活塞风对接触线的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兰新线沿路气候、地形极其复杂,隧道是兰新铁路的重要组成部分,隧道共计33座,总延长11.8公里。列车在隧道内运行时,产生活塞风,而接触网系统对风载荷作用敏感。由于隧道特殊的环境位置,不方便了解列车在隧道中的运行状况。此外,隧道内接触网的检修工作也较明线上困难。因而研究活塞风形成机理、流场特性及活塞风对接触网的影响情况具有很重大的现实意义。本课题源自铁道部对兰新铁路的电气化改造重点项目(2008J019)。
     本文运用了理论公式推导与数值模拟相结合的方法,研究了活塞风形成机理。从理论上,基于恒定流伯努利方程,推导得出活塞风风速的计算公式,得出影响活塞风的各因素,并定性地分析了各因素对活塞风的影响情况。在不同的环境条件下,利用流体分析软件Star-CD,建立了列车过隧道的横截面动网格模型。研究分析了活塞风风速及风压,验证了隧道内活塞风最大风速在列车尾流中形成、列车头部出现正压、尾部出现负压等结论,通过比较,结果表明列车运行速度对活塞风风速的影响最大。
     在接触网系统中,接触线的刚性最小,所以在研究活塞风对接触网系统的影响时,主要分析了活塞风引起的接触线的偏移量。在不同的列车运行速度及列车外形等环境条件下,建立了列车过隧道的纵截面动网格模型。在钝形列车尾流中形成了一个完整且明显的漩涡,更容易将物体卷入其中。流线型列车在降低活塞风的不良影响上有很大的优势。通过分析接触线高度处的流场,得出在列车进出隧道的整个过程中,接触线高度处的活塞风风速沿隧道高度方向(Z轴)的分量Vz,在隧道入口处有最大值。利用有限元分析软件ANSYS,建立隧道内接触网模型。将风速转化为作用力,加载到接触线节点上,计算活塞风引起的接触线的偏移量。建立列车过隧道的三维模型,对计算机的性能要求很高。在计算机能够实现的前提下,优化计算参数。在建立三维动网格模型时,在软件ANSYS ICEM里进行网格的划分,再将模型导入到Star-CD软件中进行计算。对三维模型的流场进行分析,得出接触线位置处,沿隧道宽度方向的风速Vy很小,可以忽略不计。同样,取出三维模型中的流场参数,作用到接触网模型中,研究活塞风对接触线的影响情况。综合分析比较二维、三维模型,为实际工程研究提供一定的参考。
The climate and topography along the Lanxin railway is very complicated. Tunnels are important parts of the railway. There are totally33tunnels, which are about eleven point eight kilometers. When the train passes through a tunnel, there will produce piston wind. Then, the contact system is sensitive to wind load. Due to the special environment of tunnel, it is not convenient to know the situation when the train passing through a tunnel. In addition, the repairing work in tunnel is more difficult than in open line. Therefore, the study about formation mechanism of piston wind, the flow field characteristics and the influence of the piston wind on contact system has very important significance. This topic is the key project of electrification transformation to Lanxin railway from the ministry of railways (2008J019).
     The article combines two methods of theory formula deduction and numerical simulation in the research of the piston wind's formation mechanism. The calculation formula in theory and influence factors of the piston wind is obtained based on the constant flow's Bernoulli equation. Besides, the influence is qualitatively analyzed. With the fluid analysis software Star-CD, the cross section of a dynamic grid model is established in different speed of trains, different blockage ratio, different length of trains, and different length of tunnels. The speed of the piston wind and the pressure in tunnel is analyzed. It is verified that the maximum speed of the piston is formed in train rear, train head appears positive pressure, and train rear appears negative pressure. Through the comparison, the train's speed has the biggest influence on the piston wind.
     In the contact system, the contact line's stiffness is the smallest. So, in research of the influence of the piston wind on contact system, the contact line's offset is mainly taken in account. The longitudinal section of the dynamic mesh model is established in different speed and shape of train. A complete and clear vortex is formed in rear of blunt-shaped train, in which the objects are more easily involved. The streamlined train has a lot of advantages in reducing the harmful effects of the piston wind. Through the analysis of flow field in contact line's height, it is concluded that the maximum speed of piston wind along the tunnel's height direction is at tunnel's entrance. The model of contact system in the tunnel is established with the finite element analysis software ANSYS. The speed of wind is changed into force, which is loaded to nodes of the contact line. The offset of the contact line will be gained. In order to build3D model of the train passing through a tunnel, the computer should has high performance. The parameters of model will be optimized in order that the computer can realized. The grids are divided in the software ANSYS ICEM. Then, the model will be imported into the software Star-CD and calculated. The speed of wind at the height of contact line along the direction of tunnel's width is very small and can be neglected. With the same method, the research of the three dimension model will be carried on. It is necessary to compare two dimension and three dimension model, which will provide certain reference to practical engineering.
引文
[1]Schafer, Andreas, Victor, David G. The future mobility of the world population. Transportation Research Part A:Policy 2000,34(3):170-204.
    [2]于万聚.高速电气化铁路基础网[M].成都:西南交通大学出版社,2003:2-5.
    [3]张勇.大风区铁路挡风墙及路基断面参数对车辆及接触网的影响研究[D].西南交通大学,2011:1-2.
    [4]Suzuki H, Fukushima N, Tezuka K, et al. A review of research trands on passenger'aural discomfort caused by rail tunnel pressure change. RTRI Report,1996,10(10):42-45.
    [5]赵勇.高速铁路隧道[M].北京:中国铁道出版社,2006:1-3.
    [6]金学易,陈文英.隧道通风及隧道空气动力学[M].北京:中国铁道出版社,1983:6-9.
    [7]王丽慧,李志玲,杜晓明等.活塞风作用下地铁空调送风热环境特性实测分析[J].重庆大学学报,2011,34:116-121.
    [8]Suzuki M. Aerodynamic force acting on train in tunnel. RTRI Report(in Japanese),2000, 14 (9):37-40.
    [9]沈翔.地下铁道活塞风特性的研究[D].同济大学,2004:1-5.
    [10]李炎.铁路隧道列车活塞风特性分析及理论研究[D].兰州交通大学,2010:1-17.
    [11]沈翔,吴喜平,董志周.地铁活塞风特性的测试研究[J].暖通空调,2005,35(3):103.106.
    [12]包海涛.地铁列车活塞风数值模拟[D].南京理工大学,2005:1-15.
    [13]Iida M. Numerical studies of compression waves generated by trains entering tunnels [PHD Thesis] Tokyo:Tokyo University,1993:1-10.
    [14]Wang Y W, Wang Y, An Y R, et al. Aerodynamic simulation of high-speed trains based on the Lattice Boltzmann Method(LBM). Sci China Ser E-Tech Sci,2008,51(6):774-782.
    [15]杨晖.地铁列车活塞风对站台空气环境影响的数值模拟[J].北京建筑工程学院学报,2007,23(2):8-13.
    [16]王丽慧.地铁活塞风与地铁环控节能[D].同济大学,2007:6-8.
    [17]梅元贵,周朝晖,许建林.高速铁路隧道空气动力学[M].北京:科学出版社,2009:1-39.
    [18]Saito S, Iida M. Development and verification of numerical simulation of pressure changes in underground high-speed railways. RTRI Report(in Japanese),2006,20(1): 30-33.
    [19]吴积钦.受电弓与接触网系统[M].成都:西南交通大学出版社,2010:25-29.
    [20]曹树森.电气化铁路接触网体系环境载荷下动力可靠性研究[D].西南交通大学,2011:39-60.
    [21]蔡成标,翟婉明.高速铁路接触网振动特性分析[J].西南交通大学学报,1997,5(32):498-500.
    [22]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华出版社,2004.
    [23]CD-adapco Group. STAR-CD 3.15A User's Guide [DB/CD]. http://www.cd-adapco.com/, 2002/2012.
    [24]刘伊江.地铁隧道内列车活塞风的计算方法[J].都市快轨交通,2006,19(5):55-58.
    [25]李涛.活塞风对地铁站内环境的影响[D].天津大学,2005:10-16.
    [26]百度百科.兰新铁路[DB/OL]. http://baike.baidu.com/view/260064.htm,2013.
    [27]吴家岚.高速铁路接触网风致响应分析[D].西南交通大学,2011:1-8.
    [28]马佳俊.接触网非线性振动特性及抗风稳定性研究[D].西南交通大学,2011:19-20.
    [29]官习艳.通风系统及活塞风CFD模拟研究[D].哈尔滨工业大学,2007:1-17.
    [30]骆建军,高波,王英学等.高速列车穿越隧道的二维非定常流数值模拟[J].铁道学报,2003,25(2):68-73.
    [31]王峰,赵耀华,胡定科等.地铁隧道活塞风的简化计算[J].铁道建筑,2012,5:41-43.
    [32]贺江波,吴喜平,边志美.无竖井单线隧道活塞风影响因素分析[J].城市轨道交通研究,2007,31:46-50.
    [33]梁习锋,曾剑明等.高速列车表面压力分布的数值计算[J].铁道车辆,1997,35(5):10-12.
    [34]田红旗.列车空气动力学[M].北京:中国铁道出版社,2007:40-43.
    [35]甘甜,王伟,赵耀华等.地铁活塞风Fluent动网格模型的建立与验证[J].建筑科学,2011,27(8):75-81.
    [36]刘莉蓉,李国振.200km/h客货共线单线隧道内接触网设计探讨[J].铁道机车车辆,2006,26(2):66-68.
    [37]Baron A, Mossi M, Sibilla S. The alleviation of the aerodynamic drag and wave effects of high-speed trains in very long tunnels. Journal of Wind Engineering and Industrial Aerodynamics,2001,89.
    [38]Hara T, Ohkushi J, Nishimura B. Aerodynamic drag of trains in tunnels. Quarterly of Report RTRI,1976,8(4).
    [39]Gawthope R G, Pope C W. Reduced compressible flow with gradual mass addition and area change//Iguchi M. The International Conference on Speedup Technology for Railway and Maglev Vehicles, Vol.2. Yokohama:JSME,1993.
    [40]William-Louis M J P, Tournier C. Non-homentopic flow generated by trains in tunnels with side branches. International Journal of Numerical Methods for Heat & Fluid Flow,1998,8(2).
    [41]杨铭.车辆编组对区间隧道活塞风设计的影响[J].铁路工程造价管理,2011,26(5).
    [42]王韦,陈正林,魏鸿.高速铁路隧道内列车活塞风和空气阻力的解析计算[J].世界隧道,1999(1).
    [43]任明亮,陈超,郭强等.地铁活塞风的分析计算与有效利用[J].上海交通大学学报,2008,42(8):1376-1391.
    [44]UIC. Measures to ensure the technical compatibility of high-speed trains. UIC Codex 660, 2nd Edition,2002.
    [45]Tielkes Th. Aerodynamic Aspects of Maglev System//Schach R, Witt M. The 19th International conference on magnetically Levitated Systems and Linear Drives. Dresden Germany,2006:Topics 6.
    [46]D. Kececioglu. Reliability Analysis of Mechanical Components and System. Nuclear Engineering and Design,1977.
    [47]王英学,高波,杨奎等.隧道阻塞比对列车进入隧道产生的气动效应的影响[J].试验流体力学,2006,20(4).
    [48]E. Simiu, RH. Scanlan. Wind effects on structures-an introduction to wind engineering. Third Edition,1996.
    [49]于连广,吴喜平,彭博等.隧道列车活塞风解析方法新探[J].制冷空调与电力机械,2010,131(31).
    [50]李黎明.vZ有限元分析实用教程[M].北京:清华大学出版社,2005.
    [51]董书芸.北方城市地铁活塞风对地铁环境的影响规律及其有效利用[D].天津大学,2008:1-15.
    [52]Gawthorpe R G. Aerodynamics in railway engineering, Part 2:Aerodynamics problem with overhead line equipment. Railway engineer International,1987,3(3):39-41.
    [53]Ozawa S. Present situation and future outlook of aerodynamics problems of high speed trains. QR of RTRI,1992,23(1):34-37.
    [54]李燕飞.兰新线电气化改造工程大风区段行车安全研究[D].中南大学,2007.39-48.
    [55]新伟宁.活塞风与机械风耦合作用下的地铁站台热环境研究[D].西安建筑科技大学,2009:23-27.
    [56]王乐.活塞风对地铁安全门系统环控通风效果的影响分析[D].西安建筑科技大学,2010:8-16.
    [57]田卫明,翁其能,张建伟等.地铁隧道活塞风成风影响因子分析[J].重庆交通大学 学报,2012,31(1):41-47.
    [58]王迎波.四跨绝缘锚段关节风振响应影响分析[D].西南交通大学,2012:21-50.
    [59]孟祥奎.接触网振动分析及防振措施[J].电气化铁道,2003,4:16-18.
    [60]郑晓娜.射流风机与活塞风对隧道自然通风口通风效果的影响研究[D].天津大学,2010:12-13.
    [61]马云东,范斌.基于活塞风理论的高速铁路隧道衬砌压力计算改进方法[J].大连交通大学学报,2010,31(3):12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700