稳定,其中N(3)和O(7)同时为胞苷分子的螯合位点,此时[CuLn]~(2+)稳定性顺序为[CuL2]~(2+)>[CuL]~(2+)>[CuL4]~(2+)>[CuL3]~(2+);而质子H+也非常易于与胞苷分子以氢键形式结合形成质子化多聚体[LnH]~+(n=1-4),[LnH]~+的稳定性顺序为[L2H]~+>[LH]~+>[L3H]~+>[L4H]~+;ESI-MS谱图中离子峰强度与稳定性顺序基本一致,但是没有观察到[CuL]~(2+)可能是由于铜更倾向于形成4配位的形式,因此[CuL]~(2+)与1-2个甲醇分子极易进一步配位,形成更为稳定的复合物分子[CuL(MeOH)1-2]~(2+);而离子峰[LH]~+强度较大可能是由于Cu~(2+)-胞苷配合物的CID过程产生的。
     4) DFT计算和空间结构分析比较铜离子与胞苷和鸟苷分子的配合物[CuLn]~(2+)与[CuGn]~(2+)的同分异构体,研究发现:鸟苷分子倾向于以N(7)与铜离子形成Cu-N配位,然后与其它鸟苷分子以氢键结合形成较为稳定的铜-鸟苷配合物;胞苷则是以N(3)和O(7)同时与铜离子配位,并在ESI-MS图中表现出较高的离子峰强度。通过对[CuLn]~(2+)与[CuGn]~(2+)(n=2-4)进行CID反应途径计算分析,在较低碰撞能量下显示[CuLn]~(2+)的CID过程以质子转移为主,而[CuGn]~(2+)则是电子重排后发生电子转移。理论计算结果还表明胞苷三配体易于发生质子转移失去一个质子配体[CuL(L-H)]~+,而鸟苷三配体则是生成脱去一个分子自由基阳离子的二配产物[CuG2]~+。
     5)采用多级CID和DFT计算分析质子化胞嘧啶阳离子的同分异构体,结果表明质子化胞嘧啶阳离子和中性胞嘧啶分子在整体结构上很接近,但由于质子化氢的加入,整个胞嘧啶阳离子中的电荷进行了重新分配,质子化加氢后嘧啶环上与加氢的N(3)相连的两个C-N键长略有增加,而嘧啶环上其他的键长都有所紧缩。在气相中不同质子化胞嘧啶阳离子构型的转化过程有O-H键的σ旋转、嘧啶环上杂原子之间[1,3]-质子转移和[1,4]-质子转移等。采用类似方法对其他质子化核苷和质子化核苷碱基的多级CID过程分析和计算,结果均发现质子化核苷打破糖甙键,CID过程脱去糖环;解离后,质子化核苷碱基的一次CID过程基本为脱去HNCO、H_2O、CN2H_2、NH_3和HCN等小分子的反应,此外质子化核苷碱基(胞嘧啶,鸟嘌呤,胸腺嘧啶和尿嘧啶)的多级CID过程均有脱去CO的反应,而质子化腺嘌呤的多级解离产物均为HCN。
     本论文的创新点:
     1)采用ESI-MS质谱技术分析了核苷分子与铜离子在气相条件下相互作用的产物,同时结合高精度DFT计算在理论上准确分析了产物的构型及特征;
     2)率先对金属离子与生物配体复合体产物的构型及稳定性进行了分析研究,确定了复合物种金属离子与配体的化学键特征;
     3)采用多级CID对质子化胞嘧啶等核苷碱基进行了综合分析,基本掌握核苷碱基在生命体内的迁移降解转化、新陈代谢机制。
It’s well known that metal ions play an important role in vivo, for example,inDNA, the metal ionscan affect the stability of the DNA double helix structure; Asthe basic structural unit of DNA and RNA, the nucleoside compounds are involved inalmost all of the biochemical reaction process in vivo, and the reactions often dependson the metal ions, whcihplay an important role in biological synthesis, conformationmaintain nucleoside, function and regulation. Thus, the studies of the interactionsbetween metal cations and nucleosides have attained widespread attention, but fewwere studied in the gas phase.
     Electrospray Ionization mass spectrometry (ESI-MS) has become the importantmeans to anlyze the small biological molecules such as amino acids, and evencomplex biological molecules such as peptides and proteins; and the quantumchemistry calculationcan be used to study the chemical related issues which couldexplain the experimental phenomena, forecast the reaction process and result, andgive some reaction intermediates or reaction transition state structures which was veryhard to be obseved in experiment.
     In this disseration, ESI-MS and density functional methods (DFT) was used toinvestigate ithe interactions between environmental heavy metal copper ions and fivekinds of nucleoside molecules in the gas phase. The studies include the interactionproduct configurations, the interaction mechanism, and the products of collisioninduced dissociation (CID) which would provides some scientific guidance for therelevant life phenomena.
     The main research contents and conclusions as follows:
     1. Five Nucleosides and Cu(NO_3)_2water/methanol (30/70) solutions were seperatelyanalyzed by ESI-MS. The meatal cations of [CuLn]~(~(2+)),[Cu(L-H)Ln]~+,[LH]~+,[L2H]~+,[BH]~+,[CuL(MeOH)_n]~(~(2+)) and [CuL(NO_3)_n]~+could be clearly showed in the massspectra; the covalent coordination bond had showed evidently effect on theinteraction of the copper ions with cytidine and guanosine; and the spectra strengthof the complex of copper ions with cytidine was high.
     2. Further analysis for the product of the divalent copper ions and cytidine of itscomplex structure and characteristics was described on a lower collision energy: NH_3, H_2O and CONH stripped off could be observed in the [L+H]~+CID progress. agroup of small molecules broken off after the sugar ring off could be observed inthe [Cu(L-H)Ln]~+(n=0,1) CID progress. Ligand proton transfer could be occured inall the[CuLn]~(~(2+))(n=2-6) CID process, and other channels including the charge toreduce cracking and neutral molecules group off. Neutral methanol moleculesstripped off and three charge reduced processes could be observed in the[CuL(MeOH)]~(~(2+)) CID progress. Proton cytidine dimmers [L2H]~+could be observedin the [CuLn]~(~(2+))(n=4-6) CID process, which might be bonded by the hydrogenbonding interactions of two cytidine molecules.
     3. DFT study for complex configuration of [CuLn]~(~(2+)) and [LnH]~+was described. It wasfound that the Cu~(~(2+)) was easily liganded with cytidine molecules by covalentcoordination bond to form stable complexes on chelation sites N(3)and O(7) ofcytosine at the same time on a plane. And the proton H+was easily bonded cytidinemolecular by hydrogen bonds to form a protonated poly [LnH]~+(n=1-4). Thecalculated stability orders are [CuL2]~(~(2+))>[CuL]~(~(2+))>[CuL4]~(~(2+))>[CuL3]~(~(2+)) and[L2H]~+>[LH]~+>[L3H]~+>[L4H]~+which are consistent quite well with the peakintensity distribution in the mass spectrum. The [CuL]~(~(2+)) was not observed mightbecause that the high strength of [CuL(MeOH)1-2]~(~(2+)) was easily observed as [CuL]~(~(2+)) liganded with methanol molecules; While high strength of [LH]~+might be thebivalent Cu~(~(2+))-cytidine complexes CID products.
     4. Combining with the stability analysis of the spatial structure of the isomers[CuLn]~(~(2+))(n=2-4) of cytidine and guanosine complexes, CID fragmentationpathway analysis and calculation results showed that the guanosine ligand site wasN(7) with copper ions which preferred Cu-N ligand bond, and then the guanosinecomplex molecules would ligand the third or more guanosine by hydrogen bonds toform a more stable copper-guanosine complexes; while cytidine ligand complexespreferred ligand number4or6at the ligand site both of the N(3) and carbonyl O(7),which showed a higher peak intensity of the ESI-MS. Protonated cytidine andradical guanosine cationic products were respectively removed on the Low energyCID process. CID of Cytidine ligand dissociation channel was mainly showedProton Transfer process, while the guanosine ligand dissociation was the electrontransfer process after the electronic rearrangement for [CuGn-1]~+.。
     5. Combined with the stability analysis of the spatial structure of the isomeric by DFT method, the protonation of cytosine isomers of cation configurations was analyzed.the overall structure of the protonation cytosine cations and the neutral cytosinemolecule were very close, but the hydrogen proton changed and the cytosine in thecationic charge redistributed. bond length of the two C-N connected with N(3)would be increased slightly as hydrogenation happened on the protonation of thepyrimidine ring, while the pyrimidine ring on other bond length was tightened. Inthe gas phase, sigma transformation process of the O-H bond,[1,3]-proton transferand [1,4]-proton transfer of the pyrimidine ring would observed on differentprotonation of cytosine cationic configurational. CID fragmentation pathwayanalysis of [LH]~+and [BH]~+and calculation results showed that the N-glycosidicbond broken in LH, the sugar ring was also broken off in CID dissociate reaction;After dissociation, some little molecules of HNCO、H_2O、CN2H_2、NH_3and COwould be stripped off on the following channels of the CID process of nucleobase[BH]~+; In addition, CO stripped process would happened on the multi-stage CIDchannels of the nulceoside base(cytosine, guanine, thymine and uracil), and theHCN stripped process would happened on the multi-stage CID channels of adenine.
     The innovation points of this paper:
     1.ESI-MS was used for the analysis of the products of different nucleotidemolecules with copper ions in the gas phase, and also combined with highprecision accurate DFT calculation, the product configurations were sucessfulprovided.
     2.For the first time, the statbility of the complexes of copper ion with the nucleotidemolecules were investigated in the gas phase, and the characteristics of theinteractions were confirmed.
     3.The multiple mass spectrometry method and DFT calculation was used to analyzethe CID of the protonated cytosine, adenine, etc., and the their dissociationmechanism was investigated.
引文
[1]冯子道,安智珠,环境、生命元素与抗癌作用[J],环境科学丛刊,1984,7:7-16.
    [2]何振立,周启星谢正苗,污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998.
    [3]戴树桂,环境化学[M],北京:高等教育出版社,2000.
    [4]曲媛媛,鞘氨醇单胞菌降解溴氨酸及强化体系DNA指纹解析[D],大连理工大学,2005,博士.
    [5] M. Chiaradia, B. E. Chenhall, A. M. Depers,et al, Identification of historical lead sources in roof dustsand recent lake sediments from an industrialized area: indications from lead isotopes[J], Science of theTotal Environment,1997,205:107-128.
    [6] I. A. Mian, S. Begum, M. Riaz,et al, Spatial and temporal trends in nitrate concentrations in the RiverDerwent, North Yorkshire, and its need for NVZ status[J], Sci Total Environ,2010,408:702-712.
    [7]奚旦立,孙裕生,刘秀英,环境监测(修订版)[M],北京:高等教育出版社,2004.
    [8]王夔,生命科学中的微量元素[M],第二版,中国计量出版社,1996.
    [9] D. M. Templeton, Biomedical aspects of trace element speciation[J], Fresenius Journal of AnalyticalChemistry,1999,363:505-511.
    [10]何力为,地震灾区典型区域环境重金属污染调查与风险评估[D],华中农业大学,2011,硕士.
    [11]廖国礼,吴超,资源开发环境重金属污染与控制[M],长沙:中南大学出版社,2006.
    [12] R. Eagen, Environmental chemistry[M]. New York: Crabtree Pub.,2011.
    [13] J. J. Gooding, W. R. Yang, E. Chow,et al, Exploring the use of the tripeptide Gly-Gly-His as aselective recognition element for the fabrication of electrochemical copper sensors[J], Analyst,2003,128:712-718.
    [14] J. A. Tossell, Metal-thiometalate transport of biologically active trace elements in sulfidicenvironments[J], Environmental Science&Technology,2000,34:1483-1488.
    [15] V. Buzko, I. Sukhno,V. Klimova, The difference of the complex formation of the rare-earth elementswith the L-malic acid at metal ion excess[J], Acta Chimica Slovenica,2004,51:213-222.
    [16] V. Pershina, T. Bastug, J. Anton,B. Fricke, Theoretical chemistry for chemical identification of theheaviest elements[J], Nuclear Physics A,2007,787:381-387.
    [17] L. A. Michael, J. A. Chenault, B. R. Miller,et al, Water, Shape Recognition, Salt Bridges, andCation-Pi Interactions Differentiate Peptide Recognition of the HIV Rev-Responsive Element[J],Journal of Molecular Biology,2009,392:774-786.
    [18] E. Oztetik,A. Cicek, Effects of Urban Air Pollutants on Elemental Accumulation and Identification ofOxidative Stress Biomarkers in the Transplanted Lichen Pseudovernia Furfuracea[J], EnvironmentalToxicology and Chemistry,2011,30:1629-1636.
    [19]冯斌,谢光芝,基因工程技术[J],化工进展,2002,21(3):231-232.
    [20] L. Di Donna, A. Napoli, G. Sindona,et al, A comprehensive evaluation of the kinetic method applied inthe determination of the proton affinity of the nucleic acid molecules[J], Journal of the AmericanSociety for Mass Spectrometry,2004,15:1080-1086.
    [21] J. Sponer, J. E. Sponer, A. I. Petrov,et al, Quantum Chemical Studies of Nucleic Acids Can WeConstruct a Bridge to the RNA Structural Biology and Bioinformatics Communities?[J], Journal ofPhysical Chemistry B,2010,114:15723-15741.
    [22] D. Li, S. P. Song,C. H. Fan, Target-Responsive Structural Switching for Nucleic Acid-BasedSensors[J], Accounts of Chemical Research,2010,43:631-641.
    [23] B. Juskowiak, Nucleic acid-based fluorescent probes and their analytical potential[J], Analytical andBioanalytical Chemistry,2011,399:3157-3176.
    [24] J. C. Joyner,J. A. Cowan, Targeted Cleavage of HIV RRE RNA by Rev-Coupled Transition MetalChelates[J], J. Am. Chem. Soc.,2011,133:9912-9922.
    [25] L. Lomozik,A. Gasowska, Investigations of binding sites and stability of complexes formed in ternaryCu(II) adenosine or cytidine putrescine systems[J], Journal of Inorganic Biochemistry,1996,62:103-115.
    [26] R. A. Farrell, J. L. Thorvaldsen and D. R. Winge, Identification of the Zn(II) site in thecopper-responsive yeast transcription factor, AMT1: A conserved Zn module[J], Biochemistry,1996,35:1571-1580.
    [27] R. J. Deeth, Comprehensive molecular mechanics model for oxidized type I copper proteins: Activesite structures, strain energies, and entatic bulging[J], Inorganic Chemistry,2007,46:4492-4503.
    [28] L. Zhang, Y. M. Wen,J. Y. Xie, Mass Spectrometric Study on Active Sites of Myoglobin Hydrolyzedby Cu(II) Compounds[J], Chinese Journal of Analytical Chemistry,2009,37:1371-1374.
    [29] S. C. Chang, V. V. Karambelkar, R. D. Sommer, A. L. Rheingold and D. P. Goldberg, New monomericcobalt(II) and zinc(II) complexes of a mixed N,S(alkylthiolate) ligand: Model complexes of(His)(His)(Cys) metalloprotein active sites[J], Inorganic Chemistry,2002,41:239-248.
    [30] K. Gurova, New hopes from old drugs: revisiting DNA-binding small molecules as anticanceragents[J], Future Oncology,2009,5:1685-1704.
    [31] P. L. Kuo, W. J. Liang,F. Y. Wang, Hyperbranch-polyethyleniminated functional polymers. I.Synthesis, characterization of novel ABA type of dumbbell-like polyethyleniminatedpolyoxypropylenediamines, and their complexing properties with copper(II) ions in aqueoussolution[J], Journal of Polymer Science Part a-Polymer Chemistry,2003,41:1360-1370.
    [32] X. H. Bu, X. J. Zhao, M. Du,et al, Oxime-functionalized diazamesocyclic derivates and their metalcomplexes: Effect of the ligand backbones and anions on the generation of novel monomeric andmono-mu-Cl dimeric Cu-II complexes[J], Inorganica Chimica Acta,2005,358:4481-4488.
    [33] A. Kirsch-De Mesmaeker,F. Pierard, Bifunctional transition metal complexes as nucleic acidphotoprobes and photoreagents[J], Inorganic Chemistry Communications,2006,9:111-126.
    [34] F. Arjmand,M. Aziz, Synthesis and characterization of dinuclear macrocyclic cobalt(II), copper(II)and zinc(II) complexes derived from2,2,2',2'-S,S bis(bis-N,N-2-thiobenzimidazolyloxalato-1,2-ethane): DNA binding and cleavage studies[J], European Journal of Medicinal Chemistry,2009,44:834-844.
    [35] Z. N. Qi, J. Wu, C. B. Liu,et al, Theoretical study on magneto-structural correlation of trinuclearcopper(II) complex with the hydroxo bridge and bidentate syn-syn carboxylate group[J], ChineseScience Bulletin,2006,51:1421-1425.
    [36] S. Melino, M. Gallo, E. Trotta,et al, Metal-binding and nuclease activity of an antimicrobial peptideanalogue of the salivary histatin[J], Biochemistry,2006,45:15373-15383.
    [37] P. Buglyo, E. M. Nagy, E. Farkas,et al, New insights into the metal ion-peptide hydroxamateinteractions: Metal complexes of primary hydroxamic acid, derivatives of common dipeptides inaqueous solution[J], Polyhedron,2007,26:1625-1633.
    [38] S. Perez-Yanez, O. Castillo, J. Cepeda,et al, Analysis of the Interaction between Adenine Nucleobaseand Metal-Malonato Complexes[J], European Journal of Inorganic Chemistry,2009:3889-3899.
    [39] S. Singh,A. K. Ghose, Metal ion interactions with nucleic acid base pairs in solution-Apotentiometric study[J], Journal of the Indian Chemical Society,1996,73:650-653.
    [40] N. Brianese, U. Casellato, S. Tamburini,et al, Functionalized acyclic Schiff bases and relatedcomplexes with d-and f-metal ions[J], Inorganica Chimica Acta,1998,272:235-251.
    [41] G. Feroci, A. Fini, G. Fazio,et al, Effect of divalent transition metal ions on the aggregation oftrihydroxy bile salts[J], Journal of Colloid and Interface Science,1996,178:339-347.
    [42] C. A. Chang, Selectivity of macrocyclic aminocarboxylates for alkaline-earth metal ions and stabilityof their complexes[J], Journal of the Chemical Society-Dalton Transactions,1996,:2347-2350.
    [43] H. Y. He, A. E. Martell, R. J. Motekaitis,et al, Interactions between divalent metal ions and anoctacoordinate macrocyclic ligand[J], Inorganic Chemistry,2000,39:1586-1592.
    [44] K. Z. Gao, J. Pearce, J. Jones,et al, Interaction between peat, humic acid and aqueous metal ions[J],Environmental Geochemistry and Health,1999,21:13-26.
    [45] M. Hodak,J. Bernholc, Insights into prion protein function from atomistic simulations[J], Prion,2010,4:13-19.
    [46] H. Sigel, B. E. Fischer,B. Prijs, Biological implications from the stability of ternary complexes insolution. Mixed-ligand complexes with manganese(II) and other3d ions[J], Journal of the AmericanChemical Society,1977,99:4489-4496.
    [47] H. Sigel, C. P. Da Costa, R. B. Martin, Interactions of lead(II) with nucleotides and theirconstituents[J], Coordination Chemistry Reviews,2001,219-221:435-461.
    [48] T. Theophanides,J. Bariyanga, Structural aspects of Group I metal ion-nucleoside interactions[J],Journal of Molecular Structure,1989,214:177-184.
    [49] B. Knobloch, C. P. Da Costa, W. Linert,et al, Stability constants of metal ion complexes formed withN3-deprotonated uridine in aqueous solution[J], Inorganic Chemistry Communications,2003,6:90-93.
    [50] Z. A. Tehrani, Interaction of Mg2+, Ca2+, Zn2+and Cu+with cytosine nucleosides: Influence of metalon sugar puckering and stability of N-Glycosidic bond, a DFT study[J], Journal of MolecularStructure-Theochem,2009:913:117-125.
    [51] S. Mochizuki,A. Wakisaka, Interactions of a nucleoside cytidine with metal ions in water observedthrough mass spectrometry: Clustering controlled by electrostatic interaction and coordinatinginteraction[J], Journal of Physical Chemistry B,2003:107:5612-5616.
    [52] J. L. Sessler, Novel guanosine-cytidine dinucleoside that self-assembles into a trimericsupramolecule[J], Organic Letters,2003,5:2627-2630.
    [53]邹汉法,生物活性分子的相互作用及其在分离分析中的应用[J],中国科学基金,1999,13(l):31-33.
    [54] T. Marino, On the Interaction of Rubidium and Cesium Mono-, Strontium and Barium Bi-CationsWith DNA and RNA Bases. A Theoretical Study[J], International Journal of Quantum Chemistry,2010,110:138-147.
    [55] K. J. Humphreys, Recognition and strand scission at junctions between single-and double-strandedDNA by a trinuclear copper complex[J], Journal of the American Chemical Society,2001,123:5588-5589.
    [56] C. Sissi,M. Palumbo, Effects of magnesium and related divalent metal ions in topoisomerase structureand function[J], Nucleic Acids Research,2009,37:702-711
    [57] Y. Y. Kou, Synthesis, structure, magnetic properties and DNA cleavage of binuclear Cu(II) Schiff-basecomplexes[J], Dalton Transactions,2009:2374-2382
    [58] Tan SS,Kim SJ, Kool ET, Differentiating between fluorescence-quenching metal ions withpolyfluorophore sensors built on a DNA backbone[J]. J Am. Chem. Soc.2011,133(8),2664-2671.
    [59] Kim SJ, Kool ET,Sensing metal ions with DNA building blocks: fluorescent pyridobenzimidazolenucleosides[J]. J Am. Chem. Soc.2006,128(18):6164-6171.
    [60] Pipsa H,Anne N,Andrew D. B., Potential Cross-Linking Transition Metal Complexes (M=Ni, Cu,Zn) in the Ligand-Modified LNA Duplexes[J], J. Phys. Chem. B,2010,114(36):11942-11948.
    [61] Claudia Andreini, Ivano Bertini, Gabriele Cavallaro, Metal ions in biological catalysis: fromenzyme databases to general principles[J], Journal of Biological Inorganic Chemistry,2008,13(8),1205-1218.
    [62] C. J. Barden, J. C. Rienstra-Kiracofe,H. F. Schaefer, Homonuclear3d transition-metal diatomics: Asystematic density functional theory study[J], Journal of Chemical Physics,2000,113:690-700.
    [63] W. M. Dong, H. X. Zhang, M. Huang,et al, Use of the ion exchange method for the determination ofstability constants of trivalent metal complexes with humic and fulvic acids-Part I: Eu3+and Am3+complexes in weakly acidic conditions[J], Applied Radiation and Isotopes,2002,56:959-965.
    [64] W. M. Dong, W. J. Li,Z. Y. Tao, Use of the ion exchange method for the determination of stabilityconstants of trivalent metal complexes with humic and fulvic acids II. Tb3+,Yb3+and Gd3+complexesin weakly alkaline conditions[J], Applied Radiation and Isotopes,2002,56:967-974.
    [65] P. S. Mane, S. G. Shirodkar, B. R. Arbad,et al, Synthesis and characterization of manganese(II),cobalt(II), nickel(III), and copper(II) complexes of Schiff base derivatives of dehydroacetic acid[J],Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical&AnalyticalChemistry,2001,40:648-651.
    [66] J. D. Epperson, L. J. Ming, Cobalt(II) and copper(II) binding of Bacillus cereus trinuclearphospholipase C: a novel H-1NMR spectrum of a 'Tri-Cu(II)' center in protein[J], Journal of InorganicBiochemistry,2001,87:149-156.
    [67] P. J. Steel,C. J. Sumby, Coordination chemistry of di-2-pyridylmethane and related bridging ligandswith silver(I), copper(II), palladium(II) and zinc(II)[J], Dalton Transactions,2003:4505-4515.
    [68]吴琼,维甲酸金属配合物与DNA相互作用的分析比较[D],西北师范大学,2007,硕士.
    [69]向清祥,新型大环多胺金属配合物的设计合成、超分子识别与仿酶催化作用[D],四川大学,2002,博士.
    [70]胡红雨,鲁子贤,“锌指”结构:蛋白质和DNA相互作用的一种模式[J].生物化学与生物物理进展,1992,19(4):250-253.
    [71] D. B. Pedersen, M. Z. Zgierski, S. Denommee,et al, Photoinduced charge-transfer dehydrogenation ina gas-phase metal-DNA base complex: Al-cytosine[J], Journal of the American Chemical Society,2002,124,6686-6692.
    [72] M. Noguera, M. Sodupe, J. Bertran, Effects of protonation on proton transfer processes inWatson-Crick adenine-thymine base pair[J], Theoretical Chemistry Accounts,2007,118,113-121.
    [73] M. Noguera, J. Bertran, M. Sodupe, A quantum chemical study of Cu2+interacting withguanine-cytosine base pair. Electrostatic and oxidative effects on intermolecular proton-transferprocesses[J], Journal of Physical Chemistry A,2004,108:333-341.
    [74] A. I. Anzellotti, Q. Liu, M. J. Bloemink,et al, Targeting retroviral Zn finger-DNA interactions: Asmall-molecule approach using the electrophilic nature of trans-platinum-nucleobase compounds[J],Chemistry&Biology,2006,13:539-548.
    [75]张蓉颖,庞代文,蔡汝秀,NDA与靶向分子相互作用研究进展[J].高等学校化学学报,1999,20(8):1210-1217.
    [76] M. N. Patel, M. R. Chhasatia,D. S. Gandhi, Interaction of drug based binuclear mixed-ligandcomplexes with DNA[J], Bioorganic&Medicinal Chemistry,2009,17:5648-5655.
    [77] S. M. Hashemianzadeh, S. Faraji, A. H. Amin,et al, Theoretical study of the interactions betweenisolated DNA bases and various groups IA and IIA metal ions by Ab initio calculations[J],Monatshefte Fur Chemie,2008,139:89-100.
    [78] J. E. Sponer, F. Glahe, J. Leszczynski,et al, How nucleobases rotate when bonded to a metal ion:Detailed view from an ab initio quantum chemical study of a cytosine complex of trans-a(2)Pt(II)[J],Journal of Physical Chemistry B,2001,105,12171-12179.
    [79] Carloni P, Andreoni W. Platinum-Modified Nucleobase Pairs in the Solid State: A Theoretical Study[J],J. Phys. Chem.1996,100(45):17797-17800.
    [80] Shack J, Jenkins RJ, Trompsett JM. The Interaction of Ions and Desoxypentose Nucleic Acid of CalfThymus[J]. J. Biol. Chem.,1953,203:373-387.
    [81] Felsenfeld G, Huang SL. Some effects of charge and structure upon ionic interactions of nucleicacids[J]. Biochim. Biophys. Acta.,1961,51:19-32.
    [82] Bui MN, Baek TJ, Seong GH. Gold nanoparticle aggregation-based highly sensitive DNA detectionusing atomic force microscopy[J]. Analy. Bioanaly. Chem.,2007,388(5-6):1185-1190.
    [83] Nakano S, Fujimoto M, Hara H, Nucleic Acid Duplex Stability: Influence of Base Composition onCation Effects[J]. Nucleic Acid. Res.,1999,27(14):2957-2965.
    [84] Abrescia NGA, Malinina L, Fernandez LG, Structure of the oligonucleotide d(CGTATATACG) as asite-specific complex with nickel ions[J]. Nucleic Acids Res.,1999,27(7):1593-1599.
    [85] Coste F, Maligne JM, Serre L, Crystal structure of a double-stranded DNA containing a cisplatininterstrand cross-link at1.63A resolution: hydration at the platinated site[J]. Nucleic Acid. Res.,1999,27(8):1837-1846.
    [86] Takahara PM, Frederick CA, Lippard SJ. Crystal structure of the anticancer drug cisplatin bound toduplex DNA[J]. J. Am. Chem. Soc.,1996,118(49):12309-12321.
    [87] McFail-Isom L, Shui X, Williams LD. Divalent Cations Stabilize Unstacked Conformations of DNAand RNA by Interacting with Base P Systems[J]. Biochemistry,1998,47:17105-17111.
    [88] Rulíek L, Poner J. Outer-shell and Inner-shell Coordination of Phosphate Group to Hydrated MetalIons (Mg2+, Cu2+, Zn2+, Cd2+) in the Presence and Absence of Nucleobase[J]. The Role ofNonelectrostatic Effects. J. Phys. Chem. B,2003,107(8):1913-1923.
    [89] Hunter WN, Brown T, Anand NN, Structure of an adenine-cytosine base pair in DNA and itsimplications for mismatch repair[J]. Nature,1986,320(6062):552–555.
    [90] Roitzsch M, Lippert B. Feasibility of a Two-Metal, Four-Purine Nucleobase Quartet Motif[J]. Inorg.Chem.,2004,43(18):5483–5485.
    [91] Sultan J. Collision induced dissociation of deprotonated guanine: Fragmentation of pyrimidine ringand water adduct formation[J]. Int. J. Mass. Spectrom.,2008,273:58-68.
    [92] Desiraju,G.R,Crystal Engineering:The design of organic solids[M],Elserier,Amsterdam,1989.
    [93] Glish, G L&Valchet, R. W. The basics of mass spectrometry in the twenty-first century[J].NatureReview,2003,2:140-150.
    [94]McLafferty F W: Interpretation of Mass Spectra[M],3rd, ed. California,1980:1-305.
    [95]Silverstein R M: Spectrometric Identification of Organic Compounds[M],4th ed., New York JohnWiley&Sons,1981:3-94.
    [96] Pramanik B N, Ganguly A K, Gross M L. Applied electrospray mass spectrometry[M]. Marcel DekkerInc.2002.
    [97] P. Fantucci, M. Bruschi, L. De Gioia,et al, A DFT study of EPR parameters in Cu(II) complexes of theoctarepeat region of the prion protein[J], Physical Chemistry Chemical Physics,2008,10,4573-4583.
    [98] Heisenberg W.The translation of kinematical and mechanical relations into terms of the quantumtheory[J].J Phys,1925,33:879-893.
    [99] Patrick J O'Malley,Simon J. Collins Density functional studies of free radicals: accurate geometry andhyperfine coupling prediction for semiquinone anions[J]. Chem. Phys. Lett.,1996,259:296-300.
    [100] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B,1993,47(1):558-561.
    [101] Kresse G, Furthmüller FA. Efficiency of ab iniyio total energy calcilations for metals andsemiconductors using a plane-wave basis set[J]. J. Comput. Mat. Sci.,1996,6(1):15-50.
    [102] Kresse G, Furthmüller FA. Efficient iterative schemes for ab initio total-energycalculations using aplane-wave basis set[J]. Phys. Rev. B,1996,54(16):11169-11186.
    [103] Schmidt MW, Baldridge KK, Boatz JA,et al, General atomic and molecular electronic structuresystem[J]. J. Comput. Chem.,1993,14(11):1347-1363.
    [104] Andersson K, Barysz M, Bernhardsson A,et al, MOLCAS Version5.2[D], Lund University, Sweden,2001.
    [105] Helgaker T, Jensen HJA, J rgensen P,et al, Dalton, a molecular electronic structure program, Release1.2,2001.
    [106] Pearlman DA, Case DA, Caldwell JW,et al, AMBER, a package of computer programs forapplyingmolecular mechanics, normal mode analysis, molecular dynamics and free energy calculations tosimulate the structural and energetic properties of molecules[J]. Comp. Phys. Commun.,1995,91:1.
    [107] MacKerell AD, Brooks B, Brooks CL,et al, CHARMM: The Energy Function and ItsParameterization with an Overview of the Program in The Encyclopedia of ComputationalChemistry[J]. In: Schleyer, PVR, editor. vol.1. Chichester: John Wiley&Sons,1998: P271-277.
    [108] Podolyan Y, Gorb L, Leszczynski J. Protonation of Nucleic Acid Bases. A ComprehensivePost-Hartree-Fock Study of the Energetics and Proton Affinities[J]. J. Phys. Chem. A,2000,104(31):7346-7352.
    [109] Cheatham TE, Kollman PA. Molecular dynamics simulations highlights the structural differencesamong DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes. J. Am. Chem. Soc.,1997,119(21):4805–4825.
    [110] Korolev N, Lyubartsev AP, Laaksonen A,et al, On the competition between water, sodium ions, andspermine ion binding to DNA: a molecular dynamics computer simulation study[J]. Biophys. J.,2002,82(6):2860–2875.
    [111] Lyubartsev AP, Laaksonen A. Molecular dynamics simulations of DNA in solutions with differentcounter-ions[J]. J. Biomol. Struct. Dynam.,1998,16(3):579–592.
    [112] Hamelberg D, McFail-Isom L, Williams LD,et al, Flexible structure of DNA: ion dependence ofminor-groove structure and dynamics[J]. J. Am. Chem. Soc.,2000,122(43):10513-10520.
    [113] Hamelberg D, Williams LD, Wilson DS. Influence of the dynamic positions of cations on thestructure of the DNA minor groove: sequence-dependent effects[J]. J. Am. Chem. Soc.,2001,123(32):7745–7755.
    [1] Kiser R W.Introduction to Mass Spectrometry&Its Applications[M].New York:Pratice-Hall,1965.
    [2] Duckworth H E,Barber R C,Venkatasubramanian V S.Mass Spectrometry.2nded[M].London:Cambridge University Press,1986.
    [3]陈耀祖,涂亚平.有机质谱原理及应用[M].北京:科学出版社,2000.
    [4]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2000.
    [5]赵墨田,曹永明,陈刚等.无机质谱概论[M].北京:化学工业出版社,2006.
    [6]何美玉.现代有机与生物质谱[M].北京:北京大学出版社,2002.
    [7]杨芃原,钱小红,盛龙生.生物质谱技术与方法[M].北京:科学出版社,2003.
    [8]罗国安,王义明,朱瑛,质谱在肽和蛋白分析中的应用[J].药学学报,2000,35(4):316-320.
    [9]李明,费强,冯国栋,等,质谱检测技术及其一些最新进展[J],仪器仪表学报,2007,28(8):1532-1535.
    [10]王世俊,质谱学及其在核科学技术中的应用[M].北京:原子能出版社,1998.
    [11] G. E. Johnson, M. Lysonski,J. Laskin, In Situ Reactivity and TOF-SIMS Analysis of SurfacesPrepared by Soft and Reactive Landing of Mass-Selected Ions[J], Analytical Chemistry,2010,82:5718-5727.
    [12] S. Bellon, W. Buchmann, F. Gonnet,et al, Hyphenation of Surface Plasmon Resonance Imaging toMatrix-Assisted Laser Desorption Ionization Mass Spectrometry by On-Chip Mass Spectrometry andTandem Mass Spectrometry Analysis[J], Analytical Chemistry,2009,81:7695-7702.
    [13] Q. C. Hu, P. Wang, P. L. Gassman,et al, In situ Studies of Soft-and Reactive Landing ofMass-Selected Ions Using Infrared Reflection Absorption Spectroscopy[J], Analytical Chemistry,2009,81:7302-7308.
    [14] Pramanik B N, Ganguly A K, Gross M L. Applied electrospray mass spectrometry[M]. Marcel DekkerInc.2002.
    [15] S. Hsieh, H. Y. Ku, Y. T. Ke,H. F. Wu, Self-assembled-monolayer-modified silicon substrate toenhance the sensitivity of peptide detection for AP-MALDI mass spectrometry[J], Journal of MassSpectrometry,2007,42:1628-1636.
    [16] M. Mrksich, Mass spectrometry of self-assembled monolayers: A new tool for molecular surfacescience[J], Acs Nano,2008,2:7-18.
    [17] D. Schroder, C. Trage, H. Schwarz,et al, Inner-sphere electron transfer in metal-cation chemistry[J],International Journal of Mass Spectrometry,2000,200:163-173.
    [18] J. R. Lloyd, S. Hess, Peptide Fragmentation by Corona Discharge Induced ElectrochemicalIonization[J], Journal of the American Society for Mass Spectrometry,2010,21:2051-2061.
    [19] Bertinil L, Sigel A, Sigel H, Handbook on metalloproteins[M].Marcel Dekker:NewYork,2001.
    [20] L. Shen, A. Guo,X. Y. Zhu, Tween surfactants: Adsorption, self-organization, and protein resistance[J],Surface Science,2011,605:494-499.
    [21] Schwartz J C, Syka J E P, Jardine.High resolution on a quadrupole ion trap mass spectrometer[J].JMass Spectrom,1991,2:198-204.
    [22] Goeringer D E,Whitten W B,Ramsey J M,et al, Theory of high-resolution mass spectrometryachieved via resonance ejection in the quadrupole ion trap[J].Anal Chem,1992,64:1434-1439.
    [23] Kaiser R E J,Louris J N,Amy J W,et al, Extending the mass range of the quadrupole ion trap usingaxial modulation[J].Rapid Commun Mass Spectrom,1989,3:225-229.
    [24]唐敖庆.量子化学的现状与展望[J],有机化学.1984,6:460-464.
    [25]陈飞虎.量子化学中的计算方法[M].北京:科学出版社,2008.
    [26]曹阳.量子化学导论[M].上海:人民教育出版社,1980.
    [27]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [28]王荣顺,基础量子化学[M].长春:东北师范大学出版社,2006.
    [29]王培铭,许乾慰.材料研究方法[M],北京:科学出版社,2005.
    [30]徐光宪,黎乐民.量子化学基本原理和从头计算方法[M].北京:科学出版社,1980.
    [31] Levine I N,Quantum Chemistry[M].Prentice Hall,Englewood Cliffs,fifth Edition,1999.
    [32] Marian C M. The Guanine Tautomer Puzzle: Quantum Chemical Investigation of Ground and ExcitedStates[J]. J. Phys. Chem. A,2007,111(8):1545-1553.
    [33] Silverstein R M: Spectrometric Identification of Organic Compounds[M],4th ed., New York JohnWiley&Sons,1981:3-94.
    [34] Born M,Heissenberg W,Jordon P.Quantum mechanics II[J].J Phys,1926,35:557-615.
    [35] Born M,Jordan P.Quantum mechanics[J].J Phys,1925,34:858-888.
    [36] Ball.P,Crystals by design[J], nature,1996,381,648-649.
    [37]陈敏伯.化学不再是纯实验科学[J].科学,1999,51(1):58-61.
    [38]陈志达.量子化学的第二次革命[J].大学化学,1999,14(3):3-6.
    [39]张红星,徐昕.‘98诺贝尔化学奖简介[J].化学进展,1998,10(4):466-468.
    [40] Pauling L,Wilson E B,Introduction to Quantum Mechanics[M].New York:Dover Publications,1985.
    [41] Primas H.Chemistry,Quantum Mechanics and Reductionism[M].Berlin:Springer,1983.
    [42] Breslow R.Chemistry Today and Tomorrow[M].American Chemiscal Society,1996.
    [43] Boeyens J C A.New Theories for Chemistry[M].Amsterdam:Elsevier,2005.
    [44]嵇汝远,曾繁星,唐贇,根据受体结构进行药物设计研究[J].化学研究与应用,1999,11(6):591-597.
    [45]徐昕,王南钦,吕鑫,量子化学的研究现状、发展趋势与展望[J].化学进展,1996,8(1):30-42.
    [46]唐贇,蒋华良,陈凯先,计算机辅助药物设计正在走向成功[J].生命科学,1996,8(4):5-9.
    [47] Singh P,Mhaka A M,Christensen S B.Applying Linear Interaction Energy Method for RmionalDesign of Noncompetitive Allosteric Inhibitors of the Sarco and Endoplasmic ReticulumCalcium-ATPase [J].J Med Chem,2005,48:3005-3014.
    [48]徐光宪.21世纪理论化学的挑战和机遇[J].结构化学,2002,21(5):463-469.
    [49]陈念贻,许志宏,刘洪霖,计算化学及其应用[M].上海:上海科技出版社,1987.
    [50]曹傲能,来鲁华,唐有祺.蛋白质全新设计的现状和展望[J].生物化学与生物物理进展,1998,25(3):197-201.
    [51]来鲁华,徐筱杰,唐有祺.蛋白质的结构预测和分子设计[J].自然科学进展,1995,5(1):2-6.
    [52] Zhao Y, Lynch B J, Truhlar D G., Doubly hybrid meta DFT: New multicoefficient correlation anddensity functional methods for thermochemistry and thermochemical kinetics[J]. J. Phys. Chem.A,2004,108:4786-4791.
    [53] Hückel E.Quantum-theoretical contributions to the benzene problem I The electron configuration ofbenzene and related compounds[J].J Phys,1931,70:204-86.
    [54] Hückel E.Quantum theoretical contributions to the problem of aromatic and non-saturated compoundsIII[J].J Phys,1932,76:628-648.
    [55] Hoffmann R.Extended Hückel Theory III Compounds of Boron and Nitrogen[J].J Chem Phys,1964,40:2474-2480.
    [56] Hoffmann R.Extended Hückel Theory II σ Orbitals in the Azines[J].J Chem Phys,1964,40:2745-2746.
    [57] Ammeter J H,Buergi H B,Thibeault J C,et al, Counterintuitive orbital mixing in semiempirical and abinitio molecular orbital calculations[J].J Am Chem Soc,1978,100(12):3686-3692.
    [58] Hoffmann R.An Extended Hückel Theory. I. Hydrocarbons[J].J Chem Phys,1963,39:1397-1412.
    [59]王志中,李向东.半经验分子轨道理论与实践[M].北京:科学出版社,1981.
    [60] Pariser R,Parr R G.A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure ofComplex Unsaturated Molecules I[J].J Chem Phys,1953,21:466-471.
    [61] Pariser R,Parr R G.A Semi‐E mpirical Theory ofthe Electronic Spectra and Electronic Structure ofComplex Unsaturated MoleculesII[J].J Chem Phys,1953,21:767-776.
    [62] Pople J A,Segal G A.Approximate self-consistent molecular orbital theory. II. Calculations withcomplete neglect of differential overlap[J].J Chem Phys,1965,43:S136-S149.
    [63] Pople J A,Santry D P,Segal G A.Approximate self-consistent molecular orbital theory. I. Invariantprocedures[J].J Chem Phys,1965,43:S129-S135.
    [64] Pople J A,Santry D P.Molecular orbital theory of hydrocarbons. III. Nuclear spin couplingconstants[J].Mol Phys,1965,9(4):311-318.
    [65] Pople J A,Santry D P.Molecular orbital theory of hydrocarbons. II. Ethane, ethylene, andacetylene[J].Mol Phys,1965,9(4):301-310.
    [66] Pople J A,Segal G A.Approximate Self‐C onsistent Molecular Orbital Theory. III. CNDO Resultsfor AB2and AB3Systems[J].J Chem Phys,1966,44:3289-3296.
    [67] John B C,Paul v R,Schleyer,et al, Pople Self‐consistent molecular orbital methods. XVII.Geometries and binding energies of second‐row molecules A comparison of three basis sets[J].JChem Phys,1976,64,5142-5151.
    [68] Del Bene J E,Ditchfield R,Pople J.A.Self-consistent molecular orbital methods.X. Molecular orbitalstudies of excited states with minimal and extended basis sets[J].J Chem Phys,1971,55(5):2236-2241.
    [69] Petersson G A,Al-Laham M A.A complete basis set model chemistry.II.Open-shell systems and thetotal energies of the first-row atoms[J].J Chem Phys,1991,94(9):6081-6090.
    [70] Petersson G A,Bennett A,Tensfeldt T G,etal,A complete basis set model chemistry.I.The totalenergies of closed-shell atoms and hydrides of the first-row elements[J].J Chem Phys,1988,89(4):2193-2218.
    [71]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [72] Becke A D.Density functional calculations of molecular bond energies[J].J Chem Phys,1986,84(8):4524-4529.
    [73] Becke A D.On the large-gradient behavior of the density functional exchange energy[J].J ChemPhys,1986,85(12):7184-7187
    [74] Becke A D. Density-functional exchange-energy approximation with correct asymptoticbehavior[J].Phys Rev A: At, Mol, Opt Phys,1988,38(6):3098-3100.
    [75] Becke A D,Roussel M R.Exchange holes in inhomogeneous systems: a coordinate-spacemodel[J].Phys Rev A: At, Mol, Opt Phys,1989,39(8):3761-3767.
    [76] Perez-Jorda J M,Becke A D.A density-functional study of van der Waals forces: rare gasdiatomics[J].Chem Phys Lett,1995,233(1,2):134-137.
    [77] Patrick J O,Simon J.Collins Density functional studies of free radicals: accurate geometry andhyperfine coupling prediction for semiquinone anions[J].Chem Phys Lett,1996,259:296-300.
    [78] Patrick J O.1H,13C and17O principal hyperfine tensor determination for the p-benzosemiquinone anionradical using hybrid density functional methods[J].Chem Phys Lett,1996,262:797-800.
    [79] Lee C,Yang W,Parr R G.Phys Rev[M].1988,B37:785-789.
    [80] Kohn W,Becke A D,Parr R G.Density Functional Theory of Electronic Structure[J].J Phys Chem,1996,100(31):12974-12980.
    [81] Becke A D,Savin A,Stoll H.Extension of the local-spin density exchange-correlation approximationto multiplet states[J].Theor Chim Acta,1995,91(3/4):147-156.
    [82] http://www.gaussian.com/g_tech/g_ur/g09help.htm.
    [83] W. M. Ames,S. C. Larsen, Insight into the copper coordination environment in the prion proteinthrough density functional theory calculations of EPR parameters[J], Journal of Biological InorganicChemistry,2009,14:547-557.
    [84] A. Sandomenico, S. M. Monti, M. Sabatella,et al, Protein-Protein Interactions: A Simple Strategy toIdentify Binding Sites and Peptide Antagonists[J], Chemical Biology&Drug Design,2009,73:483-493.
    [85] M. Hodak,J. Bernholc, Insights into prion protein function from atomistic simulations[J], Prion,2010,4:13-19.
    [86] N. Russo, T. Marino, D. Mazzuca,et al, On the Interaction of Rubidium and Cesium Mono-, Strontiumand Barium Bi-Cations With DNA and RNA Bases. A Theoretical Study[J], International Journal ofQuantum Chemistry,2010,110:138-147.
    [87] M. Urbanova, V. Setnicka, J. Novy,et al, Molecular structure of guanine-quartet supramolecularassemblies in a gel-state based on a DFT calculation of infrared and vibrational circular dichroismspectra[J], Langmuir,2008,24:7520-7527.
    [88] J. K. Norskov, F. Abild-Pedersen, F. Studt,et al, Density functional theory in surface chemistry andcatalysis[J], Proceedings of the National Academy of Sciences of the United States of America,2011,108:937-943.
    [89] Chen X, Syrstad E A, Nguyen M T,et al, Adenine Radicals in the Gas Phase: An Experimental andComputational Study of Hydrogen Atom Adducts to Adenine[J]. J. Phys. Chem. A,2005,109:8121-8132.
    [90] Podolyan Y, Gorb L, Leszczynski J. Ab Initio Study of the Prototropic Tautomerism of Cytosine andGuanine and Their Contribution to Spontaneous Point Mutations[J]. Int. J. mol. Sci.,2003,4:410-419
    [91] Podolyan Y, Gorb L, Leszczynski J. Protonation of Nucleic Acid Bases. A ComprehensivePost-Hartree-Fock Study of the Energetics and Proton Affinities[J]. J. Phys. Chem. A,2000,104(31):7346-7352.
    [92] Podolyan Y, Nowak M J, Lapinski L,et al, Probing ab initio MP2approach towards the prediction ofvibrational infrared spectra of DNA base pairs[J]. J. Mol. Struct.,2005,744-747:19-34.
    [93] Hwang S, Jang Y H, Cho H,et al, Density Functional Theoretical Study on the Proton Migration inRadical Cations of Substituted Cytosine:Guanine Pair[J]. Bull. Korean Chem. Soc.,2008,29(3):539-540.
    [94] Chen H, Li S H. Theoretical Study on the Excitation Energies of Six Tautomers of Guanine: Evidencefor the Assignment of the Rare Tautomers[J]. J. Phys. Chem. A,2006,110(45):12360-12362.
    [95] Liang W, Li H R, Han S J,et al, Systematic theoretical investigations on all of the tautomers ofguanine: From both dynamics and thermodynamics viewpoint[J]. Chem. Phys.,2006,328,93-102.
    [96] Podolyan Y, Rubin Y V, Leszczynski J. An ab Initio Post-Hartree-Fock Comparative Study of5-Azacytosine and Cytosine and Their Dimers with Guanine[J]. J. Phys. Chem. A,2000,104(44):9964-9970.
    [1]刘次全,白春礼,张静,等.结构分子生物学[M].北京:高等教育出版社,1997.
    [2]向清祥,新型大环多胺金属配合物的设计合成、超分子识别与仿酶催化作用[D],四川大学,2002,博士.
    [3]冯斌,谢光芝,基因工程技术[J].化工进展,2002,21(3):231-232.
    [4]胡红雨,鲁子贤,“锌指”结构:蛋白质和DNA相互作用的一种模式[J].生物化学与生物物理进展,1992,19(4):250-253.
    [5] S. Singh and A. K. Ghose, Metal ion interactions with nucleic acid base pairs in solution-Apotentiometric study[J], Journal of the Indian Chemical Society,1996,73:650-653.
    [6] A. Kirsch-De Mesmaeker,F. Pierard, Bifunctional transition metal complexes as nucleic acidphotoprobes and photoreagents[J], Inorganic Chemistry Communications,2006,9:111-126.
    [7] S. J. Kim,E. T. Kool, Sensing metal ions with DNA building blocks: Fluorescent pyridobenzimidazolenucleosides[J], Journal of the American Chemical Society,2006,128:6164-6171.
    [8]张蓉颖,庞代文,蔡汝秀,NDA与靶向分子相互作用研究进展[J].高等学校化学学报,1999,20(8):1210-1217.
    [9]张黔玲,刘剑洪,徐宏等,镍(n)多毗睫配合物的合成及其插入配体的形状对键合DNA的影响[J].中山大学学报(自然科学版),2003,42(3):21-24.
    [10] D. Li, S. P. Song,C. H. Fan, Target-Responsive Structural Switching for Nucleic Acid-BasedSensors[J], Accounts of Chemical Research,2010,43:631-641.
    [11] B. Juskowiak, Nucleic acid-based fluorescent probes and their analytical potential[J], Analytical andBioanalytical Chemistry,2011,399:3157-3176.
    [12] J. C. Joyner,J. A. Cowan, Targeted Cleavage of HIV RRE RNA by Rev-Coupled Transition MetalChelates[J], J. Am. Chem. Soc.,2011,133:9912-9922.
    [13]张焱, DNA与卟啉等药物分子相互作用的界面电化学研究[D],西北师范大学,2007硕士.
    [14]吴琼,维甲酸金属配合物与DNA相互作用的分析比较[D],西北师范大学,2007,硕士.
    [15]邹汉法,生物活性分子的相互作用及其在分离分析中的应用[J].中国科学基金,1999,13(l):31-33.
    [16] Burrows, C. J.; Muller, J. G. Oxidative nucleobase modifications leading to strand scission[J]. Chem.Rev.1998,98,1109-1151.
    [17] X. C. Zhang, Y. H. Hu, Y. Fang,et al, Structures and stability of complexes Ca2+-RNA nucleic acidbases[J], Chinese Journal of Chemical Physics,2005,18:537-540.
    [18] Harford, C.; Sarkar, B. Amino Terminal Cu(II)-and Ni(II)-Binding (ATCUN) Motif of Proteins andPeptides: Metal Binding, DNA Cleavage, and Other Properties[J],Acc. Chem. Res.1997,30:123-130.
    [19] Theophanides, T.; Bariyanga, J. Structural Aspects of Group I Metal Ion Nucleoside Interactions[J],J.Mol. Struct.1989,214:177-184.
    [20] Marino, T.; Toscano, M.; Russo, N,et al, Gas-phase interaction between DNA and RNA bases andcopper (II) ion: A density functional study[J], Int. J. Quantum. Chem.2004,98:347-354.
    [21] Sigel, A.; Sigel, H.; Editors Metal Ions in Biological Systems; Volume32: Interactions of Metal Ionswith Nucleotides[J], Nucleic Acids and Their Constituents,1996:135-205.
    [22] Knobloch, B.; Sigel, H. A quantitative appraisal of the ambivalent metal ion binding properties ofcytidine in aqueous solution[J], J. Bio. Inorg. Chem.2004,9:365-373.
    [23] W. M. Ames,S. C. Larsen, Insight into the copper coordination environment in the prion proteinthrough density functional theory calculations of EPR parameters[J], Journal of Biological InorganicChemistry,2009,14:547-557.
    [24] F. R. Keene, J. A. Smith,J. G. Collins, Metal complexes as structure-selective binding agents fornucleic acids[J], Coordination Chemistry Reviews,2009,253:2021-2035.
    [25] H. Zhou, Z. H. Peng, Z. Q. Pan,et al, DFT theoretical, synthesis, X-ray diffraction and IR studies onnew dinuclear copper macrocyclic complexes[J], Journal of Molecular Structure,2005,743:59-68.
    [26] H. Mart, U. S. Vural, H. O. Demir,et al, Synthesis and characterization of thermally stableoligomer-metal complexes of copper(II), nickel(II), zinc(II) and cobalt(II) derived fromoligo-p-nitrophenylazomethinephenol[J], Bulletin of the Chemical Society of Ethiopia,2006,20:219-226.
    [27] S. Mitra, S. Sen, C. R. Choudhury,et al, A novel polymeric Cu(II) assemblage and a monomeric Ni(II)complex from a new easy-to-prepare flexible polytopic ligand: Synthesis, structural and magneticstudies[J], Polyhedron,2006,25:1271-1278.
    [28] M. Merkx, M. Van Dongen, L. M. Dekkers,et al, Ratiometric fluorescent sensor proteins withsubnanomolar affinity for Zn(II) based on copper chaperone domains[J], Journal of the AmericanChemical Society,2006,128:10754-10762.
    [29] P. Fantucci, M. Bruschi, L. De Gioia,et al, A DFT study of EPR parameters in Cu(II) complexes of theoctarepeat region of the prion protein[J], Physical Chemistry Chemical Physics,2008,10:4573-4583.
    [30] O. W. Duckworth, J. R. Bargar,G. Sposito, Quantitative Structure-Activity Relationships for AqueousMetal-Siderophore Complexes[J], Environmental Science&Technology,2009,43:343-349.
    [31] Z. H. Peng, C. Q. Yuan, Q. C. Pan,etal, Spectroscopic and theoretical studies on copper(II) complex ofmaleonitriledithiolate and5-nitro-1,10-phenanthroline[J], Journal of Molecular Structure,2006,789:52-58.
    [32] Z. N. Qi, J. Wu, C. B. Liu,et al, Theoretical study on magneto-structural correlation of trinuclearcopper(II) complex with the hydroxo bridge and bidentate syn-syn carboxylate group[J], ChineseScience Bulletin,2006,51:1421-1425.
    [33]霍红洁,赵东霞,杨忠志,碱基与氮甲基乙酰胺相互作用的从头算和ABEEM_(σπ)研究[J],高等学校化学学报,2011:2877-2884.
    [34] S. Melino, M. Gallo, E. Trotta,et al, Metal-binding and nuclease activity of an antimicrobial peptideanalogue of the salivary histatin5[J], Biochemistry,2006,45:15373-15383.
    [35] P. Buglyo, E. M. Nagy, E. Farkas,et al, New insights into the metal ion-peptide hydroxamateinteractions: Metal complexes of primary hydroxamic acid, derivatives of common dipeptides inaqueous solution[J], Polyhedron,2007,26:1625-1633.
    [36] S. Perez-Yanez, O. Castillo, J. Cepeda,et al, Analysis of the Interaction between Adenine Nucleobaseand Metal-Malonato Complexes[J], European Journal of Inorganic Chemistry,2009:3889-3899.
    [37] Yu, C.; O'Donnell, T. J.; LeBreton, P. R. Ultraviolet photoelectron studies of volatile nucleosidemodels. Vertical ionization potential measurements of methylated uridine, thymidine, cytidine, andadenosine[J], J. Phys. Chem.1981,85,3851-3855.
    [38]何力为,地震灾区典型区域环境重金属污染调查与风险评估[D],华中农业大学,2011,博士.
    [39] A. Banerjee, R. Singh, E. Colacio,etal, Binuclear Copper(II) Chelates with Heptadentate Ligands:Synthesis, Structure, Magnetic Properties, DFT Studies, and Catecholase and Hydrolytic DNACleavage Activity[J], European Journal of Inorganic Chemistry,2009:277-284.
    [40] S. S. Bhat, A. A. Kumbhar, H. Heptullah,et al,Synthesis, Electronic Structure, DNA and ProteinBinding, DNA Cleavage, and Anticancer Activity of Fluorophore-Labeled Copper(II) Complexes[J],Inorganic Chemistry,2011,50:545-558.
    [41] D. Armentano, N. Marino, T. F. Mastropietro,et al, Self-Assembly of a Chiral Carbonate-andCytidine-Containing Dodecanuclear Copper(II) Complex: a Multiarm-Supplied Globular Capsule[J],Inorganic Chemistry,2008,47:10229-10231.
    [42] J. V. Burda, M. K. Shukla,J. Leszczynski, Theoretical model of the aqua-copper Cu(H2O)(5)(+)cation interactions with guanine[J], Journal of Molecular Modeling,2005,11:362-369.
    [43] V. Chis, O. Cozar, L. Szabo, I. B. Cozar, N. Leopold, L. David and C. Cainap, Spectroscopic and DFTstudy of atenolol and metoprolol and their copper complexes[J], Journal of Molecular Structure,2011,993:357-366.
    [44] J. B. Baruah,B. Das, Dipicolinato complexes of cobalt(II), copper(II) and zinc(II) with thiaminedications[J], Inorganica Chimica Acta,2011,372:389-393.
    [45] M. X. Li, H. Wang, M. Shao,et al, Synthesis, structure and luminescent properties of Cu(I)-cyanideframeworks based on bent dipyridyl-oxadiazole ligands[J], Journal of Molecular Structure,2008,889:154-159.
    [46] M. X. Li, W. Li, J. J. Yang,et al, Cu(II)/Cd(II) coordination polymers based on polycarboxylate and2-(2-pyridyl)benzimidazole[J], Journal of Coordination Chemistry,2008,61:2715-2724.
    [47] Kristi J. H.; Kenneth D. K.; Steven E. Recognition and Strand Scission at Junctions between Single-and Double-Stranded DNA by a Trinuclear Copper Complex[J], J. Am. Chem. Soc.2001,123:5588-5589.
    [48] Ping Cheng,Diethard K. Bohme, Gas-Phase Formation of Radical Cations of Monomers and Dimersof Guanosine by Collision-Induced Dissociation of Cu(II)-Guanosine Complexes[J] J. Phys. Chem. B2007,111,11075-11082.
    [49] C. P. Da Costa,H. Sigel, Lead(II)-binding properties of the5'-monophosphates of adenosine(AMP(2-)), inosine (IMP2-), and guanosine (GMP(2-)) in aqueous solution evidence fornucleobase-lead(II) interactions[J], Inorganic Chemistry,2000,39:5985-5993.
    [50] D. B. Pedersen, M. Z. Zgierski, S. Denommee,et al, Photoinduced charge-transfer dehydrogenation ina gas-phase metal-DNA base complex: Al-cytosine[J], Journal of the American Chemical Society,2002,124:6686-6692.
    [51] J. E. Sponer, F. Glahe, J. Leszczynski,et al, How nucleobases rotate when bonded to a metal ion:Detailed view from an ab initio quantum chemical study of a cytosine complex of trans-a(2)Pt(II)[J],Journal of Physical Chemistry B,2001,105:12171-12179.
    [52] H. Sigel,R. Griesser, Nucleoside5'-triphosphates: self-association, acid-base, and metal ion-bindingproperties in solution[J], Chemical Society Reviews,2005,34:875-900.
    [53] M. Noguera, J. Bertran, M. Sodupe, A quantum chemical study of Cu2+interacting withguanine-cytosine base pair. Electrostatic and oxidative effects on intermolecular proton-transferprocesses[J], Journal of Physical Chemistry A,2004,108:333-341.
    [54] Wright, R. R.; Walker, N. R.; Firth, S.,et al, Coordination and Chemistry of Stable Cu(II) Complexesin the Gas Phase[J],J. Phys. Chem. A2001,105:54-64.
    [55] R. Delgado, L. M. P. Lima, M. G. B. Drew,et al, Cyclam derivatives containing three acetate pendantarms: synthesis, acid-base, metal complexation and structural studies[J], Dalton Transactions,2008:6593-6608.
    [56] J. Brasun, A. Matera, E. Sochacka,et al, Acid-base and metal ion binding properties of2-thiocytidinein aqueous solution[J], Journal of Biological Inorganic Chemistry,2008,13:663-674.
    [57] Ping Cheng, Yanni Li, Shuqi Li,et al,Collision-induced dissociation (CID) of guanine radicalcation in the gas phase: an experimental and computational study, Physical Chemistry ChemicalPhysics,12(2010),4667-4677.
    [58]李艳妮,张明涛,程平.鸟嘌呤自由基阳离子碰撞诱导解离实验和理论研究[J].质谱学报,2008,29:115-118.
    [59] Sessler Jonathan, L.; Jayawickramarajah, J.; Sathiosatham, M.,etal, Novel Guanosine CytidineDinucleoside that Self-Assembles into a Trimeric Supramolecule[J], Org. Lett.2003,5:2627-2630.
    [60] H. Sigel, C. P. Da Costa,R. B. Martin, Interactions of lead(II) with nucleotides and theirconstituents[J], Coordination Chemistry Reviews,2001,219-221:435-461.
    [61] Moriwaki, H. Complexes of cadmium ion with guanine bases detected by electrospray ionization massspectrometry[J], Journal of Mass Spectrometry2003,38:321-327.
    [62] Kinjo, Y.; Ji, L.; Corfu, N. A.,et al, Ambivalent metal ion binding properties of cytidine in aqueoussolution[J], Inorganic Chemistry1992,31:5588-5596.
    [63] N. Russo, T. Marino, D. Mazzuca,et al, On the Interaction of Rubidium and Cesium Mono-, Strontiumand Barium Bi-Cations With DNA and RNA Bases[J]. A Theoretical Study, International Journal ofQuantum Chemistry,2010,110:138-147.
    [64] Lippert, B. Multiplicity of metal ion binding patterns to nucleobases[J]. Chem. Rev.2000,200-202:487-503.
    [65] Swiatek-Kozlowska, J.; Brasun, J.; Dobosz, A.,et al, Coordination of thiouridine monophosphateswith selected metal ions[J]. J. Inorg. Biochem.2003,93:119-124.
    [66] C. E. H. Dessent,R. M. Burke, Effect of Cation Complexation on the Structure of a ConformationallyFlexible Multiply Charged Anion: Stabilization of Excess Charge in the Na+center dot Adenosine5'-Triphosphate Dianion Ion-Pair Complex[J], Journal of Physical Chemistry A,2009,113:2683-2692.
    [1] C. Andreini, I. Bertini, G. Cavallaro,et al, Metal ions in biological catalysis: from enzyme databases togeneral principles[J], Journal of Biological Inorganic Chemistry,2008,13:1205-1218.
    [2]四川大学,分析化学[M].北京:科学出版社,2001.
    [3] A. Violante, V. Cozzolino, L. Perelomov,et al, Mobility and Bioavailability of Heavy Metals andMetalloids in Soil Environments[J], Journal of Soil Science and Plant Nutrition,2010,10:268-292.
    [4]胡红雨,鲁子贤.“锌指”结构:蛋白质和DNA相互作用的一种模式[J].生物化学与生物物理进展,1992,19(4):250-253.
    [5] S. J. Kim,E. T. Kool, Sensing metal ions with DNA building blocks: Fluorescent pyridobenzimidazolenucleosides[J], JACS,2006,128:6164-6171.
    [6] A. Trabocchi, D. Scarpi,A. Guarna, Structural diversity of bicyclic amino acids[J], Amino Acids,2008,34:1-24.
    [7] B. Lippert, Multiplicity of metal ion binding patterns to nucleobases[J], Coordination ChemistryReviews,2000,200-202:487-516.
    [8] B. Knobloch,H. Sigel, A quantitative appraisal of the ambivalent metal ion binding properties ofcytidine in aqueous solution and an estimation of the anti-syn energy barrier of cytidine derivatives[J],Journal of Biological Inorganic Chemistry,2004,9:365-373.
    [9] Y. Kinjo, L. Ji, N. A. Corfu,et al, Ambivalent metal ion binding properties of cytidine in aqueoussolution[J], Inorganic Chemistry,1992,31:5588-5596.
    [10] S. Mochizuki,A. Wakisaka, Interactions of a nucleoside cytidine with metal ions in water observedthrough mass spectrometry: Clustering controlled by electrostatic interaction and coordinatinginteraction[J], Journal of Physical Chemistry B,2003,107:5612-5616.
    [11] B. Knobloch,H. Sigel, A quantitative appraisal of the ambivalent metal ion binding properties ofcytidine in aqueous solution and an estimation of the anti-syn energy barrier of cytidine derivatives[J],Journal of Biological Inorganic Chemistry,2004,9:365-373.
    [12] P. Hirva, A. Nielsen, A. D. Bond,et al, Potential Cross-Linking Transition Metal Complexes (M=Ni,Cu, Zn) in the Ligand-Modified LNA Duplexes[J], Journal of Physical Chemistry B,2010,114:11942-11948.
    [13] L. Lomozik, A. Gasowska, R. Bregier-Jarzebowska,et al, Coordination chemistry of polyamines andtheir interactions in ternary systems including metal ions, nucleosides and nucleotides[J], CoordinationChemistry Reviews,2005,249:2335-2350.
    [14] H. Sigel, Comparison of the stabilities of binary and ternary complexes of divalent metal ions with the5'-triphosphates of adenosine, inosine, guanosine, cytidine, uridine and thymidine[J], Journal ofInorganic and Nuclear Chemistry,1977,39:1903-1911.
    [15]张蓉颖,庞代文,蔡汝秀,NDA与靶向分子相互作用研究进展[J].高等学校化学学报,1999,20(8):1210-1217.
    [16]张黔玲,刘剑洪,徐宏,等,镍(n)多毗睫配合物的合成及其插入配体的形状对键合DNA的影响[J].中山大学学报(自然科学版),2003,42(3):21-24.
    [17] H. Sigel, C. P. Da Costa, R. B. Martin, Interactions of lead(II) with nucleotides and theirconstituents[J], Coordination Chemistry Reviews,2001,219-221:435-461.
    [18] T. Theophanides,J. Bariyanga, Structural aspects of Group I metal ion-nucleoside interactions[J],Journal of Molecular Structure,1989,214:177-184.
    [19] Y. Y. Chao,D. R. Kearns, Magnetic resonance studies of copper(II) interaction with nucleosides andnucleotides[J], JACS,1977,99:6425-6434.
    [20] M. Peschke, A. T. Blades,P. Kebarle, Binding Energies for Doubly-Charged Ions M2+=Mg2+, Ca2+and Zn2+with the Ligands L=H2O, Acetone and N-methylacetamide in Complexes MLn2+for n=1-7from Gas Phase Equilibria Determinations and Theoretical Calculations[J], JACS,2000,122:10440-10449.
    [21] S. E. Rodriguez-Cruz, R. A. Jockusch,E. R. Williams, Hydration Energies of Divalent Metal Ions,Ca2+(H2O)n(n=5-7) and Ni2+(H2O)n (n=6-8), Obtained by Blackbody Infrared RadiativeDissociation[J], Journal of the American Chemical Society,1998,120:5842-5843.
    [22]邹汉法.生物活性分子的相互作用及其在分离分析中的应用[J].中国科学基金,1999,13(l):31-33.
    [23]张焱, DNA与卟啉等药物分子相互作用的界面电化学研究[D],西北师范大学,2007,博士.
    [24] A. A. Shvartsburg, J. G. Wilkes, J. O. Lay,et al, Fragmentation and charge transfer in gas-phasecomplexes of divalent metal ions with acetonitrile[J], Chemical Physics Letters,2001,350:216-224.
    [25] B. J. Hall,J. S. Brodbelt, Study of diketone/metal ion complexes by electrospray ionization massspectrometry: influence of keto-enol tautomerism and chelation[J], J. Amer. Soc. for Mass Spec.,1999,10:402-413.
    [26] U. N. Andersen,G. Bojesen, Gas-phase ion/molecule reactions of doubly charged clusters of Fe2+orMn2+and methanol with ammonia[J], Inter. J. MS and Ion Processes,1996,153:1-7.
    [27] M. Kohler,J. A. Leary, Gas-phase reactions of doubly charged alkaline earth and transition metalcomplexes of acetonitrile, pyridine, and methanol generated by electrospray ionization[J], J. Amer.Soc. for Mass Spec.,1997,8:1124-1133.
    [28] Z. L. Cheng, K.W. Siu, R. Guevremont,et al, Solvent-derived metal oxides in electrospray massspectrometry of metal salt solutions[J], Organic Mass Spectrometry,1992,27:1370-1376.
    [29] Moriwaki, H. Complexes of cadmium ion with guanine bases detected by electrospray ionization massspectrometry[J], J. Mass Spec.2003,38:321-327.
    [30] E. S. Baker, S. L. Bernstein,M. T. Bowers, Structural Characterization of G-Quadruplexes inDeoxyguanosine Clusters Using Ion Mobility Mass Spectrometry[J], J. Amer. Soc. for Mass Spec.,2005,16:989-997.
    [31] S. Guillaumont, J. Tortajada, J.-Y. Salpin,et al, Lamsabhi, Experimental and computational study ofthe gas-phase interactions between lead(II) ions and two pyrimidic nucleobases: Uracil and thymine[J],Inter. J. Mass Spec.,2005,243:279-293.
    [32] M. Noguera, M. Sodupe, J. Bertran, Effects of protonation on proton-transfer processes inguanine-cytosine Watson-Crick base pairs[J], Theoretical Chemistry Accounts,2004,112:318-326.
    [33] Tiziana Marino, Donatella Mazzuca, Nino Russo,et al, On the interaction of rubidium and cesiummono-, strontium and barium bi-cations with DNA and RNA bases:A theoretical study[J], CrystalGrowth&Design,2010,110:138-147.
    [34] Y. Niu,S. Q. Feng, Rongjun Ding,et al, Theoretical study on the interaction of sulfur-andaminopyridine-containing chelating resins with Hg(II) and Pb(II)[J]. Inter. J. Quantum Chemistry,2011,111:991-1001.
    [35] R. C. S. Dunbar, Jeffrey D.; Oomens, Jos., Encapsulation of Metal Cations by the PhePheLigand: A Cation-p Ion Cage[J], JACS,2011,133:9376-9386.
    [36] P. Cheng,D. K. Bohme, Gas-phase formation of radical cations of monomers and dimers of guanosineby collision-induced dissociation of Cu(II)-Guanosine complexes[J], J. Phys. Chem. B,2007,111:11075-11082.
    [37] W. A. Tao, D. Zhang, E. N. Nikolaev,et al, Copper(II)-assisted enantiomeric analysis of D,L-aminoacids using the kinetic method: chiral recognition and quantification in the gas phase[J], JACS,2000,122:10598-10609.
    [38] I. K. Chu, C. F. Rodriguez, A. C. Hopkinson,et al, Formation of molecular radical cations ofenkephalin derivatives via collision-induced dissociation of electrospray-generated copper (II)complex ions of amines and peptides[J], J. Amer. Soc. for Mass Spec.,2001,12:1114-1119.
    [39]E. Bagheri-Majdi, Y. Ke, G. Orlova,et al, Copper-Mediated Peptide Radical Ions in the Gas Phase[J], J.Phys. Chem. B,2004,108:11170-11181.
    [40] I. K. Chu, S. O. Siu, C. N. W. Lam,et al, Formation of molecular radical cations of aliphatic tripeptidesfrom their complexes with CuII(12-crown-4)[J], Rapid Communications in Mass Spect.,2004,18:1798-1802.
    [41] S. Wee, A. J. O'Hair Richard,W. D. McFadyen, Can radical cations of the constituents of nucleic acidsbe formed in the gas phase using ternary transition metal complexes?[J], Rapid communications inmass spectrometry,2005,19:1797-1805.
    [42] Z. A. Tehrani, A. Fattahi,A. Pourjavadi, DFT study of the interaction of cytidine and2'-deoxycytidinewith Li+, Na+, and K+: effects of metal cationization on sugar puckering and stability of theN-glycosidic bond[J], Carbohydrate Research,2009,344:771-778.
    [43] Z. A. Tehrani, A. Fattahi,A. Pourjavadi, Interaction of Mg2+, Ca2+, Zn2+and Cu+with cytosinenucleosides: Influence of metal on sugar puckering and stability of N-Glycosidic bond, a DFT study[J],Journal of Molecular Structure-Theochem,2009,913:117-125.
    [44] W. Z. Shen,B. Lippert, Cyclic, trinuclear Pd-II complex of cytidine with pronounced double conestructure[J], Journal of Inorganic Biochemistry,2008,102:1134-1140.
    [45] D. Buist, N. J. Williams, J. H. Reibenspies,et al, Control of Metal Ion Size-Based Selectivity throughChelate Ring Geometry. Metal Ion Complexing Properties of2,2'-Biimidazole[J], InorganicChemistry,2010,49:5033-5039.
    [46] J. L. Sessler, J. Jayawickramarajah, M. Sathiosatham,et al, Novel guanosine-cytidine dinucleoside thatself-assembles into a trimeric supramolecule[J], Organic Letters,2003,5:2627-2630.
    [47]吴琼,维甲酸金属配合物与DNA相互作用的分析比较[D],西北师范大学,2007,硕士.
    [48] R. R. Wright, N. R. Walker, S. Firth,et al, Coordination and chemistry of stable Cu(II) complexes inthe gas phase[J], Journal of Physical Chemistry A,2001,105:54-64.
    [49] B. Knobloch, C. P. Da Costa, W. Linert,et al, Stability constants of metal ion complexes formed withN3-deprotonated uridine in aqueous solution[J], Inorganic Chemistry Communications,2003,6:90-93.
    [50] J. Brasun, A. Matera, E. Sochacka,et al, Acid-base and metal ion binding properties of2-thiocytidinein aqueous solution[J], Journal of Biological Inorganic Chemistry,2008,13:663-674.
    [51] B. Knobloch, W. Linert,H. Sigel, Metal ion-binding properties of (N3)-deprotonated uridine,thymidine, and related pyrimidine nucleosides in aqueous solution[J], Proceedings of the NationalAcademy of Sciences of the United States of America,2005,102:7459-7464.
    [52] J. Muller, D. Bohme, P. Lax,et al, Metal ion coordination to azole nucleosides[J], Chemistry-aEuropean Journal,2005,11:6246-6253.
    [53] M. Bruschi, L. De Gioia, R. Mitric,et al, A DFT study of EPR parameters in Cu(II) complexes of theoctarepeat region of the prion protein[J], PCCP,2008,10:4573-4583.
    [54] D. Armentano, G. De Munno, L. Di Donna,et al, Self-assembling of cytosine nucleoside intotriply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidinenucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoreticalcalculations[J], J. Amer. Soc. for Mass Spec.,2004,15:268-279.
    [55] N. S. Rannulu,M. T. Rodgers, Solvation of copper ions by imidazole: Structures and sequentialbinding energies of Cu+(imidazole)(x), x=1-4. Competition between ion solvation and hydrogenbonding[J], PCCP,2005,7:1014-1025.
    [56] M. Noguera, M. Sodupe, J. Bertran, Effects of protonation on proton transfer processes inWatson-Crick adenine-thymine base pair[J], Theoretical Chemistry Accounts,2007,118:113-121.
    [57] M. Krishnan,J. C. Smith, Response of Small-Scale, Methyl Rotors to Protein-Ligand Association: ASimulation Analysis of Calmodulin-Peptide Binding[J], JACS,2009,131:10083-10091.
    [58] R. Improta,V. Barone, The excited states of adenine and thymine nucleoside and nucleotide inaqueous solution: a comparative study by time-dependent DFT calculations[J], Theoretical ChemistryAccounts,2008,120:491-497.
    [59] M. Noguera, J. Bertran, M. Sodupe, A quantum chemical study of Cu2+interacting withguanine-cytosine base pair. Electrostatic and oxidative effects on intermolecular proton-transferprocesses[J], Journal of Physical Chemistry A,2004,108:333-341.
    [60] D. Li, S. P. Song,C. H. Fan, Target-Responsive Structural Switching for Nucleic Acid-BasedSensors[J], Accounts of Chemical Research,2010,43:631-641.
    [61] C. K. Barlow, S. Wee, W. D. McFadyen,et al,Designing copper(II) ternary complexes to generateradical cations of peptides in the gas phase: Role of the auxiliary ligand[J], Dalton Transactions,2004,:3199-3204.
    [62] Moriwaki, H. Complexes of cadmium ion with guanine bases detected by electrospray ionization massspectrometry[J], J. Mass Spec.2003,38:321-327.
    [1]罗勤慧,配位化学[M],南京:江苏科技出版社,1987.
    [2]徐志固,现代配位化学[M],北京:化学工业出版社,1987.
    [3]游效曾,配位化学进展[M],北京:高等教育出版社,2000.
    [4]杨晓婧,乔永生,杜君,等,现代配位化学及其应用[M],中国矿业大学,2010.
    [5] Z. W. Mao, H. L. Xu, D. Y. Wang, Molecular Mimetic Self-Assembly of Colloidal Particles[J],Advanced Functional Materials,2010,20:1053-1074.
    [6] G. M. Whitesides, N. B. Bowden, M. Weck,et al, Molecule-mimetic chemistry and mesoscaleself-assembly[J], Accounts of Chemical Research,2001,34:231-238.
    [7]张长水,螯合物稳定性的探讨[J],河南科技学院学报(自然科学版),2004,3:68-69.
    [8]何海燕,基于苯多酸配体的金属有机配合物的合成及其性能研究[D],山东大学,2010,硕士.
    [9]梁春馀,杨家振,刘祁涛,等,介质对配合物稳定性的影响[J],无机化学学报,1997,13(8):306-310.
    [10] D. G. Musaev and K. Morokuma, Structure, stability, and bonding of transition-metal-boryl complexes.A molecular orbital study[J], Journal of Physical Chemistry,1996,100:6509-6517.
    [11]游效曾,配位化合物的结构和性质[M],北京:科学出版社,1992.
    [12]戴安邦,配位化学(《无机化学丛书》第十二卷)[M],北京:科学出版社,1987.
    [13] IUPAC, Coordination Compounds(Nomenclature of Inorganic Chemistry)[M], Butterworth,1970
    [14] F. Basolo and R. G. Pearson, Mechanisms of Inorganic Reactions (A Study of Metal Complexes inSolution)[M]. John Wiley and Sons Inc,1967.
    [15] H. J. Emeleus, Inorganic Chemistry(Reaction Mechanisms in Inorganic Chemistry)[M], Butterworth,1972.
    [16] Andreas Hermann, Matthias Lein, Peter Schwerdtfeger Angew.The Search for the Species with theHighest Coordination Number[J]. Chem. Int. Ed.2007,46:2444–2447.
    [17]杨频,宋宇飞,金属配合物健合DNA的研究进展[J].化学进展,2000,12(1):32-40.
    [18]朱风霞,陈育宏,曹爱年,金属配合物和DNA相互作用研究进展[J].化工时刊,2002,11:15-18.
    [19] L. Duchackova, D. Schroder and J. Roithova, Effect of the Carboxylate Shift on the Reactivity of ZincComplexes in the Gas Phase[J], Inorganic Chemistry,2011,50:3153-3158.
    [20] Watson James D; Crick Francis Harry Compton,Molecular structure of nucleic acids: a structure fordeoxyribose nucleic acid[J]. Clinical Orthopaedics and Related Rresearch,2007,462:3-5.
    [21] Watson James D; Crick Francis Harry Compton,A structure for deoxyribose nucleic acid[J]. Nature,1953,171:737-738.
    [22] Watson James D; Crick Francis Harry Compton,Molecular structure of nucleic acids-A structure fordeoxyribose nucleic acid[J],American Journal of Psychiatry,2003,160:623-624.
    [23] Ramanarayanan J, Hernandez-Ilizaliturri FJ, Chanan-Khan A, Pro-apoptotic therapy with theoligonucleotide Genasense (TM)(oblimersen sodium) targeting Bcl-2protein expression enhances thebiological anti-tumour activity of rituximab[J],British Journal of Haematology,2004,127:519-530.
    [24] Edoardo Giglio,Calculation of Van der Waals Interactions and Hydrogen Bonding in Crystals[J],Nature,1969,222:339–341.
    [25] Kang Hyunmin, Alam M. Rowshon, Dixit Vidula,Cellular Delivery and Biological Activity ofAntisense Oligonucleotides Conjugated to a Targeted Protein Carrier[J], Bioconjugate Chemistry,2008,19:2182-2188.
    [26] Iwai S, Kataoka S, Wakasa M, Recognition of2'-hydroxyl groups by Escherichia coli ribonuclease [J].FEBS letters,1995,368:315-320.
    [27] Myers JC; Shamoo Y,Human UP1as a model for understanding purine recognition in the family ofproteins containing the RNA recognition motif (RRM)[J],Journal of Molecular biology,2004,342:743-756
    [28] P. Li, N. Wang, Y. Hu,et al, Association of uracil with zn(2+) and the hydrated zn(2+): A DFTinvestigation[J], Journal of Theoretical&Computational Chemistry,2007,6:197-212.
    [29] N. Gresh, J. E. Sponer, N. Spackova,et al, Theoretical study of binding of hydrated Zn(II) and Mg(II)cations to5'-guanosine monophosphate. Toward polarizable molecular mechanics for DNA andRNA[J], Journal of Physical Chemistry B,2003,107:8669-8681.
    [30] P. Hirva, A. Nielsen, A. D. Bond,C. J. McKenzie, Potential Cross-Linking Transition MetalComplexes (M=Ni, Cu, Zn) in the Ligand-Modified LNA Duplexes[J], Journal of Physical ChemistryB,2010,114:11942-11948.
    [31] C. E. H. Dessent and R. M. Burke, Effect of Cation Complexation on the Structure of aConformationally Flexible Multiply Charged Anion: Stabilization of Excess Charge in the Na(+)centerdot Adenosine5'-Triphosphate Dianion Ion-Pair Complex[J], Journal of Physical Chemistry A,2009,113:2683-2692.
    [32] Eric C. Tyo, Melanie N βler, Sabine Rabe, et al, A. W. Castleman, Exploring similarities inreactivity of superatom species: a combined theoretical and experimental investigation[J], PhysicalChemistry Chemical Physics,2012,14:1846-1849.
    [33] Eizaguirre Ane, Mo Otilia, Yanez Manuel, Modeling the interactions between peptide functions andSr(2+): formamide-Sr(2+) reactions in the gas phase[J], Physical Chemistry Chemical Physics,2011,41:18409-18417.
    [34] Mary E. Krause, Amanda M. Glass, Timothy A. Jackson,et al, Mapping the Chiral Inversion andStructural Transformation of a Metal-Tripeptide Complex Having Ni-Superoxide DismutaseActivity[J], Inorganic Chemistry,2011,50:2479-2487.
    [34] Charly Mayeuxa, Jaana Tammiku-Taulb, Lionel Massia,et al, Interaction of the Cesium Cation withMono-, Di-, and Tricarboxylic Acids in the Gas Phase. A Cs(+) Affinity Scale for CesiumCarboxylates Ion Pairs[J], Journal of the American Society for Mass Spectrometry,20(2009),1912-1924.
    [36] Shuqin Zhang, Li Xu, Junguo Dong,et al, Collision-induced dissociation of singly and doublycharged CuII–cytidine complexes in the gas phase: an experimental and computational study[J], RSCAdvances,2012,2:2568-2575.
    [37] Ping Cheng, Yanni Li, Shuqi Li,et al, Collision-induced dissociation (CID) of guanine radicalcation in the gas phase: an experimental and computational study[J], Physical Chemistry ChemicalPhysics,2010,12:4667-4677.
    [38] Ping Cheng, Diethard K. Bohme. Gas-Phase Formation of Radical Cations of Monomers and Dimersof Guanosine by Collision-Induced Dissociation of Cu(II)-Guanosine Complexes[J]. Journal ofPhysical Chemistry B.2007,111:11075-11082.
    [39]王伟,蔡文生,邵学广,傅立叶变换离子回旋共振质谱及其研究进展[J],化学进展,2005,17(2):336-342.
    [40] Kim J. Koch, Tenna Aggerholm, Sergio C. Nanita1,et al, Clustering of nucleobases with alkali metalsstudied by electrospray ionization tandem mass spectrometry: implications for mechanisms ofmultistrand DNA stabilization[J],Journal of Mass Spectrometry,2002,37:676–686.
    [41] V. S. Bryantsev, M. S. Diallo, W. A. Goddard, Computational Study of Copper(II) Complexation andHydrolysis in Aqueous Solutions Using Mixed Cluster/Continuum Models[J], Journal of PhysicalChemistry A,2009,113:9559-9567.
    [42] R. R. Wright, N. R. Walker, S. Firth,et al, Coordination and chemistry of stable Cu(II) complexes inthe gas phase[J], Journal of Physical Chemistry A,2001,105:54-64.
    [43] Eric L. Christian, Vernon E. Anderson, Paul R. Carey,et al, A Quantitative Raman SpectroscopicSignal for Metal Phosphodiester Interactions in Solution[J], Biochemistry,2010,49:2869–2879.
    [44] D. G. Musaev, K. Morokuma, Structure, stability, and bonding of transition-metal-boryl complexes: Amolecular orbital study[J], Journal of Physical Chemistry,1996,100:6509-6517.
    [45] M. Urbanova, V. Setnicka, J. Novy,et al, Molecular structure of guanine-quartet supramolecularassemblies in a gel-state based on a DFT calculation of infrared and vibrational circular dichroismspectra[J], Langmuir,2008,24:7520-7527.
    [46] Tenna Aggerholm, Sergio C. Nanita, Kim J. Koch,et al, Clustering of nucleosides in the presence ofalkali metals: Biologically relevant quartets of guanosine, deoxyguanosine and uridine observed byESI-MS/MS[J],Journal of Mass Spectrometry,2003,38:87-97.
    [47] Konstantin V. Shuvaev, Tareque S. M. Abedin, Corey A. McClary,et al, Ligand directedself-assemblies metal ion coordination algorithm—when does the ligand or the metal take control?[J],Dalton Transaction,2009:2926-2939.
    [48] D. J. Szalda, T. J. Kistenmacher, Transition-metal-nucleoside complexes: The crystal and molecularstructure of (glycylglycinato)(cytidine)copper(II) dehydrate[J], Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry,1977,33:865-869.
    [49] Lomozik, L.; Gasowska, A., Complexes of copper(II) with spermine and non-covalent interactions inthe systems including nucleosides or nucleotides[J]. Journal of Inorganic Biochemistry,1998,72:37-47.
    [50] Pitchumony Tamil Selvi, Mariappan Murali, Mallayan Palaniandavar,et al, X-ray crystal structure oftetrais(1-methylcytosine)copper(II) perchlorate dihydrate: effect of1-methyl substitution on cytosineon the spectral and redox behaviour[J], Inorganica Chimica Acta,2002,340:139-146.
    [51] S.D. Wettig, D.O. Wood, J.S. Lee, Thermodynamic Investigation of M-DNA; A Novel Metal Ion–DNA Complex[J], Journal of Inorganic Biochemistry,2003,94:94-99.
    [52] A. Gasowska, L. Lomozik, Mode of coordination and stability of Cu(II) and Zn(II) complexes withadenosine, deoxyadenosine, cytidine and deoxycytidine, Monatshefte for chemie,1995,126:13-22.
    [53] B. Knobloch, H. Sigel, A quantitative appraisal of the ambivalent metal ion binding properties ofcytidine in aqueous solution and an estimation of the anti-syn energy barrier of cytidine derivatives[J],Journal of Biological Inorganic Chemistry,2004,9:365-373.
    [54] J. L. Sessler, J. Jayawickramarajah, M. Sathiosatham,et al, Novel guanosine-cytidine dinucleoside thatself-assembles into a trimeric supramolecule[J], Organic Letters,2003,5:2627-2630.
    [55] Wanchun Liang, Haoran Li, Xingbang Hu,et al, Systematic theoretical investigations on all of thetautomers of guanine: From both dynamics and thermodynamics viewpoint[J], Chemical Physics,2006,328:93-102.
    [56] Lixiang Sun, Yuxiang Bu, Oxidative damage to DNA: Theoretical determination of ionizationpotential of deoxyriboguanosine (dG)–deoxyribocytidine (dC) and proton transfer in its cation[J],Journal of Molecular Structure: THEOCHEM,2009,909:25-32.
    [57] I.V. Kondratyuk, S.P. Samijlenko, I.M. Kolomiets,et al, Prototropic molecular zwitterionictautomerism of xanthine and hypoxanthine[J], Journal of Molecular Structure,2000,523:109-118.
    [58] Magdalena Pecul, Conformational structures and optical rotation of serine and cysteine[J], ChemicalPhysics Letters,2006,418:1-10.
    [59] D. Armentano, G. De Munno, L. Di Donna,et al, Self-assembling of cytosine nucleoside intotriply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidinenucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoreticalcalculations[J], Journal of the American Society for Mass Spectrometry,2004,15:268-279.
    [60] B. Lippert, Multiplicity of metal ion binding patterns to nucleobases[J], Coordination ChemistryReviews,2000,200-202:487-516.
    [61] M. Noguera, M. Sodupe, J. Bertran, Effects of protonation on proton transfer processes inWatson-Crick adenine-thymine base pair[J], Theoretical Chemistry Accounts,2007,118:113-121.
    [62] M. Krishnan, J. C. Smith, Response of Small-Scale, Methyl Rotors to Protein-Ligand Association: ASimulation Analysis of Calmodulin-Peptide Binding[J], Journal of the American Chemical Society,2009,131:10083-10091.
    [1]徐筱杰,唐有祺,晶体工程及其在化学中的应用[J],无机化学学报,2002,16(2):157-166.
    [2]姚祝军,现代有机合成化学:选择性有机合成反应和复杂有机分子合成设计[M],北京:科学出版社,2001.
    [3] Ball.P,Crystals by design[J], nature,1996,381:648-649.
    [4] Desiraju G.R, Crystal Engineering: The design of organic solids[M], Elserier Amsterdam,1989.
    [5] Glish, G L&Valchet, R. W. The basics of mass spectrometry in the twenty-first century[J]. NatureReview,2003,2:140-150.
    [6]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2002.
    [7] John G. Duguid, Victor A. Bloomfield, James M. Benevides,et al, Raman Spectroscopy of DNA-MetalComplexes. I. The Thermal Denaturation of DNA in the Presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+,Co2+, Ni2+, and Cd2+[J], Journal of Biophysical,1995,69:2623-2641.
    [8] Frantisek Turecek, Anne I. S. Holm, Subhasis Panja,et al, Transition metals as electron traps.II.Structures, energetics and electron transfer dissociations of ternary Co, Ni and Zn–peptidecomplexes in the gas phase[J],J. Mass. Spectrom.2009,44:1518–1531.
    [9] Z. A. Tehrani, A. Fattahi,A. Pourjavadi, Interaction of Mg2+, Ca2+, Zn2+and Cu+with cytosinenucleosides: Influence of metal on sugar puckering and stability of N-Glycosidic bond, a DFT study[J],Journal of Molecular Structure-Theochem,2009,913:117-125.
    [10] M. Noguera, J. Bertran and M. Sodupe, A quantum chemical study of Cu2+interacting withguanine-cytosine base pair. Electrostatic and oxidative effects on intermolecular proton-transferprocesses[J], Journal of Physical Chemistry A,2004,108:333-341.
    [11] Y. Niu,S. Q. Feng, Rongjun Ding,et al, Theoretical study on the interaction of sulfur-andaminopyridine-containing chelating resins with Hg(II) and Pb(II)[J]. International Journal ofQuantum Chemistry,2011,111:991-1001.
    [12] J. C. Green, A. E. Ashley, R. T. Cooper,et al, Homoleptic Permethylpentalene Complexes:"DoubleMetallocenes" of the First-Row Transition Metals[J], Journal of the American Chemical Society,2008,130:15662-15677.
    [13] I. Fernandez, M. J. Mancheno, R. Vicente,et al, Transmetalation Reactions from Fischer CarbeneComplexes to Late Transition Metals: A DFT Study[J], Chemistry-a European Journal,2008,14:11222-11230.
    [14] Sylvain Routier, Jean-Luc Bernier, Michael J. Waring,et al, Synthesis of a FunctionalizedSalen-Copper Complex and Its Interaction with DNA[J], J. Org. Chem.1996,61:2326-2331.
    [15] Kristi J. Humphreys, Kenneth D. Karlin, and Steven E. Rokita, Recognition and Strand Scission atJunctions between Single-and Double-Stranded DNA by a Trinuclear Copper Complex[J], J. Am.Chem. Soc.2001,123:5588-5589.
    [16] Yi-Gui Gao, M. Sriram,Andrew H.-J. Wang, Crystallographic studies of metal ion-DNA interactions:different binding modes of cobalt(II), copper(II) and barium(II) to N7of guanines in Z-DNA and adrug-DNA complex[J], Nucleid acid research,1993,21:4093-4101.
    [17] Janna Anichina and Diethard K. Bohme,Mass-Spectrometric Studies of the Interactions of SelectedMetalloantibiotics and Drugs with Deprotonated Hexadeoxynucleotide GCATGC[J], J. Phys. Chem. B2009,113:328-335.
    [18] Adrian K. Y. Lam, Sri H. Ramarathinam, Anthony W. Purcell,et al, Can and Alanine ContainingPeptides Be Distinguished Based on the CID Spectra of Their Protonated Ions?[J] J Am Soc MassSpectrom2008,19:1743-1754.
    [19] M. Alcolea Palafox,Je′ssica Talaya,Hydration Analysis of Antiviral Agent AZT by Means of DFTand MP2Calculations[J], J. Phys. Chem. B2010,114:15199-15211.
    [20] J. C. Joyner,J. A. Cowan, Targeted Cleavage of HIV RRE RNA by Rev-Coupled Transition MetalChelates[J], J. Am. Chem. Soc.,2011,133:9912-9922.
    [21] A. Violante, V. Cozzolino, L. Perelomov, A. G. Caporale and M. Pigna, Mobility and bioavailabilityof heavy metals and metalloids in soil environments[J], Journal of Soil Science and Plant Nutrition,2010,10:268-292.
    [22] Steen Steenken, Slobodan V. Jovanovic,How Easily Oxidizable Is DNA? One-Electron ReductionPotentials of Adenosine and Guanosine Radicals in Aqueous Solution[J], J. Am. Chem. Soc.1997,119:617-618.
    [23] F. Turecek, A. I. S. Holm, S. Panja,et al, Transition metals as electron traps. II. Structures, energeticsand electron transfer dissociations of ternary Co, Ni and Zn-peptide complexes in the gas phase[J],Journal of Mass Spectrometry,2009,44:1518-1531.
    [24] M. Valko,K. Jomova, Advances in metal-induced oxidative stress and human disease[J], Toxicology,2011,283:65-87.
    [25] J. L. Sessler, J. Jayawickramarajah, M. Sathiosatham,et al, Novel guanosine-cytidine dinucleoside thatself-assembles into a trimeric supramolecule[J], Organic Letters,2003,5:2627-2630.
    [26] J. P. Roth, D. C. Ashley,D. W. Brinkley, Oxygen Isotope Effects as Structural and MechanisticProbes in Inorganic Oxidation Chemistry[J], Inorganic Chemistry,2010,49:3661-3675.
    [27]曾宝珊,陈敏伯,刘喜成,等.引导构象选择CoMFA方法研究HIV-1抑制剂[J].化学学报,2003,61(7):1121-1128.
    [28] W. Z. Shen and B. Lippert, Cyclic, trinuclear Pd-II complex of cytidine with pronounced double conestructure[J], Journal of Inorganic Biochemistry,2008,102:1134-1140.
    [29] D. Buist, N. J. Williams, J. H. Reibenspies,et al, Control of Metal Ion Size-Based Selectivity throughChelate Ring Geometry. Metal Ion Complexing Properties of2,2'-Biimidazole[J], InorganicChemistry,2010,49:5033-5039.
    [30] T. R. Cundari, N. J. DeYonker, K. A. Peterson,et al, Wilson, Quantitative computationalthermochemistry of transition metal species[J], Journal of Physical Chemistry A,2007,111:11269-11277.
    [31] S. Mochizuki,A. Wakisaka, Interactions of a nucleoside cytidine with metal ions in water observedthrough mass spectrometry: Clustering controlled by electrostatic interaction and coordinatinginteraction[J], Journal of Physical Chemistry B,2003,107:5612-5616.
    [32] A. Fattahi, Z. A. Tehrani, A. Pourjavadi, DFT study of the interaction of cytidine and2'-deoxycytidine with Li(+), Na(+), and K(+): effects of metal cationization on sugar puckering andstability of the N-glycosidic bond[J], Carbohydrate Research,2009,344:771-778.
    [33] P. Li, N. Wang, Y. Hu,et al, Association of uracil with zn(2+) and the hydrated zn(2+): A DFTinvestigation[J], Journal of Theoretical&Computational Chemistry,2007,6:197-212.
    [34] N. Russo, T. Marino, D. Mazzuca,et al, On the Interaction of Rubidium and Cesium Mono-, Strontiumand Barium Bi-Cations With DNA and RNA Bases[J]. A Theoretical Study, International Journal ofQuantum Chemistry,2010,110:138-147.
    [35]唐贇,蒋华良,陈凯先,等.计算机辅助药物设计正在走向成功[J].生命科学,1996,8(4):5-9.
    [36]蒋华良,胡增建,陈建忠,等.配体-受体相互作用的计算机模拟及其在药物设计中的应用[J].化学进展,1998,l0(4):427-441.
    [37]嵇汝远,曾繁星,唐贇,等.根据受体结构进行药物设计研究[J].化学研究与应用,1999,11(6):591-597.
    [38]刘次全,白春礼,张静,等.结构分子生物学[M].北京:高等教育出版社,1997.
    [39] C. Andreini, I. Bertini, G. Cavallaro,et al, Thornton, Metal ions in biological catalysis: from enzymedatabases to general principles[J], Journal of Biological Inorganic Chemistry,2008,13:1205-1218.
    [40] S. S. Tan, S. J. Kim,E. T. Kool, Differentiating between Fluorescence-Quenching Metal Ions withPolyfluorophore Sensors Built on a DNA Backbone[J], JACS,2011,133:2664-2671.
    [41] P. Hirva, A. Nielsen, A. D. Bond,et al, McKenzie, Potential Cross-Linking Transition MetalComplexes (M=Ni, Cu, Zn) in the Ligand-Modified LNA Duplexes[J], Journal of PhysicalChemistry B,2010,114:11942-11948.
    [42] Cheng P, Bohme D K. Gas-Phase Formation of Radical Cations of Monomers and Dimers ofGuanosine by Collision-Induced Dissociation of Cu(II)-Guanosine Complexes[J]. J. Phys. Chem. B,2007,111(37):11075-11082.
    [43] Improta R, Scalmani R, Barone V. Radical cations of DNA bases: some insights on structure andfragmentation patterns by density functional methods[J]. Int. J. Mass. Spec.,2000,201(1-3):321-336.
    [44] Liang W, Li H R, Han S J,et al, Systematic theoretical investigations on all of the tautomers ofguanine: From both dynamics and thermodynamics viewpoint[J]. Chem. Phys.,2006,328:93-102.
    [45] Jensen S S, Ariza X, Nielsen P,etal, Collision-induced dissociation of cytidine and its derivatives[J]. J.Mass Spectrom.,2007,42:49–57.
    [46] Chu I K, Siu S O, Lam C N W,et al, Formation of molecular radical cations of aliphatic tripeptidesfrom their complexes with CuII(12-crown-4)[J]. Rap. Commun. Mass Spectrom.,2004,18(16):1798-1802.
    [47] H. G. Du, J. H. Yu, Z. M. Wang,et al, Synthesis, Crystal Structures and Thermal Stabilities of
    [Cu(bpp)(2)(bpdc)(H(2)O)(2)](n)center dot2nH(2)O and [Cu(bpp)2](n)center dot n(tdc)center dot7.5nH(2)O[J], Chinese Journal of Chemistry,2008,26:1826-1830.
    [48] Chu I K, Rodriguez C F, Hopkinson A C,et al, Formation of Molecular Radical Cations of EnkephalinDerivatives via Collision-Induced Dissociation of Electrospray-Generated Copper (II) Complex Ionsof Amines and Peptides[J]. J. Am. Soc. Mass Spectrom.,2001,12(10):1114-1119.
    [49] L. Duchackova, D. Schroder,. Roithova, Effect of the Carboxylate Shift on the Reactivity of ZincComplexes in the Gas Phase[J], Inorganic Chemistry,2011,50:3153-3158.
    [50] S. Oszwaldowski, J. Witowska, M. Jarosz, Atmospheric pressure chemical ionization massspectrometric and visible spectrophotometric studies of copper(I) and copper(II) complexes with2-(5-bromo-2-pyridylazo)-5-diethylaminophenol[J], Journal of Mass Spectrometry,2001,36:1230-1236.
    [51] R. R. Wright, N. R. Walker, S. Firth,et al, Coordination and chemistry of stable Cu(II) complexes inthe gas phase[J], Journal of Physical Chemistry A,2001,105:54-64.
    [52]B. Knobloch,H. Sigel, A quantitative appraisal of the ambivalent metal ion binding properties ofcytidine in aqueous solution and an estimation of the anti-syn energy barrier of cytidine derivatives[J],Journal of Biological Inorganic Chemistry,2004,9:365-373.
    [53] Konstantin V. Shuvaev, Tareque S. M. Abedin, Corey A. McClary,et al, Ligand directedself-assemblyvs. metal ion coordination algorithm—when does the ligand or the metal take control?[J], Dalton Trans.,2009:2926-2939.
    [54] G. Bhaskar, M. A. Chary, M. K. Kumar,et al, Electrospray ionization studies of transition-metalcomplexes of2-acetyl benzimidazole thio semi carbazone using collision-induced dissociation andion-molecule reactions[J], Rapid Communications in Mass Spectrometry,2005,19:1536-1544.
    [55] B. Knobloch, C. P. Da Costa, W. Linert,et al, Stability constants of metal ion complexes formed withN3-deprotonated uridine in aqueous solution[J], Inorganic Chemistry Communications,2003,6:90-93.
    [56]孙巨龙,杨光辉,何国钟,等.密度泛函方法研究气相胞嘧啶的互变异构化[J].化学物理学报,2005,18(3):325-330.
    [57]李宝宗,嘧啶及其异构体的密度泛函理论研究[J],化学研究与应用,2004,12(6):6-10.
    [58] L. Gorb, Y. Podolyan, J. Leszczynski. A theoretical investigation of tautomeric equilibria and protontransfer in isolated and monohydrated cytosine and isocytosine molecules[J]. Journal of MolecularStructure (Theochem),1999,487:47-55.
    [59] Donatella Mazzuca, Tiziana Marino, Nino Russo, et al. A theoretical study on tautomerizationprocesses of dehydrated and monohydrated cytosine [J]. Journal of Molecular Structure:THEOCHEM,2007,811:161-167.
    [60] V. Sathyabama, K. Anandan, R. Kanagaraju. Quantum chemical studies of solvent effects on cytosinetautomersOriginal Research Article[J]. Journal of Molecular Structure: THEOCHEM.,2009,897:106-111.
    [61] Adhikary A, Kumar A, Becker D,et al, The Guanine Cation Radical: Investigation of DeprotonationStates by ESR and DFT[J]. J. Phys. Chem. B,2006,110(25):24171-24180.
    [62] Kobayashi K, Tagawa S. Direct Observation of Guanine Radical Cation Deprotonation in DuplexDNA Using Pulse Radiolysis[J]. J. Am. Chem. Soc.,2003,125(34):10213-10218.
    [63] Podolyan Y, Gorb L, Leszczynski J. Protonation of Nucleic Acid Bases. A ComprehensivePost-Hartree-Fock Study of the Energetics and Proton Affinities[J]. J. Phys. Chem. A,2000,104(31):7346-7352.
    [64] Hanus M, Bogdan T V, Trygubenko S A,et al, Correlated ab Initio Study of Nucleic Acid Bases andTheir Tautomers in the Gas Phase, in a Microhydrated Environment and in Aqueous Solution.Guanine: Surprising Stabilization of Rare Tautomers in Aqueous Solution[J]. J. Am. Chem. Soc.,2003,125(25):7678-7688.
    [65] Podolyan Y, Nowak M J, Lapinski L,et al, Probing ab initio MP2approach towards the prediction ofvibrational infrared spectra of DNA base pairs[J]. J. Mol. Struct.,2005,744-747:19-34.
    [66] Sabio M, Topiol S, Lumma W C. An investigation of tautomerism in adenine and guanine[J]. J. Phys.Chem.,1990,94(4):1366-1372.
    [67] Jang Y H, Goddard W A, Noyes K T,et al, pKa Values of Guanine in Water: Density FunctionalTheory Calculations Combined with Poisson-Boltzmann Continuum-Solvation Model[J]. J. Phys.Chem. B,2003,107(1):344-357.
    [68]李艳妮,张明涛,程平.鸟嘌呤自由基阳离子碰撞诱导解离实验和理论研究[J].质谱学报,2008,29:115-118.
    [69] D. Armentano, G. De Munno, L. Di Donna,et al, Self-assembling of cytosine nucleoside intotriply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidinenucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoreticalcalculations[J], Journal of the American Society for Mass Spectrometry,2004,15:268-279.
    [70] D. Armentano, G. De Munno, L. Di Donna,et al, Self-assembling of cytosine nucleoside intotriply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidinenucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoreticalcalculations[J], Journal of the American Society for Mass Spectrometry,2004,15:436-436.
    [71] Podolyan Y, Rubin Y V, Leszczynski J. An ab Initio Post-Hartree-Fock Comparative Study of5-Azacytosine and Cytosine and Their Dimers with Guanine[J]. J. Phys. Chem. A,2000,104(44):9964-9970.
    [72] Tuytten R, Lemiere F, Esmans E L,et al, Intriguing Mass Spectrometric Behavior of Guanosine UnderLow Energy Collision-Induced Dissociation: H2O Adduct Formation and Gas-Phase Reactions in theCollision Cell[J]. J. Am. Soc. Mass. Spectrom.,2005,16(8):1291-1304.
    [73] Tuytten R, Lemiere F, Esmans E L,et al, In-Source CID of Guanosine: Gas Phase Ion-MoleculeReactions[J]. J. Am. Soc. Mass. Spectrom.,2006,17:1050-1056.
    [74] Sultan J. Collision induced dissociation of deprotonated guanine: Fragmentation of pyrimidine ringand water adduct formation[J]. Int. J. Mass. Spectrom.,2008,273:58-68.
    [75] N. Gresh, J. E. Sponer, N. Spackova,et al, Theoretical study of binding of hydrated Zn(II) and Mg(II)cations to5'-guanosine monophosphate. Toward polarizable molecular mechanics for DNA andRNA[J], Journal of Physical Chemistry B,2003,107:8669-8681.
    [76] A.K. Chandra, M.T. Nguyen,TH. Zeegers H. Theoretical Study of the Protonation and Deprotonationof Cytosine Implications for the Interaction of Cytosine with Water[J]. Journal of MolecularStructure,2000,519:1-11.
    [77] Cerny J, Spirko V, Mons M,et al, Theoretical study of the ground and excited states of7-methylguanine and9-methyl guanine: comparison with experiment[J]. Phys. Chem. Chem. Phys.,2006,8:3059-3065.
    [78] Wilson, M. S.; McCloskey, J. A. Chemical ionization mass spectrometry of nucleosides. Mechanismsof ion formation and estimations of proton affinity[J], J. Am. Chem. Soc.,1975,97:3436-3444.
    [79] Hwang S, Jang Y H, Cho H,et al, Density Functional Theoretical Study on the Proton Migration inRadical Cations of Substituted Cytosine:Guanine Pair[J]. Bull. Korean Chem. Soc.,2008,29(3):539-540.
    [80] Chen H, Li S H. Theoretical Study on the Excitation Energies of Six Tautomers of Guanine: Evidencefor the Assignment of the Rare Tautomers[J]. J. Phys. Chem. A,2006,110(45):12360-12362.
    [81] Gervasio F L, Laio A, Iannuzzi M,et al, Influence of DNA Structure on the Reactivity of the GuanineRadical Cation[J]. Chem. Eur. J.,2004,10(19):4846-4852.
    [82] Kobayashi K, Yamagami R, Tagawa S. Effect of Base Sequence and Deprotonation of Guanine CationRadical in DNA[J]. J. Phys. Chem. B,2008,112(34):10752-10757.
    [83] Wee S, A J O'Hair Richard, McFadyen W D. Can radical cations of the constituents of nucleic acids beformed in the gas phase using ternary transition metal complexes?[J]. Rap. commun. mass spectrom.,2005,19(13):1797-1805.
    [1]刘次全,白春礼,张静,等.结构分子生物学[M].北京:高等教育出版社,1997.
    [2]陈稼轩,向清祥,张丽群,等,单臂大环多胺Zn(Ⅱ)配合物对核苷碱基及核苷的超分子识别研究,有机合成创新—产业化的新动力——中国化学会全国第三届有机合成化学与过程学术讨论会[C],中国重庆,2010:210-211.
    [3]冯斌,谢光芝,基因工程技术[J].化工进展,2002,21(3):231-232.
    [4]向清祥,新型大环多胺金属配合物的设计合成、超分子识别与仿酶催化作用[D],四川大学,2002,博士.
    [5] Cadet J, Carell T, Cellai L, et al. DNA Damage and Radical Reactions: Mechanistic Aspects,Formation in Cells and Repair Studies[J]. Chimia,2008,62:742-749.
    [6] Limbach P A, Crain P F, McCloskey J A. Summary: the modified nucleosides of RNA[J].Nucleic Acid Res.,1994,22(12):2183-2196.
    [7]万嘉铸,黄进所,黄石桂等, Pt(Ⅳ)与核苷的配合物——Pt(Ⅳ)的腺苷、鸟嘌呤、黄嘌呤配合物的合成及其表征[J],科学通报,1988:353-356.
    [8]吴琼,维甲酸金属配合物与DNA相互作用的分析比较[D],西北师范大学,2007,硕士.
    [9] Qian M, Yang S, Wu H,etal, Ammonia Elimination from Protonated Nucleobases and RelatedSynthetic Substrates[J]. J. Am. Soc. Mass Spectrom.,2007,18:2040–2057.
    [10] Anita Durairaj, Patrick A. Limbach, Mass spectrometry of the fifth nucleoside: A review ofthe identification of pseudouridine in nucleic acids[J], Analytica Chimica Acta,2008,623:117-125.
    [11] Wee S, A J O'Hair Richard, McFadyen W D. Can radical cations of the constituents ofnucleic acids be formed in the gas phase using ternary transition metal complexes?[J].Rap.Commun. Mass Spectrom.,2005,19(13):1797-1805.
    [12] Hanus M, Bogdan T V, Trygubenko S A, et al. Correlated ab Initio Study of Nucleic AcidBases and Their Tautomers in the Gas Phase, in a Microhydrated Environment and inAqueous Solution. Guanine: Surprising Stabilization of Rare Tautomers in AqueousSolution[J]. JACS,2003,125(25):7678–7688.
    [13] Podolyan Y, Nowak M J, Lapinski L, et al. Probing ab initio MP2approach towards theprediction of vibrational infrared spectra of DNA base pairs[J]. J. Mol. Struct.,2005,744-747:19-34.
    [14] Podolyan Y, Gorb L, Leszczynski J. Ab Initio Study of the Prototropic Tautomerism ofCytosine and Guanine and Their Contribution to Spontaneous Point Mutations[J]. Int. J.mol.Sci.,2003,4:410-421.
    [15] Podolyan Y, Rubin Y V, Leszczynski J. An ab Initio Post-Hartree-Fock Comparative Studyof5-Azacytosine and Cytosine and Their Dimers with Guanine[J]. J. Phys. Chem. A,2000,104(44):9964-9970.
    [16] Podolyan Y, Gorb L, Leszczynski J. Protonation of Nucleic Acid Bases. A ComprehensivePost-Hartree-Fock Study of the Energetics and Proton Affinities. J. Phys. Chem. A,2000,104(31):7346-7352.
    [17] Gorb L, Podolyan Y, Dziekonski P, et al. Double-Proton Transfer in Adenine-Thymine andGuanine-Cytosine Base Pairs. A Post-Hartree-Fock ab Initio Study[J]. J. Am. Chem.Soc.,2004,126(32):10119-10129.
    [18] Gregson J M, McCloskey J A. Collision-induced dissociation of protonated guanine[J]. Int.J.Mass Spectrom. Ion Process.,1997,165/166:475-485.
    [19] Nelson C C, McCloskey J A. Collision-induced dissociation of uracil and its derivatives[J].J.Am. Soc. Mass Spectrom.,1994,5:339-349.
    [20] Nelson C C, McCloskey J A. Collision-Induced Dissociation of Adenine[J]. J. Am.Chem.Soc.,1992,114:3661-3668.
    [21]李艳妮,张明涛,程平,鸟嘌呤自由基阳离子碰撞诱导解离实验和理论研究[J].质谱学报,2008,29:115-118.
    [22] Ping Cheng, Yanni Li, Shuqi Li, et al. Collision induced dissociation of Guanine radicalcation: an experiment and computation study[J]. PCCP.2010,12:4667-4677.
    [23] Turecek F, Chen X. Protonated Adenine: Tautomers, Solvated Clusters, and DissociationMechanisms[J]. J Am Soc Mass Spectrom.,2005,16:1713–1726.
    [24] Chen X, Syrstad E A, Nguyen M T, et al. Distonic Isomers and Tautomers of the AdenineCation Radical in the Gas Phase and Aqueous Solution[J]. J. Phys. Chem. A,2004,108:9283-9293.
    [25] Chen X, Syrstad E A, Nguyen M T, et al. Adenine Radicals in the Gas Phase: AnExperimental and Computational Study of Hydrogen Atom Adducts to Adenine[J]. J.Phys.Chem. A,2005,109:8121-8132.
    [26] Alemán, C. The Keto-Amino/Enol Tautomerism of Cytosine in Aqueous Solution[J].Chemical Physics,2000,253:13-19.
    [27] J.R. Sambrano, A.R. de Souza,J.J. Queralt et al. A theoretical study on cytosine tautomers inaqueous media by using continuum models[J]. Chemical Physics Letters,2000,317:437-443
    [28]孙巨龙,杨光辉,何国钟,等,密度泛函方法研究气相胞嘧啶的互变异构化[J],化学物理学报,2005,18(3):325-330.
    [29]李宝宗,嘧啶及其异构体的密度泛函理论研究[J].化学研究与应用,2004,12(6):6-10.
    [30] A.K. Chandra, M.T. Nguyen TH. Zeegers Huyskens. Theoretical Study of the Protonationand Deprotonation of Cytosine Implications for the Interaction of Cytosine with Water[J].Journal of Molecular Structure,2000,519:1-11.
    [31] Donatella Mazzuca, Tiziana Marino, Nino Russo, Marirosa Toscano. A theoretical study ontautomerization processes of dehydrated and monohydrated cytosine[J]. Journal of MolecularStructure: THEOCHEM,2007,811:161-167.
    [32] V. Sathyabama, K. Anandan, R. Kanagaraju. Quantum chemical studies of solvent effects oncytosine tautomers Original Research Article[J]. Journal of Molecular Structure:THEOCHEM.2009,897:106-111.
    [33] L. Gorb, Y. Podolyan, J. Leszczynski. A theoretical investigation of tautomeric equilibria andproton transfer in isolated and monohydrated cytosine and isocytosine molecules[J]. J.Molecular Structure (Theochem),1999,487:47-55.
    [34] Piotr Cysewski,Katarzyna Koz owska,Beata Szefler. Accurate micro-and macro-gas phasebasicities of hydroxyl-radical-modified pyrimidines estimated by advanced quantumchemistry methods[J]. J Mol Model,2009,15:711-722.
    [35] Jensen S S, Ariza X, Nielsen P, et al. Collision-induced dissociation of cytidine and itsderivatives[J]. J. Mass Spectrom.,2007,42:49-57.
    [36] Matulis VE, Halauko YS, Ivashkevich OA et al. CH acidity of five-memberednitrogen-containing heterocycles: DFT investigation[J].J Mol Struct: Theo.2009,909(1-3):19-24.
    [37] Ivashkevich O A,Matulis V E,Elkind P D et al.Standard enthalpies of formation in the gasphase and relative stability of tautomers of C-nitro-1,2,4-triazole and isomers ofN-alkyl-C-nitro-1,2,4-triazole: quantum-chemical studies[J].Chem Heterocycl Compd (NY,NY, U S),2009,45(1):70-79.
    [38] Alkorta I,Elguero J A.Theoretical Study on the Tautomerism of C-Carboxylic andMethoxycarbonyl Substituted Azoles[J].Struct Chem,2005,16(5):507-514.
    [39] Jug K,Chiodo S,Calaminici P et al.Electronic and Vibrational Polarizabilities andHyperpolarizabilities of Azoles: A Comparative Study of the Structure-PolarizationRelationship[J].J Phys Chem A,2003,107(20):4172-4183.
    [40] Lesar A,Milosev I.Density functional study of the corrosion inhibition properties of1,2,4-triazole and its amino derivatives[J].Chem Phys Lett,2009,483(4-6):198-203.
    [41] Huang Y C,Wang S F,Ju X H et al.Theoritical Studies on the Pyrolysis Mechanism ofPyridazine[J].Chem J Chin U,2009,30(5):1005-1009.
    [42] Lu YL,Gong XD,Ju XH et al.Theoretical studies on intermolecular interactions of4-amino-5-nitro-1,2,3-triazole dimers[J].Chin J Struc Chem,2006,25(8):1004-1010.
    [43] Pan XM,Liu Y,Jia XJ et al.DFT theory study of decompose reaction of HNCS dimmer[J].JMol Sci,2006,22(3):148-152.
    [44] Ichino T,Andrews D H,Rathbone G J et al.Ion Chemistry of1H-1,2,3-Triazole[J].J PhysChem B,2008,112(2):545-557.
    [45] Jiang HX,Li BZ,Guo YM.DFT studies on the tautomerization of1,2,3-triazoles and5-halogeno-1,2,3-triazoles[J].Chem Res Appl,2006,18(8):907-911.
    [46] Syrstad E A, Vivekananda S, Turecek F. Direct Observation of a Hydrogen Atom Adduct toC-5in Uracil. A Neutralization-Reionization Mass Spectrometric and ab Initio Study[J].J.Phys. Chem. A,2001,105(36):8339-8351.
    [47] Kobayashi K, Tagawa S. Direct Observation of Guanine Radical Cation Deprotonation inDuplex DNA Using Pulse Radiolysis[J]. J. Am. Chem. Soc.,2003,125(34):10213-10218.
    [48] Adhikary A, Kumar A, Becker D, et al. The Guanine Cation Radical: Investigation ofDeprotonation States by ESR and DFT. J. Phys. Chem. B,2006,110(25):24171-24180.
    [49] Marian C M. The Guanine Tautomer Puzzle: Quantum Chemical Investigation of Ground andExcited States[J]. J. Phys. Chem. A,2007,111(8):1545-1553.
    [50] Chu I K, Rodriquez C F, Lau T C, et al. Molecular Radical Cations of Oligopeptides[J].J.Phys. Chem. B,2000,104(15):3393-3397.
    [51] Chu I K, Siu S O, Lam C N W, et al. Formation of molecular radical cations of aliphatictripeptides from their complexes with CuII(12-crown-4)[J]. Rap. Commun. MassSpectrom.,2004,18(16):1798-1802.
    [52] Kamel A M, Munson B. Energetics and dynamics of peptide fragmentation frommultiple-collision activation and surface-induced dissociation studies[J]. Eur. J. MassSpectrom.,2004,10(2):239-257.
    [53] Rice J M, Dudek G O. Mass spectra of nucleic acid derivatives. II. Guanine, adenine, andrelated compounds[J]. JACS,1967,89(11):2719-2725.
    [54] Chu I K, Rodriguez C F, Hopkinson A C, et al. Formation of Molecular Radical Cations ofEnkephalin Derivatives via Collision-Induced Dissociation of Electrospray-GeneratedCopper (II) Complex Ions of Amines and Peptides[J]. J. Am. Soc. Mass Spectrom.,2001,12(10):1114-1119.
    [55] Ke Y, Verkerk U H, Shek P Y I, et al. Stable Gas-Phase Radical Cations of DimericTryptophan and Tyrosine Derivatives[J]. J. Phys. Chem. B,2006,110(16):8517-8523.
    [56] P. Li, N. Wang, Y. Hu, et al, Association of uracil with zn(2+) and the hydrated zn(2+): ADFT investigation[J], Journal of Theoretical&Computational Chemistry,2007,6:197-212.
    [57] Adhikary A, Kumar A, Becker D, et al. The Guanine Cation Radical: Investigation ofDeprotonation States by ESR and DFT[J]. J. Phys. Chem. B,2006,110(25):24171-24180.
    [58] P. Li, N. Wang, Y. Hu, et al. Association of uracil with zn(2+) and the hydrated zn(2+): ADFT investigation[J], Journal of Theoretical&Computational Chemistry,2007,6:197-212.
    [59] Zhu W, Luo X, Puah C M, et al. The Multiplicity, Strength, and Nature of the Interaction ofNucleobases with Alkaline and Alkaline Earth Metal Cations: A Density Functional TheoryInvestigation[J]. J. Phys. Chem. A,2004,108(18):4008-4018.
    [60] Greco F, Liguori A, Sindona G, et al. Gas-Phase Proton Affinity of Deoxyribonucleosidesand Related Nucleobases by Fast Atom Bombardment Tandem Mass Spectrometry[J]. JACS,112(25):9092-9096.
    [61] Sultan J. Collision induced dissociation of deprotonated guanine: Fragmentation ofpyrimidine ring and water adduct formation[J]. Int. J. Mass. Spectrom.,2008,273:58-68.
    [62] S. Ptasin′ska, P. Candori, S. Denifl, et al. Dissociative ionization of the nucleosidesthymidine and uridine by electron impact[J], Chemical Physics Letters,2005,409:270-276.
    [63] Dejie Li,Hongqi Ai, Catalysis Effects of Water Molecules and of Charge on IntramolecularProton Transfer of Uracil[J], J. Phys. Chem. B,2009,113,11732-11742.
    [64] Bernd Knobloch, Carla P,Da Costa, et al., Stability constants of metal ion complexes formedwith N3-deprotonated uridine in aqueous solution[J], Inorganic Chemistry Communications,2003,6:90-93.
    [65] Tuytten R, Lemiere F, Esmans E L, et al. In-Source CID of Guanosine: Gas PhaseIon-Molecule Reactions[J]. J. Am. Soc. Mass. Spectrom.,2006,17:1050-1061.
    [66] Nir E, Janzen C, Imbof P, et al. Guanine tautomerism revealed by UV-UV and IR-UV holeburning spectroscopy[J]. J. Chem. Phys.,2001,115:4604-4611.
    [67] Choi M Y, Roger E. Miller. Four Tautomers of Isolated Guanine from Infrared LaserSpectroscopy in Helium Nanodroplets[J]. JACS,2006,128(22):7320-7328.
    [68] X. C. Zhang, Y. H. Hu, Y. Fang, et al, Structures and stability of complexes Ca+-RNA nucleicacid bases[J], Chinese Journal of Chemical Physics,2005,18,537-540.
    [69] Gervasio F L, Laio A, Iannuzzi M, et al. Influence of DNA Structure on the Reactivity of theGuanine Radical Cation[J]. Chem. Eur. J.,2004,10(19):4846-4852.
    [70] Kobayashi K, Yamagami R, Tagawa S. Effect of Base Sequence and Deprotonation ofGuanine Cation Radical in DNA[J]. J. Phys. Chem. B,2008,112(34):10752-10757.
    [71] Hwang S, Jang Y H, Cho H, et al. Density Functional Theoretical Study on the ProtonMigration in Radical Cations of Substituted Cytosine:Guanine Pair[J]. Bull. KoreanChem.Soc.,2008,29(3):539-540.
    [72] Cheng P, Bohme D K. Gas-Phase Formation of Radical Cations of Monomers and Dimers ofGuanosine by Collision-Induced Dissociation of Cu(II)-Guanosine Complexes[J]. J.Phys.Chem. B,2007,111(37):11075-11082.
    [73] Cadet J, Grand A, Morell C. Theoretical Study of the Internal Rotation of the HydroxylicGroup of the Enol Form of Guanine[J]. J. Phys. Chem. A,2003,107(27):5334-5341.
    [74] Gorb L, Leszczynski J. Intramolecular Proton Transfer in Mono-and Dihydrated Tautomersof Guanine: An ab Initio Post Hartree-Fock Study[J],JACS,1998,120(20):5024-5032.
    [75] Mons M, Dimicoli I, Piuzzi F, et al. Tautomerism of the DNA Base Guanine and ItsMethylated Derivatives as Studied by Gas-Phase Infrared and Ultraviolet Spectroscopy[J].J.Phys. Chem. A,2002,106(20):5088-5094.
    [76] Smedarchina Z, Siebrand W, Gorb L, et al. A direct-dynamics study of proton transferthrough water bridges in guanine and7-azaindole[J]. J. Chem. Phys.,2000,112:566-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700