鼻内镜防雾材料研制及防雾机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的玻璃、石英、塑料等透明材料在日常生活、工农业及医疗方面有着广泛的用途,如镜子、各种医用内镜镜头、汽车挡风玻璃及农用塑料薄膜,此类材料的应用使我们的生活变得更加便利。但在湿度大或气温较低时这些材料表面容易水汽凝结而起雾影响其透光率或能见度,使其应用受到较大影响。医疗上各种医用内窥镜镜头手术时需反复擦试镜头来保证其清晰度而延长了手术时间,内镜防雾问题已越来越受到学者的关注。鼻内窥镜手术目前已在全国各级医院广泛开展,鼻内镜技术虽日益成熟,但鼻内镜手术并发症尤其是严重并发症仍时有发生,其原因之一是术腔出血,镜面模糊,视野不清所致。临床上大多使用医用碘伏、医用酒精、热水或肥皂液来防雾,但这些材料存在防雾时间短、易烫伤鼻粘膜、刺激性大等缺点,内镜防雾问题实际上仍然没有得到很好地解决。工农业上虽有不少防雾材料的报道,此类防雾材料大多仅要求其有较好的防雾性能,而对其毒性、气味要求较低,但作为临床应用的防雾材料务必要求无毒、无味、刺激性小,因此工农业报导的防雾材料并不适合于临床应用。迄今为止,国内外有关鼻内窥镜防雾材料的研究报道很少,寻求无毒、生物相容性好的防雾剂是与临床密切相关的研究课题。
     目前防雾的途径通常包括:第一:使材料表面亲水,降低其表面能,因亲水材料带有大量亲水基团,可以吸引水分子,雾滴在材料表面可迅速铺展开形成一层水膜减少对光的漫反射而达到防雾目的。亲水性防雾材料通常包括:小分子表面活性剂型防雾剂、有机高分子亲水性防雾涂料、有机/无机杂化亲水性防雾涂料、氧化物、光催化超亲水表面、碳纳米管材料。第二:与亲水材料相反,使材料表面疏水,因疏水材料不能被水浸润,雾滴在材料表面容易滚动,理论上可以达到防雾效果。由于超疏水材料在基础领域及实际应用中具有较大的潜能,超疏水引起了材料学者的广泛兴趣,通常制备方法包括:溶胶-凝胶法、相分离技术、化学气相沉积法(CVD)、刻蚀法、静电纺丝技术、碳纳米管材料及超亲水与超疏水相互转化材料等,其中溶胶-凝胶法是最常用的方法。第三:使材料表面温度高于露点温度,因水汽不能在内镜表面凝结而达到防雾的目的。
     超亲水、超疏水材料理论上可用于鼻内镜防雾,但其在实际应用中却面临以下一系列问题:超亲水材料因雾滴在其表面易形成一层水膜而迅速铺展开来减少光的漫反射而达到防雾的目的,而防雾剂型的液态亲水材料与固体表面通常靠物理吸附即主要靠范德华力结合,因粘附力弱结合不牢固防雾剂容易从固体表面流失而影响其防雾性能。超疏水材料因其表面需要构建粗糙的结构才能达到疏水的状态,且疏水能力与材料表面的粗糙度呈正相关,即材料表面越粗糙其疏水性能就越好,水滴在材料表面的接触角达到180度的理想状态时才能在材料表面自由滚动。但这又带来一个新的问题,即疏水性越好其表面粗糙度就越高,而粗糙度越高其透光率就越差,势必会影响其在光学方面的应用。
     目的:采用表面活性剂、溶剂、分散剂等,通过正交设计,研制一种无刺激性,防雾时间长、镜面清晰度高、经济安全、使用方便的亲水型鼻内镜手术防雾剂;探讨在防雾剂中添加一定质量百分比的不同性质纳米粒子后防雾剂的表面能极性比、防雾剂与鼻内镜镜面的粘附力及防雾时间的变化;同时制备超疏水材料,并对其防雾性能进行初步探讨。
     方法:
     一:亲水型防雾剂制备:表面活性剂、溶剂、分散剂等按一定的配比混合,每种物质重量百分比设有3个水平,本实验采用正交设计,共安排27次试验,使用SPSS13.0进行数据分析。依次将无水乙醇、丙二醇、月桂醇聚氧乙烯醚、十二烷基硫酸钠、聚乙二醇400,余量为去离子水,按不同质量比加入称量瓶中混合,并置于50℃水浴箱15分钟后即得27种不同浓度配比的无色透明、无刺激性鼻内镜防雾剂。对这27种配方防雾剂的防雾时间及其防雾性能进行测试,通过对不同组分的均值分析得到防雾时间最长的配比,随后即按最佳配比配制防雾剂,并在同一测试环境下对同一受试者进行鼻内镜防雾测试3次,取平均值作为其防雾时间。
     二:纳米粒子改性亲水型鼻内窥镜防雾剂研制:分别取纳米SiO20.05克和纳米SiO2-KH5700.05克加入亲水性鼻内镜防雾剂5m中,超声分散30分钟即得两种不同的改性鼻内镜防雾剂。
     三:纳米粒子改性聚乙烯吡咯烷酮(PVP)鼻内窥镜防雾剂研制:将0.05克纳米氧化锌加入5ml聚乙烯吡咯烷酮溶液中,0.025克自制纳米二氧化钛加入5ml聚乙烯吡咯烷酮溶液中,0.05克自制纳米二氧化硅中空微球加入5ml聚乙烯吡咯烷酮溶液中,超声分散30分钟即得不同鼻内窥镜防雾剂。
     四:对制备的不同防雾剂进行表征,内容包括:防雾时间(鼻内镜防雾测试)、透光率、接触角、粘附功、透射电镜及原子力显微镜观察。
     五:透明超疏水薄膜防雾性能研究:采用溶胶—凝胶法制备超疏水薄膜:酸溶胶制备:将8.36mL正硅酸乙酯(TEOS)加入到80mL无水乙醇中充分溶解,在磁力搅拌器搅拌下滴加36%的盐酸4.8mL到上述溶液中,继续搅拌19h。丙烯酸溶液制备:将3.0g纯溶性丙烯酸溶于50mL无水乙醇中,充分搅拌至完全溶解。碱凝胶制备:将3.1mL正硅酸乙酯(TEOS)加入到80mL无水乙醇中充分溶解,再加入13.8mL去离子水,在磁力搅拌器搅拌下逐渐滴加4.7mL分析纯氨水到上述溶液中,密封反应1小时。将不同比例的酸溶胶、丙烯酸溶液及碱凝胶加入无水乙醇中,所制备溶液超声振荡1h,制得20种分散良好的溶胶。将清洁玻璃片浸入以上溶胶中,10s后用提拉涂膜机以3mm/s的速度提拉出,室温下静置15min,如此反复制备涂有3层及5层的膜。将所制基片放入马弗炉中升温2h至400℃,保温0.5h后自然降温,得到20种透明二氧化硅薄膜样品。将涂膜后的玻璃片放入硅烷偶联剂溶液中浸泡3小时,然后将样品放入100℃烘箱干燥60min,得到透明二氧化硅薄膜。
     疏水薄膜防雾测试:模拟一定温差的情况下,测试具有疏水性能的8号、13号涂膜基片、空白基片及涂硅烷偶联剂溶液基片在遇水汽时的防雾性能。在水浴锅上搭建产生水汽装置,将所制基片静置于其上,疏水二氧化硅薄膜层向水面,基片离水面3cm,室温为13℃,水浴温度设置为60℃。经过5min、10min、20min、30min后进行对比,观察其表面起雾情况。
     统计学处理(亲水型防雾剂制备正交试验)因素A:无水乙醇;因素B:丙二醇;因素C:月桂醇聚氧乙烯醚;因素D:十二烷基硫酸钠;因素E:聚乙二醇400,每种物质重量百分比设3个水平(a:1=3%、2=10%、3=20%;b:1=3%、2=10%、3=20%;c:1=3%、2=10%、3=20%;d:1=0.6%、2=2%、3=4%;e:1=0.6%、2=2%、3=4%)如要完全试验,需行3×3×3x3×3=243次试验(Orthogonal),本实验采用正交设计,共安排27次试验,使用SPSS13.0进行数据分析,防雾性能测试结果统计学分析。
     结果
     一:亲水型防雾剂制备:通过正交实验,得到27种不同浓度配方的防雾剂,对这27种配方防雾剂防雾时间进行测试,通过对不同组分的均值分析得到防雾时间最长配比A3B2C3D3E3。表征不同配比防雾剂其透光率均接近100%;接触角约为7.6度;扫描电镜示防雾剂在鼻内镜镜头(蓝宝石)表面形成一层平整膜;按最佳配比配制防雾剂并对同一受试者进行测试,其平均防雾时间为15分钟。表征医用碘伏其透光率约80%;接触角约为10度;扫描电镜示医用碘伏涂在鼻内镜镜面后呈散在岛状分布,表面不规整,未能形成膜状结构。用鼻内镜对同一受试者在相同的环境下进行碘伏及95%乙醇进行防雾测试,其平均防雾时间分别为04'05"和38",所研制的防雾剂防雾效果明显优于医用碘伏及95%乙醇。
     二:防雾剂及其改性剂防雾性能:纳米SiO2改性防雾剂鼻内镜防雾时间为18min;纳米Si02-KH570改性防雾剂防雾时间为21min。透光率:在可见光范围内防雾剂的透光率约为100%;纳米SiO2改性防雾剂透光率约为90%;纳米SiO2-KH570改性防雾剂透光率约为97%。接触角:水滴在防雾剂涂膜上的接触角7.8度;水滴在纳米SiO2改性防雾剂涂膜上的接触角7.0;水滴在纳米SiO2-KH570改性防雾剂涂膜上的接触角6.7度。粘附功:水在蓝宝石镜面的接触角为(56.159.958.0)平均值为58.0度;乙二醇在蓝宝石镜面的接触角为(46.351.648.2)平均值为48.7度;蓝宝石镜面的表面能为52.36±mN/m,其中色散分量(Disp2.92±mN/m);极性分量(Polar49.44±mN/m);研制的鼻内镜防雾剂在蓝宝石镜面的粘附功为40.71mN/m,纳米二氧化硅改性防雾剂在蓝宝石镜面的粘附功为49.73mN/m,纳米二氧化硅-KH570改性防雾剂在蓝宝石镜面的粘附功为55.38mN/m。透射电镜:Si02径粒约100-200nm,呈球形,纳米Si02在防雾剂中分散较差,团聚明显;改性纳米SiO2-KH570在防雾剂中的分散性明显提高,基本呈单个纳米粒子分布。原子力显微镜:鼻内镜防雾剂在蓝宝石镜面形成一均匀的薄膜厚约192.30nm,膜表面较平整;纳米Si02改性防雾剂形成的薄膜最厚处约200.09nm,膜表面较单纯防雾剂表面粗糙,纳米粒子粒径范围约100-200nm;纳米Si02-KH570改性防雾剂形成的薄膜最厚处约332.38nm,膜表面较单纯防雾剂表面粗糙。
     三:PVP及其改性剂防雾性能:PVP鼻内镜防雾时间为10min;纳米氧化锌改性PVP鼻内镜防雾时间为15min;纳米氧化钛改性PVP鼻内镜防雾时间为16min;中空纳米二氧化硅改性PVP鼻内镜防雾时间为17min。透光率:在可见光范围内PVP透光率约为100%;纳米氧化锌改性PVP透光率约为90%;纳米氧化钛改性PVP透光率约为85%;中空纳米二氧化硅改性PVP透光率约为92%;碘伏透光率约为80%;纳米二氧化钛改性碘伏透光率约为70%。接触角:水滴在PVP涂膜上的接触角9.6度;水滴在纳米氧化锌改性PVP涂膜上的接触角5.9;水滴在纳米氧化钛改性PVP涂膜上的接触角4.8度;水滴在中空纳米二氧化硅改性PVP涂膜上的接触角6.1度。粘附功:PVP在蓝宝石镜面的粘附功为96.10mN/m;纳米氧化锌改性PVP在蓝宝石镜面的粘附功为101.02mN/m;纳米氧化钛改性PVP在蓝宝石镜面的粘附功为100.81mN/m;中空纳米二氧化硅改性PVP在蓝宝石镜面的粘附功为102.92mN/m。透射电镜:纳米氧化锌在PVP溶液中分散较好;制备的纳米氧化钛粒径约120-160nm,在PVP溶液中分散较好;制备的中空纳米二氧化硅粒径约200nm,在PVP溶液中分散较好。原子力显微镜:聚乙烯吡咯烷酮鼻内镜防雾剂在蓝宝石镜面形成一均匀的薄膜,最厚处约78.30nm,膜表面较平整,纳米氧化锌改性PVP形成的薄膜最厚处约277.97nm,膜表面较单纯防雾剂表面显粗糙。纳米氧化钛改性PVP形成的薄膜最厚处约227.34nm,膜表面较单纯聚乙烯吡咯烷酮表面粗糙。中空纳米二氧化硅改性PVP形成的薄膜亦较粗糙,薄膜最厚处约34.64nm。
     四:以玻璃为基底,采用溶胶凝胶法,以丙烯酸诱导正硅酸乙酯(TEOS)相分离并自组装硅烷偶联剂的方法制备的20种涂膜中具有疏水性质的是8-13号,疏水性能最好的是13号,其扫描电镜显示薄膜表面的微观结构呈弹坑状,水滴在此表面上的接触角为153°,具有超疏水特性,防雾试验证明其具有一定的防雾性,在可见光区间内其透光率约为60-80%。
     结论:所制备的亲水型鼻内镜防雾剂透明、无毒、无味,较临床常用的碘伏、酒精的防雾时间长;经纳米二氧化硅粒子改性后的亲水型鼻内镜防雾剂进一步延长了防雾时间,增强了防雾性能;纳米粒子改性聚乙烯毗咯烷酮鼻内窥镜防雾剂透明、无毒、无味,较碘伏、酒精的防雾时间明显延长;超疏水材料具有一定的防雾性能,但因其表面粗糙,透光率受影响,且材料表面很难达到接触角180度的理想状态,应用于临床鼻内镜防雾尚需进一步深入研究。
Background:
     Transparent material has wide application fields in our daily life, in industrial,agricultural and medical aspects, the application of such materials as mirror, all kinds of medical endoscope, automobile windshield and agricultural plastic film makes our life more convenient. But the above material surface are easy to condense of water vapor, the fog affects the light transmittance or visibility which influence its application in high humidity or in lower temperature ares. In order to keep the good light transmittance or visibility, we must clean our medical endoscope lens again and again during the surgery which will prolong the operation time. Endoscopic antifogging problem has already attracted more and more attentions of scholars. Nasal endoscopic surgery has been widely developed in hospitals at all levels, nasal endoscopic technique is now becoming more mature, but the nasal endoscopic surgery complications, especially serious complications still occur from time to time, the reasons include bleeding, endoscope lens blurred or fog. Nowdays, medical betadine, alcohol, hot water or soap liquid are used to avoid the fogging clinically, but there are many disadvantages for these materials such as short antifog time, easy to burn nasal mucosa,high irritation, the issue of clinical endoscopic antifog is not resovled up to now. Although there are lots of reports about antifog in industry and agriculture, this kind of antifogging materials only require the high quality of antifog while ingore its toxicity and irritation, so the industrial and agricultural antifog material may not be suitable for clinical application. So far, clinical endoscopic antifog material is rarely reported in literature. Developping a kind of non-toxic, biological compatibility and high quality endoscopic antifog material is closely related with the clinical research.
     Usually antifog methods includes the following ways:first of all:make the material surface hydrophilic and reduce its surface energy, the hydrophilic material contains a large number of hydrophilic group which can attract water molecules,so the droplet in material surface can rapidly spread expands to form a layer of water film which reduce light of diffuse and achieve the purpose of antifog. hydrophilic materials includes:small molecule surfactant, organic polymer hydrophilic antifog coating, organic/inorganic hybrid hydrophilic antifog coating, oxide, photocatalysis hydrophilic surface, carbon nanotube materials. Secondly:contrast to the hydrophilic material, make the material surface hydrophobic, because hydrophobic material cannot be infiltrated by water droplets in its surface and water droplets can roll easily, so the hydrophobic material can avoid fogging theoretically, but the research reports about hydrophobic material antifog are rare, because superhydrophobic material has great potential in the basic fields and practical application, scholars become deeply interested in superhydrophobic material, methods of superhydrophobic material includ:sol-gel method, phase separation, chemical vapor deposition (CVD), etching method, electrostatic spinning technology, carbon nano tube, reciprocal transformation materials between superhydrophilic and superhydrophobic materials, the most commonly used methods is sol-gel method. Thirdly:increase temperature of the material surface and water vapor can't condensate in endoscope surface and can achieve the purpose of antifog.
     When the superhydrophilic and superhydrophobic material are applied in nasal endoscopic antifog,they will face the following problems:droplets in the super hydrophilic material surface can form a layer of water film easily and unfold rapidly which can reduce light of diffuse and achieve the purpose of antifog, but the adhension between the liquid hydrophilic material of antifog dosage form and solid surface usually is mainly by physical adsorption,that is, by van der Waals force, the adhesive force is weak and unstable, the liquid hydrophilic antifog material can lose easily from the solid surface which can decrease the antifogging performance of the liquid hydrophilic material. To the superhydrophobic material, a rough structure should be built of its surface to achieve the hydrophobic state, and there is a positive correlation between hydrophobic ability and the material surface roughness,that is, the rougher of the material surface is, the better of hydrophobic performance is. Only when the material surface contact angle is about180degrees can the water droplets on the material roll freely, however, it is a ideal state.it also brings a new problem, that is, the better the hydrophobic surface is, the rougher of its surface is, which can influence the transmissivity of hydrophobic material and its applications.
     Objective:
     The study will develop a kind of antifogging agent for endoscopic sinus surgery with surfactant, solvent, dispersant, etc by orthogonal test, the antifoggant should be colorless, non-irritating, long antifog time, good transmissivity, economic,security and much easier to manufacture; to explore the changes of surface energy polarity ratio, adhesion between antifoggant and nasal endoscope lens, anti-fog time by modified antifoggant with different nanoparticles; in addition, to makes a preliminary discussion whether the superhydrophobic material has the function of antifog or not.
     Methods and materials
     According to certain proportion,the hydrophilic antifogging agent was made by surfactant, solvent, dispersant, etc, each material weight percentage has three level, using design of orthogonal test. L27(35) of experiments were arranged by SPSS13.0. nasal endoscopy anti-fogging agent were made by adding the ethanol (A), propylene glycol (B), polyoxyethylene lauryl ether (C), sodium dodecyl sulfate (D), polyethylene glycol400(E) and deionized water to weighing bottles and mixed According to the order of A、B、C、D、E, then the weighing bottles were placed50℃water bath for15minutes.Each substance has three levels percentage of the total mass (A:1=3%,2=10%,3=20%; B:1=3%,2=10%,3=20%; C:1=3%,2=10%,3-20%; D:1=0.6%,2=2%,3-4%; E:1-0.6%,2=2%,3=4%), orthogonal test was designed by SPSS13.0.27kinds of nasal endoscopy antifogging agents were obtained by the different ratio,which are colorless, transparent, non-irritating, the pH value is about7~8. In accordance with the way of endoscopic surgery, StorzO0nasal endoscopy and its imaging system were used to test the antifogging time of the27agents,each agent was tested3times, and the average is antifogging time, while the medical betadine,95%ethanol were also tested as control.
     Developping a nanoparticles modified hydrophilic antifogging agent of nasal endoscope:adding0.05g nanoparticles of SiO2into5ml hydrophilic antifogging agent of nasal endoscope and adding0.05g nanoparticles of nano sio2-KH570into5ml hydrophilic antifogging agent of nasal endoscope. Then two kinds of nanoparticles modified hydrophilic antifogging agent were made by ultrasonic dispersion for30minutes.
     Developping a nanoparticles modified polyvinyl pyrrolidone antifogging agent of nasal endoscope:adding0.05g of nano zno into5ml polyvinylpyrrolidone solution, adding0.025g of nano titanium dioxide into5ml polyvinyl pyrrolidone solution, adding0.05g of hollow microspheres nano silica into5ml polyvinylpyrrolidone solution, Then three kinds of nanoparticles modified polyvinyl pyrrolidone antifogging agent were made by ultrasonic dispersion for30minutes.
     Different antifogging agent were characterized and the content includes:light transmittance, contact angle, antifog time (nasal endoscopic antifog test), adhesion work and transmission electron microscopy (SEM) and atomic force microscope.
     Study antifog performance of transparent super hydrophobic film:First super hydrophobic thin film was made by sol-gel method:acid sol preparation:8.36mL ethyl silicate (TEOS) is added into the80mL anhydrous ethanol and fully dissolved.4.8mL36%hydrochloric acid was dropped gradually into the above solution on magnetic stirrer, stirring for9hours. Acrylic acid solution preparation:3.0g acrylic acid was dissolved in50ml anhydrous ethanol, fully stir until completely dissolved. Alkaline gel preparation:3.1mL ethyl orthosilicate (TEOS) and13.8mL deionized water were added into the80mL anhydrous ethanol, and then4.7mL ammonia solution was added into the above solution gradually on the working magnetic stirring, the solution was sealed and reaction for1hour. Different proportion of acrylic acid solution and alkaline gel were added into the anhydrous ethanol and was dispersed by ultrasonic oscillation for1h,20kinds of dispersive sol were made, clean glass was dipped into above sol for10s, then the clean glass was pulled out by coating machine with speed of3mm/s, and planced it for about15minutes at room temperature, because of the surface adsorption and chemical bonding force, the sol will form a layer of uniform film on the surface of the substrate,3layers and5layers coating were made. The substrates were put into the muffle furnace and increased the temperature to400℃in2hours, heat preservation for0.5h and natural cooling, transparent silica film samples were made.the glass coated with silica film coating were dipped into the silane coupling agent hydrophobic liquid and immersed for3hours, then the sample were put into the100℃oven drying for sixty minutes and transparent hydrophobic silica film were done.
     The antifogging performance of the samples No.8and No.13which were hydrophobic were tested, methods:simulation certain temperature difference, the antifogging performance of the samples of coating substrate, the blank substrate and silane coupling agent coating substrate were test. The substrate were put on thermo static water bath and the silica layer face to the surface of the water the distance between the substrate and water surface is3cm, room temperature is13℃, the temperature of water in the Water Bath is set to60℃. After5min,10min, and min,30min, the antifogging performance were observed.
     Statistics (chapter1) factors A:anhydrous ethanol; Factor B:propylene glycol; Factor C:lauryl alcohol polyethylene glycol ether factor D:sodium dodecyl sulfate; Factors E:polyethylene glycol (peg)400,the weight percentage of each material has three levels (a:1=3%,2=10%,3=20%; b:1=3%,2=10%,3=20%; c:1-3%,2=10%,3=20%; d:1=0.6%,2=2%,3=4%; E:1=0.6%,2=2%,3=4%) if you want todo all the test completely,there need to do3by3by3by3by3=243times test (Orthogonal), the Orthogonal test was designed by SPSS13. the results of antifogging performance were analyzed by variance.
     Results:
     By the orthogonal experiment, we made27kinds of different concentration of antifogging agent, the antifog time and antifogging performance of all the27samples were characterized, the best ratio (A3B2C3D3E3) of weight percentage of each material was got according to the average analysis of the different components, the transmissivity of all the antifogging agent are close to100%; Contact angle is about 7.6degrees; Scanning electron microscopy (SEM) shows that the antifogging agent form a flat layer on the surface of nasal endoscopic lens (sapphire); another sample was made according to the best ratio and was tested, the average antifog time is15minutes. As control, the transmissivity of medical betadine its about80%; Contact angle is about10degrees; Scanning electron microscopy shows that the medical betadine coating is scattered island and irregular, failure to form a flat layer on the surface of nasal endoscopic lens (sapphire), the average antifog time is04'05".the antifogging agent made by ourself was better than95%ethanol (38") and medical betadine.
     Antifogging performance of antifogging agent and modified antifogging agent: the average antifog time of antifogging agent modified by SiO2is18minutes; the average antifog time of antifogging agent modified by nano SiO2-KH570is21minutes. Light transmittance:in the visible light range, the light transmittance of antifogging agent is about100%; the light transmittance of antifogging agent modified by SiO2is about90%; the light transmittance of antifogging agent modified by nano SiO2-KH570is about97%. Contact Angle:the contact angle of water droplets on the antifogging agent coating is about7.8degrees; the contact angle of water droplets on the antifogging agent modified by SiO2coating is about7.0degrees; the contact angle of water droplets on the antifogging agent modified by nano SiO2-KH570coating is about6.7degrees. Adhesion work:The contact angle between water and the surface of sapphire is about (56.159.958.0) degrees, the average is58.0degrees; The contact angle between ethylene glycol and the surface of sapphire is about (46.351.648.2), the average is48.7degrees; the surface energy of sapphire is52.36±mN/m, the dispersive component is2.92mN/m; the polar component is49.44mN/m; the adhesion work between the antifogging angent of nasal endoscope and the sapphire len is40.71mN/m, the adhesion work between the antifogging agent modified by SiO2and the sapphire lens is49.73mN/m, the adhesion work between the antifogging agent modified by nano SiO2-KH570and the sapphire lens is55.38mN/m. Transmission electron microscopy (SEM):diameter of SiO2is about100~200nm, spherical, the dispersion of nano SiO2in the antifoggant is poor; the dispersion of nano SiO2-KH570in the antifoggant is obviously improved, it presents single nanoparticles distribution. Atomic force microscope:the newly developed antifogging agent form a uniform and smooth layer on the surface of nasal endoscope(sapphire),the thickness is about192.30nm; antifogging agent modified by SiO2form a slightly rough layer on the surface of nasal endoscope(sapphire),the thickness is about200.09nm; antifogging agent modified by nano SiO2-KH570form a rough layer on the surface of nasal endoscope(sapphire).
     Antifogging performance of PVP and modified PVP:the average antifog time of PVP is10minutes; the average antifog time of PVP modified by nano zno is15minutes; the average antifog time of PVP modified by nano titanium oxide is16minutes; the average antifog time of PVP modified by hollow nano silica is17minutes. Light transmittance:in the visible light range, the light transmittance of PVP is about100%; the light transmittance of PVP modified by nano zno is about90%; the light transmittance of PVP modified by nano titanium oxide is about85%; the light transmittance of PVP modified by hollow nano silica is about92%.The light transmittance of betadine is about80%; The light transmittance of nano titanium dioxide modified betadine is about70%. Contact Angle:the contact angle of water droplets on the PVP is about9.6degrees; the contact angle of water droplets on the PVP modified by nano zno coating is about5.9degrees; the contact angle of water droplets on the PVP modified by nano titanium oxide coating is about4.8degrees; the contact angle of water droplets on the PVP modified by hollow nano silica coating is about6.1degrees. Adhesion work:the adhesion work between pvp and the sapphire lens is96.10mN/m, the adhesion work between the PVP modified by nano zno and the sapphire lens is101.02mN/m, the adhesion work between the PVP modified by nano titanium oxide and the sapphire lens is100.81mN/m, the adhesion work between the PVP modified by hollow nano silica and the sapphire lens is102.92mN/m. Transmission electron microscopy:the dispersion of nanometer zinc oxide in PVP solution is good; the diameter of nano titanium oxide particle which was made by ourself is about120~160nm and well dispersive in PVP solution; the diameter of hollow nano silica particles which was made by ourself is about200nm and also well dispersive in PVP solution. Atomic force microscope:the newly developed antifogging agent of pvp form a uniform and smooth layer on the surface of nasal endoscope(sapphire),the thickness is about78.30nm; PVP modified by nano zno form a slightly rough layer on the surface of nasal endoscope,the thickness is about277.97nm; PVP modified by nano titanium oxide form a rough layer on the surface of nasal endoscope, the thickness is about227.34nm; PVP modified by hollow nano silica form a rough layer on the surface of nasal endoscope,the thickness is about34.64nm.
     Because of phase separation and self-assembly silane coupling agent,20kinds of coating were made with acrylic induction and ethyl silicate (TEOS) on glass substrate by sol-gel method, the samples of No.8~13were hydrophobic, the best one which has superhydrophobic properties is No.13. Scanning electron microscopy (SEM) shows the microstructure of the film surface is crater form, the contact angle of the surface of the coating is about153°which made the sample has superhydrophobic properties, antifog test shows that it has certain antifog performance, in the visible light range, the light transmittance of the super hydrophobic coating is about80%.
     Conclusion:
     The hydrophilic antifogging agent of nasal endoscope by orthogonal design has some excellent properties such as transparent, non-toxic, tasteless. Its antifog time is much longer than that of the clinical commonly used betadine and alcohol; The nano silica particles modified hydrophilic antifogging agent of nasal endoscope prolong the antifog time evidently and improve the antifogging performance; Nanoparticles modified poly vinyl pyrrolidone antifogging agent of nasal endoscope is transparent, non-toxic, tasteless, its antifog time is also much longer than that of the betadine and alcohol. Superhydrophobic material has certain antifog performance, but its surface is rough and the light transmittance is not so good, it is difficult to make a coating with the surface contact angle of180degrees, it need to be further study of transparent super hydrophobic coating to be applied to clinical antifog of nasal endoscope.
引文
[1]韩德明.鼻内窥镜外科学.北京:人民卫生出版社,2002,104.
    [2]Young T, Philos. An Essay on the Cohesion of Fluids[J]. Philos,Trans. R. Soc. London,1805,95(65):65-87.
    [3]Wang R, Kazuhito H, Akira F. Light induced amphiphilic surfaces [J]. Nature, 1997,388(31):431-432.
    [4]Euvananont C, Junin C, Inpor K, et al. TiO2 optical coating layers for self-cleaning applications[J].Ceramics International,2008,34(4):1067-1071.
    [5]Kubo W, Tatsuma T. Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity[J]. Journal of Materials Chemistry,2005,15(30):3104-3108.
    [6]Cebeci C, Wuz, Zhai L, et al. Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings [J]. Langmuir,2006, 22(6):2856-2862.
    [7]周磊,赵文宽,方佑龄.液相沉积法制备光催化活性TiO2薄膜[J].应用化学,2002,19(10):919-922.
    [8]McSporran N, Rico V, Borras A, et al. Synthesis of undoped and Nidoped In TaO4 photoactive thin films by metal organic chemical vapor deposition[J]. Surface and Coatings Technology,2007,201(22-23):9365-9368.
    [9]Lu X, Wang Y B, Liu Y R, et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol-gel techniques[J].Materials Letters,2007,61(18):3970-3973.
    [10]Ayumi M, Toshiaki Y, Shin-ichi H. Synthesis of porous titania thin films using carbonatation reaction and its hydrophilic property [J]. Thin Solid Films,2008,56(12):3888-3892.
    [11]王凤平,单金环,刘照斌.长效玻璃防雾剂制备与性能研究[J].辽宁师范大学学报(自然科学版),2007,30(2):188-190.
    [12]万屏南,衷友泉,熊丽萍.新型氧化铈玻璃防雾剂的研制[J].华东交通大学学报,2006,23(1):189-172.
    [13]A.Nakajima, A.Fujishima, K.Hashimoto, et al. Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate Advanced Materials[J].1999,11(16):1365-1368.
    [14]OndaT, ShibuichiS, SatohN, et al. Super-water-repellent fractal surfaces [J]. Langmuir,1996,12,2125-2127.
    [15]Sun M H, Luo C X, Xu L P, et al. Artificial lotus leaf by nanocasting[J]. Langmuir,2005,21,8978-8981.
    [16]Zhao N, Xie Q D, Weng L H, et al.Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution[J]. Macromolecules,2005,38,8996-8999.
    [17]Kang M S, Jung R, kim H S, et al. Preparation of superhydrophobic polystyrene membranes by electrospinning[J]. Colloid Surf A,2008,313, 411-414.
    [18]Bhagat S D, Oh C S, Kim Y H, et al.M ethyltrimethoxysilane based monolithic silica aerogels via ambient Dressure drying[J]. Microporous and Mesoporous Mater,2007,100(3):350-355.
    [19]Feng L, Song Y L, Zhai J, el al. Creation of a superhydrophobic surface from an amphiphilic polymer[J]. Angew Chem Int Ed,2003,42:800-802.
    [20]Fresnais J, Chapel J P, Poncin-Epaillard F. Synthesis of transparent superhydrophobic polyethylene surfaces[J]. Surf Coatings Tech,2006, 200,5296-5305.
    [21]Li Y, Cai W P, CaoBQ, et al.Two-dimensional hierarchical porous silica film and its tunable superhydrophobicity[J]. Nanotechnology,2006,17,238-243.
    [22]Zhang J L,Han Y c.superhydrophobic PTFE surfaces by extension [J].Macromol Rapid Commun,2004,25,1105-1108.
    [23]Ma M, Hill RM, Lowery JL, Electrospun poly (styrene block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity[J].Langmuir,2005, 21(12):5549-5554.
    [24]Erbil HY, Demirel AL, Avci Y,et al.Transformation of a simple plastic into a superhydrophobic surface[J].Science,2003,299(5611):1377-1380.
    [25]Zhao.B,Brittain. WJ. Synthesis of Polystyrene Brushes on Silicate Substrates via Carbocationic Polymeriztion from Self-Assembled Monolayers[J]. Macromolecules,2000,33,342-348.
    [1]Hideki ISHOKA. Antifogging Glass for a Vehicle Window,Method for Producing the Same, and Fixing Structure for the same [P]. US Patent:0239017 A1,2009-9-24.
    [2]Chen Zhao, Cormell Chappell. Silicate-Containing Antifogging Coatings [P]. US Patent:0003160 A1,2011-1-6.
    [3]Timothy Michael Kneale, Clinton, Iowa. Antifog Composition for Polyolefin Packaging Films[P]. US Patent:6046254,2000-4-4.
    [4]Seiji Yamazaki, Kensuke Makita, Yasuaki Kai. Hydrophilic Film and Method for Forming Same on Substrate [P]. US Patent:6071606,2000-6-6.
    [5]Peter Daute, Ernst-Udo Brand. Antifogging Agent for Plastics [P]. US Patent:7488838B2,2009-2-10.
    [6]Feng, X. Jiang, L. Design and Creation of Superwetting/Antiwetting Surfaces[J].Advnced Materials,2006,18,3063-3078.
    [7]Cebeci, F. C,Wu, Z, Zhai, L, et al.Nanoporosity-Driven Superhydrophilicity:A Means to Create Multifunctional Antifogging Coatings[J].Langmuir,2006, 22,2856-2862.
    [8]Xian Ning Xie, Sharon Xiaodai Lim, Yuzhan Wang. A Nanosegregant Approach to Superwettable and Water-Attracting Surfaces[J].Macromol. Chem. Phys, 2010,211,2187-2192.
    [9]Jason Fang, Antonios Kelarakis, Luis Estevez, Superhydrophilic and solvent resistant coatings on polypropylene fabrics by a simple deposition process[J]. Journal of Materials Chemistry,2010,20,1651-1653.
    [10]Feng X, Feng L, Jin M, PJ, et al.Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. J Am Chem Soc,2004,126,62-63.
    [11]Hongchen Dong, Penglin Ye, Mingjiang Zhong.Superhydrophilic Surfaces via Polymer-SiO2 Nanocomposites[J].Langmuir,2010,26,15567-15573.
    [12]Han JT, Kim SY, Woo JS, et al.Transparent, conductive,and superhydrophobic films from stabilized carbon nanotube/silane sol mixture solution[J].Adv Mater,2008,20,3724-3727.
    [13]Takeshita N, Paradis LA, Oner D, et al.Simultaneous tailoring of surface topography and chemical structure for controlled wettability[J].Langmuir, 2004,20,8131-8136.
    [14]Usrey ML, Strano MS.Controlling Single-Walled Carbon Nanotube Surface Adsorption with Covalent and Noncovalent Functionalization[J].Journal of Physical Chemistry C.2009,113,12443-12453.
    [1]Cebeci FC, Wu Z, Zhai L, Nanoporosity-driven superhydrophilicity:a means to create multifunctional antifogging coatings[J].Langmuir,2006,22(6):2856-2862.
    [2]Margrain TH, Owen C. The misting characteristics of spectacle lenses [J].Ophthalmic Physiol Opt.1996,16(2):108-14.
    [3]Timothy Michael Kneale, Clinton, Iowa. Antifog Composition for Polyolefin Packaging Films[P]. US Patent:6046254,2000-4-4.
    [4]Seiji Yamazaki, Kensuke Makita, Yasuaki Kai. Hydrophilic Film and Method for Forming Same on Substrate [P]. US Patent 6071606,2000-6-6.
    [5]Peter Daute, Ernst-Udo Brand. Antifogging Agent for Plastics [P]. US Patent 7488838B2,2009-2-10.
    [6]B. J. Briscoe, K. P. Galvin.The effect of surface fog on the transmittance of light[J].Solar Energy,1991,46(4):191-197.
    [7]H. Zhao, D. Beysens.From droplet growth to film growth on a heterogeneous surface:condensation associated with a wettability gradient[J]. Langmuir, 1995,11,627-634.
    [8]Jacquelyn M. Crebolder, Rodger B. Sloa.Determining the effects of eyewear fogging on visual task performance[J].Applied Ergonomics,2004,35:371-381.
    [9]罗茂鲜,刘东辉术,孟丽丰.纳米SiOx改性喷涂型防雾剂的研制[J].广东化工,2009,192(38):148-152.
    [10]万屏南,衷友泉,熊丽萍.新型氧化铈玻璃防雾剂的研制[J].华东交通大学学报,2006-23(1):169-172.
    [11]熊丽萍,王卫,何忠义.新型氧化镧防雾剂的研究[J].材料与表面处理技,2006,2,95-97.
    [12]Li ZZ, Chen JF, Liu F, et al. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin [J]. PEST MANAGEMENT SCIENCE,2007,3(63):241-246.
    [13]Corrales T, Peinado C, Allen N S, et al. A ehemilu. minescence study of micron and nanopartiele titanium dioxide:effect on the thermal stability of metallocene polyethylene[J] Journal of Photochemistryand Photobiology A: Chemistry,2003,156(13):151-160.
    [14]Teofil J, Andrzej K. Influence of silicon coupling agents on surface properties of precipitated Silica[J]. Applied surface Science,2001,172,18-32.
    [15]Spange S. Silica surface modification by cationic polymerization and carbonium intermediates [J]. Progress in Polymer Science,2000,25,781-894.
    [16]阮建明,王亚东,伍秋美,等.单分散球形Si02的制备及其分散体系的流变性能[J].中南大学学报(自然科学版),2007,38(5):825-829.
    [17]W Wu, M Q JIA, J F CHEN,et al. Effect of silane coupling gent on the prepation and application of nano silicon dioxide composite material by sol-gel method [J]. Acta Materiae Compositae Sinica,2004,21(2):70-75.
    [18]刘琪,崔海信,顾微,等.硅烷偶联剂KH-570对纳米二氧化硅的表面改性研究[J].纳米科技,2009,6(3):15-18.
    [19]柳建宏,于杰,何敏.等.KH570用量对纳米Si02接枝改性的影响[J].胶体与聚合物,2010,28(1):19-21.
    [20]苏瑞彩,李文芳,彭继华,等.硅烷偶联剂KH570对纳米Si02的表面改性及其分散稳定性[J].化工进展,2009,28(9):1596-1599.
    [21]吉小利,王君,李爱元,等.纳米二氧化硅粉体的表面改性研究[J].安徽理工大学学报(自然科学版),2004,24,83-87.
    [22]J.F.Zhang,D.Y.Kwok. Calculation of Solid-Liquid Work of Adhesion Patterns from Combining Rules for Intermolecular Potentials[J].Phys. Chem. B 2002,106,12594-12599.
    [23]Kwok D Y, Neumann A W. Contact angle measurement and contact angle inter-pretation [J].Advances in Colloid and Interface Science,1999,81,167-249.
    [24]Doyle JD, Oldring K, Churchley J,et al. Struvite formation and the fouling propensity of different materials[J].Water Res,2002,36(16):3971-3978.
    [25]Aldo Handojo, Yumei Zhai, Gerald Frankel, et al.Measurement of adhesion strengths between various milk products on glass surfaces using contact angle measurement and atomic force microscopy [J]. Journal of Food Engineering,2009,92,305-311.
    [26]Bargir S, Dunn S,Jefferson B.The use of contact angle measurements to estimate the adhesion propensity of calcium carbonate to solid substrates in water[J].Applied Surface Science,2009,255(9):4873-4879.
    [27]N. Eustathopoulos, N. Sobczak, A. Passerone,et al. Measurement of contact angleand work of adhesion at high temperature[J].Journal of Materials Science,2005,40,2271-2280.
    [28]翟兰兰,凌国平,郦剑.纳米颗粒改性聚乙烯与钢铁的附着机理[J].材料科学与工程学报,2007,25(5):676-679.
    [29]潘慧铭,黄素娟.表面、界面的作用与粘接机理[J].粘接,2003,24(2):40-45.
    [30]A. Roters, M. Schimmel, J. Ruhe,et al. Collapse of a polymer brush in poor solvent probed by noise analysis of a scanning force microscope cantilever[J].Langmuir,1998,14,3999-4004.
    [31]M. Gelbert, A. Roters, M. Schimmel,et al. Viscoelastic spectra of soft polymer interfaces obtained by noise analysis of AFM cantilevers [J]. Surf.Interface Anal, 1999,27,572-577.
    [32]Wenzel, RN. Resistance of Solid Surfaces to Wetting by Water[J].Ind. Eng. Chem.,1936,28:988-994.
    [33]Bico J, Thiele U, Quere D. Wetting of textured surfaces[J].Colloids and Surfaces A,2002,206,41-46.
    [1]马婷芳,史铁钧.聚乙烯吡咯烷酮的性能、合成及应用[J].应用化工,2002,31(3):16-18.
    [2]M.C.R.Symons, J.M.Harvey, S.E.Jackson.Spectroscopic studies of water aprotic solvent interactions in the water-rich region[J]. Chem.Soc, Faraday. Tram.1980, 76,256-265.
    [3]罗茂鲜,刘东辉术,孟丽丰.纳米Siox改性喷涂型防雾剂的研制[J].广东化工,2009,192(38):148-152.
    [4]万屏南,衷友泉,熊丽萍.新型氧化铈玻璃防雾剂的研制[J].华东交通大学学报,2006,23(1):169-172.
    [5]Shantalii T A, Karpova IL, Dragan K S, et al. Synthesis and thermomechanical characterization of poyiides reinforced with the sol-gel derived nanoparticles [J]. Science and Technlolgy of Advanced Materials 2003,4,115-119.
    [6]Chisholm N, Mahfuz H, Rangari V K, et al. Fabrication and ecanical characterization of caron/SiC-epoxy Nanocomposites [J].Composite Structures, 2005,67(1):115-124.
    [7]YE Chang Hui, BANDO Y, SHEN Guo Zhen, et al. Thickness dependent photocatalytic performance of ZnO nanoplateletsl [J]. J Phys Chem B,2006, 110(31):15146-15151.
    [8]GUO I, YANG C I,YANG S H. et al. Highly monodisperse polymer-capped ZnO nanoparticles:Preparation and optical properties [J].Appl Phys Lett,2000, 76(20):2901-2903.
    [9]冯怡,袁忠勇.ZnO纳米结构制备及其器件研究[J].中国科技论文在线,2009,4,157-168.
    [10]Prasher R S, Phelan P E. Non-dimensional size effect on the thermodynamic properties of solids[J]. Intemation Journal of Heat and Mass Transfer,1998, 42(11):1991-2001.
    [11]Sekiya T,Ohta S,Kamei S. Raman spectroscopy and phase transition of anatase TiO2 under high pressure[J].Phys Chem Solids,2001,62,717-721.
    [12]Jung S M,Dupont O, Grange P. Photocatalytic degradation of phthalic acid on TiO2 nanoparticles[J]. Appl Catal A,2001,208,393-401.
    [13]秦伟庭,沈勇,张惠芳.纳米Ti02在水分散体系中的稳定性[J].印染,2006,32(7):4-6.
    [14]Roach P, Farrar D, Perry CC.Interpretation of protein adsorption:surface induced conformational changes[J].J Am Chem Soc.2005,127(22):8168-8173.
    [15]李浩,杨海洋,朱平平,等.利用Poiseuille方程确定聚乙烯醇在粘度计毛细管管壁上吸附层的厚度[J]功能高分子学报,2002,15(3):319-323.
    [16]李海普,李星,张莎莎,等.高分子在固液界面吸附构象的研究方法及手段[J].化学通报,2011,74(5):417-423.
    [17]崔燕.第七章减少微颗粒与界面间粘附力措施的实验研究.中南大学博士学位论文,2011,111-112.
    [18]李明.第二章固体表面粘附微颗粒的原因及方式研究.中南大学博士学位论文,2009,14-35.
    [19]Aldo Handojo, Yumei Zhai, Gerald Frankel, et al.Measurement of adhesion strengths between various milk products on glass surfaces using contact anglemeasurement and atomic force microscopy [J]. Journal of Food Engineering,2009,92,305-311.
    [20]A. Ola'h, M. A. Hempenius, S. Zou, et al. Adhesion studies of latex film surfaces on the meso and anoscale[J].Applied Surface Science,2006,252, 3714-3728.
    [1]Cebeci FC, Wu Z, Zhai L, Cohen RE, et al.Nanoporosity-driven superhydrophilicity:a means to create multifunctional antifogging coatings [J].Langmuir.2006,22(6):2856-2862.
    [2]Dong H, Ye P, Zhong M, et al.Superhydrophilic surfaces via polymer-SiO2 nanocomposites[J].Langmuir.2010,26(19):15567-15573.
    [3]Hikita M, Tanaka K, Nakamura T, et al. Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups[J].Langmuir.2005,21 (16):7299-7302.
    [4]Linda Y. L. Wu, G. H. Tan, X. T. Zeng, et al.Synthesis and Characterization of Transparent Hydrophobic Sol-Gel Hard Coatings [J] Journal of Sol-Gel Science and Technology,2006,38(1):85-89.
    [5]A Venkatesware Rao, Sanjay S Latthe, Digambar Y Nadargi, et al.Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method[J]. Journal of Colloid and Interface Science,2009,332(2):484-490.
    [6]Xian Ning Xie, Sharon Xiaodai Lim, Yuzhan Wang. A Nanosegregant Approach to Superwettable and Water-Attracting Surfaces[J]. Macromol. Chem. Phys,2010,211(20):2187-2192.
    [7]Yan B, Tao J, Pang C, et al.Reversible UV light induced ultrahydrophobic to ultrahydrophilic transition in an alpha-Fe2O3 nanoflakes film[J]. Langmuir. 2008,24(19):10569-10571.
    [8]Lim HS, Kwak D, Lee DY,et al.UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity [J]. J Am Chem Soc.2007 129(14):4128-4129.
    [9]Shutao Wang, Xinjian Feng, Jiannian Yao, et al. Controlling Wettability and Photochromism in a Dual-Responsive Tungsten Oxide Film [J].Angew. Chem. Int. Ed.2006,45,1264-1267.
    [10]X. J. Feng, L. Jiang. Design and creation of superwetting/antiwetting surfaces. Advanced Materials, Rewiew,2006,18(23):3063-3078.
    [11]Taolei Sun, Lin Feng, Xuefeng Gao, et al.Bioinspired Surfaces with Special Wettability Acc[J].Chem. Res,2005,38 (8):644-652.
    [12]Zhang, X,Shi, F, Niu, J,et al.Superhydrophobic surfaces:from structural control to functional application[J]. Mater. Chem.2008,18(6):621-633.
    [13]Li Y, Liu F, Sun J.A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings [J]. Chem Commun (Camb). 2009,21 (19):2730-2732.
    [14]Li Y, Huang XJ, Heo SH, et al.Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays[J].Langmuir,2007 23(4): 2169-2174.
    [15]Gao XF, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography [J]. Adv Mater,2007,19(17):2213-2217.
    [16]Akira Nakajima, Kouki Abel, Kazuhito HashimotoU, et al.Preparation of hard super-hydrophobic films with visible light Transmission[J].Thin Solid Films,2000,376,140-143.
    [17]Zhang X., Shi F, Niu J, et al. Superhydrophobic surfaces:from structural control to functional application. [J]. Mater. Chem.2008,18(6):621-633.
    [18]Wenzel, RN. Resistance of Solid Surfaces to Wetting by Water[J].Ind. Eng. Chem.,1936,28:988-994.
    [19]A B D Cassie, S Baxter. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40,546-551.
    [20]Nakajima A.Design of a Transparent Hydrophobic Coating [J] Journal of the Ceramic Society of Japan,2004,112(10):533-540.
    [21]Y. Zheng, D. Han, L. Jiang. In-situ Investigation on Dynamic Suspending of Micro-droplet on Lotus Leaf and Gradient of Wettable Micro-and Nanostructure from Water Condensation.Applied. Physics. Letters,2008,92, 084106.
    [1]Feng X, Jiang L. Design and Creation of Superwetting/Aniwetting Surfaces[J].Adv. Mater,2006,18,3063-3078.
    [2]Wang R, Hashimoto K, Fujishima A,et al.Light-induced amphiphilic surfaces[J].Nature,1997.388(6641):431-432.
    [3]Hideki ISHOKA. Antifogging Glass for a Vehicle Window,Method for Producing the Same, and Fixing Structure for the same[P].US Patent:0239017 Al,2009-9-24.
    [4]Chen Zhao, Cormell Chappell.Silicate-Containing Antifogging Coatings[P].US Patent:0003160Al,2011-1-6.
    [5]Karvinen SM. The Effects of Trace Element Doping on the Optical Properties and Photocatalytic Activity of Nanostructured Titanium Dioxide[J].Ind Eng Chem Res,2003,42 (5):1035-1043.
    [6]于洁,王大勇,程俊.聚丙烯酸酯透明防雾涂料的研制[J].涂料工业,2002,32(9):7-8.
    [7]李坚,刘佳一,张阳德.表面改性对光学眼镜膜增透防雾效果的影响[J].中国组织工程研究与临床康复,2010,14(8):1418-1421.
    [8]RahimiA, Gharazi S, Ershad-Langroudi, et al.Synthesis and characterization of hydrophilic nanocomposite coating on glass substrate [J] Journal of Applied Polymer Science,2006,102(6):5322-5329.
    [9]Jason Fang, Antonios Kelarakis, Luis Estevez. Superhydrophilic and solvent resistant coatings on polypropylene fabrics by a simple deposition process [J]. J Mater. Chem,2010,20,1651-1653.
    [10]Dong H, Ye P, Zhong M, et al.Superhydrophilic Surfaces via Polymer SiO2 Nanocomposites[J].Langmuir,2010,26(19):15567-15573.
    [11]沙鹏宇.基Sol-Gel反应制备小分子改性有机硅杂化防雾耐磨涂料及其性能的研究.吉林大学博士学位论文,2008,33-43.
    [12]Meng F, Sun Z, A mechanism for enhanced hydrophilicity of silver nano-particles modified TiO2 thin films deposited by RF magnetron sputtering [J]. Applied Surface Science 2009,255(13):6715-6720.
    [13]K. Pomoni, A. Vomvas, C. Trapalis. Dark conductivity and transient photoconductivity of nanocrystalline undoped and N-doped TiO2 sol-gel thin films[J].Thin Solids Films,2008,516(6):1271-1278.
    [14]Yasunori Taga. Titanium oxide based visible light photocatalysts:Materials design and application[J].Thin Solid Films,2009,517(10):3167-3172.
    [15]A.Kafizas, S. Kellici, J.A. Darr,et al.Titanium dioxide and composite metal/metal oxide titania thin films on glass:A comparative study of photocatalytic activity [J] Journal of Photochemistry and Photobiology A Chemistry,2009,204(2):183-190.
    [16]Ohdaira T, Nagai H, Kayano S,et al. Antifogging effects of a socket-type device with the superhydrophilic, titanium dioxide-coated glass for the laparoscope[J]. Surg Endosc.2007,21(2):333-338.
    [17]Kontos AG, Kontos AI, Tsoukleris DS,et al.Photo-induced effects on self-organized TiO2 nanotube arrays:the influence of surface morphology [J]. Nanotechnology,2009,20(4):1-9.
    [18]A. Fujishima, T.N. Rao, D.A. Tryk.Titanium dioxide photocatalysis. J Photochem. Photobiol. C:Photochem. Review.2000,1,1-21.
    [19]Shuyan Gao, Zhengdao Li, Xiaoxia. Superhydrophilicity of Highly Textured Carbon Films in Range of pH Values fromO through 14[J].J Phys. Chem. C,2010,114,19239-19243.
    [20]Jing DW, Zhang YJ, Guo LJ. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution.Chemical Physics Letters,2005,415 (1):74-78.
    [21]T.Sreethawong, S.Yoshikawa. Enhanced photocatlytic hydrogen evolution over Pt supported on esoporous TiO2 prepared by single step sol-gel process with surfactant template[J].Int J Hydrogen Energy,2006,31,786-796.
    [22]T. Sreethawong, S. Laehsalee, S. Chavadej.Use of Pt/N-doped mesoporous assembled nanocrystalline TiO2 for photocatlytic H2 productio under visible light irradiation[J].Catal Commun,2009,10,538-543.
    [23]D. Crisan, A Braileanu, M Raileanu, et al, Crystallization study of sol-gel un-doped and Pd-doped TiO2 materials [J]. Journal of Physics and Chemistry of Solids 69 (10),2548-2554.
    [24]Gan W Y, Lam S W, Chiang K,et al.Novel synthesis of TiO2 thin film with non-UV activated superwettability and antifogging behaviour [J]. Journal of Material Chemistry,2007,17,952-954.
    [25]Weixin Huang, Ming Lei, Hong Huang,et al. Effect of polyethylene glycol on hydrophilic TiO2 films:Porosity driven superhydrophilicity [J]. Surface & Coatings Technology,2010,204,3954-3961.
    [26]Vassilia Zorba,Xiaobo Chen, Samuel S. Mao. Superhydrophilic TiO2 surface without photocatalytic activation. Applied Physics Letters.2010,96(9):93702.
    [27]Xu QC, Wellia DV, Amal R, et al. Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film[J].Nanoscale,2010, 2(7):1122-1127.
    [28]Xin B, Hao J. Reversibly switchable wettability[J].Chem Soc Review. 2010,39(2):769-782.
    [29]M. Miyauchi, M. Shibuya, Z. Zhao,et al. Surface Wetting Behavior of a WO3 Electrode under Light-irradiated or Potential-controlled Conditions [J] Journal of Chemical Physics,2009,113,10642.
    [30]S. Permpoon, G. Berthome, B. Baroux, et al.Natural Superhydrophilicity of Sol-Gel Derived SiO2-TiO2 Composite Films[J]. journal mater science, 2006,41,7650-7662.
    [31]T.F.Krauss, R.M.Delarue, S.Brand. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths.Nature Letters,1996,383, 699-702.
    [32]Y.Y. Liu, L.Q. Qian, C. Guo, et al. Natural superhydrophilic TiO2/SiO2 composite thin films deposited by radio frequency magnetron sputtering[J] Journal of Alloys and Compounds 2009,479,532-535.
    [33]S. Permpoon, M. Houmard, D. Riassetto, et al. Natural and persistent superhydrophilicity of SiO2/TiO2and TiO2/SiO2 bi-layer films[J].Thin Solid Films,2008,516(6):957-966.
    [34]Lee, HJ, Hahn SH, Kim EJ,et al.Influence of calcination temperature structural and optical properties of TiO2-SiO2 thin films prepared by sol-gel dip coating[J].Materials Science,2004,39,3683-3688.
    [35]S.K. Poznyak, D.V. Talapin, A.I. Kulak. Optical properties and charge transport in nanocrystalline TiO2-In2O3 composite films[J].Thin Solid Films,2002,405(1): 35-41.
    [36]A. Eshaghi, M. Pakshir, R. Mozaffarinia. Preparation and photo-induced superhydrophilicity of composite TiO2-SiO2-In2O3 thin film[J].Applied Surface Science,2010,256,7062-7066.
    [37]Kai-sha Guan,Yan-sheng Yin. Effect of rare earth addition on super-hydrophilic property of TiO2/SiO2 composite film Materials Chemistry and Physics,2005, 92(1):10-15.
    [38]D. Barreca, A.P. Ferrucci, A. Gasparotto, et al Temperature Controlled Synthesis and Photocatalytic Performance of ZnO Nanoplatelets[J].Chemical Vapor Deposition,2007,13(11):618-625.
    [39]Behnajady MA, Modirshahla N, Daneshvar N, Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode[J]. J Hazard Mater.2007,140(1):257-263.
    [40]Sun RD, Nakajima A,Fujishima A.et al.Photoinduced surface wettability conversion of zno and tio2 thin films[J].J Phys. Chem. B,2001,105,1984-1990.
    [41]Davide B, Alberto G, Chiara M. Photoinduced superhydrophilicity and photocatalytic properties of ZnO nanoplatelets[J].Surface & Coatings Technology,2009,203,2041-2045.
    [42]M.R. Waugh, G. Hyett, I.P. Parkin, Zinc Oxide Thin Films Grown by Aerosol Assisted CVD[J]. Chemical Vapor Deposition,2008,14(11):366-372.
    [43]H. Zhang, X. Quan, S. Chen,et al. Fabrication of needle-like ZnO nanorods arrays by a low-temperature seed-layer growth approach in solution[J].Appl. Phys. A:Mater,2007,89(3):673-677.
    [44]A. Mills, SK. Lee A. web-based overview of semiconductor photochemistry based current commercial applications [J] Journal of Photochemistry and Photobiology A:Chemistry,2002,152,233-247.
    [45]Liu H, Feng L, Zhai J,et al.Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity [J]. Langmuir,2004,20(14):5659-5661.
    [46]Irie H, Tsuji K, Hashimoto K. Hydrophobic anatase TiO2-based thin films modified with Al,Cr derivatives to reach reversible wettability control [J].Phys Chem Chem Phys,2008,10(21):3072-3076.
    [47]Huang B, Son YW, Kim G. et al. Electronic and magnetic properties of partially open carbon nanotubes[J].J Am Chem Soc,2009,131 (49):17919-17925.
    [48]Sethi S,Dhinojwala A. Superhydrophobic conductive carbon nanotube coatings for steel[J].Langmuir,2009,25(8):4311-4313.
    [49]Zhang, L,Resasco, DE. Single-walled carbon nanotube pillars:a super-hydrophobic surface[J].Langmuir,2009,25(8):4792-798.
    [50]Kakade B, Pillai V. Tuning the wetting properties of multiwalled carbon nanotubes by surface functionalization [J].J Phys Chem C,2008,112(9): 3183-3186.
    [51]Erbil HY, Demirel AL, Avci Y,et al. Transformation of a simple plastic into a superhydrophobic surface[J].Science,2003,299,1377-1380.
    [52]Hu CG, Hu SS. Surface design of carbon nanotubes for optimizing the adsorption and electrochemical response of analytes[J].Langmuir 2008,24(16): 8890-8897.
    [53]Hosono, E,Matsuda, H, Honma, I,et al.Synthesis of a perpendicular TiO2 nanosheet film with the superhydrophilic property without UV irradiation[J]. Langmuir 2007,23(14):7447-7450.
    [54]Hu CG, Hu SS. Surface design of carbon nanotubes foroptimizing the adsorption and electrochemical response of analytes [J].Langmuir 2008,24(16):8890-8897.
    [55]Li P, Lim X, Zhu Y, et al.Tailoring wettability change on aligned and patterned carbon nanotubes film for selective assembly[J].J Phys Chem B2007; 111(7): 1672-1678.
    [56]Sun TL, Song WL, Jiang L. Control over the responsive wettability of poly(N-isopropylacrylamide) film in a large extent by introducing an irresponsive molecule[J].Chem Commun,2005,13,1723-1725.
    [57]Yang J, Zhang Z, Men X, et al. Reversible Superhydrophobicity to Superhydrophilicity Switching of a Carbon Nanotube Film via Alternation of UV Irradiation and Dark Storage[J].Langmuir,2010,26(12):10198-10202.
    [58]Sun T, Liu H, Song W,et al.Responsive aligned carbon nanotubes [J].Angew Chem Int Ed Engl,2004,43(35):4663-4666.
    [59]Han JT, Kim SY, Woo JS, et al. Transparent conductive and superhydrophobic films from stabilized carbon nanotube/silane sol mixture solution[J].Adv. Mater,2008,20,3724-3727.
    [60]Kakade B, Mehta R, Durge A, et al.Electric field induced, superhydrophobic to superhydrophilic switching in multiwalled carbon nanotube papers. Nano Lett. 2008,8(9):2693-2696.
    [61]Masahiro Miyauchi, Zhifu Liu, Zhi-Gang Zhao, et al. Visible Light Driven Superhydrophilicity by Interfacial Charge Transfer between Metal Ions and Metal Oxide Nanostructures[J]. Langmuir 2010,26(2):796-801.
    [62].H.Z.Wang, Z.P. Huang, Q.J. Cai. Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes[J].Carbon,2010,48,868-875.
    [1]Barthlott W, Neinhuis C. Purity of the sacred lotus or escape from contamination in biological surfaces[J].Planta,1997,202(1):1-8.
    [2]Wenzel, RN. Resistance of Solid Surfaces to Wetting by Water[J].Ind. Eng. Chem.,1936,28:988-994.
    [3]A B D Cassie, S Baxter. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40,546-551.
    [4]Rulon E. Johnson Jr., Robert H. Dettre. An evaluation of Neumann's "surface equation of state"[J].Langmuir,1989,5(1):293-295.
    [5]Jaroslaw Drelich, Jan D. Miller. Modification of the Cassie equation [J].Langmuir,1993,9(2):619-621.
    [6]Yamauchi G, Miller J D, Saito H. The wetting characteristics of PTFE particulate composites [J].Materials Transactions,1996,37 (4):721-728.
    [7]Wei Chen, Alexander Y. Fadeev, Meng Che Hsieh,et al. McCarthy Ultra-hydrophobic and Ultralyophobic Surfaces:□ Some Comments and Examples[J]. Langmuir,1999,15(10):3395-3399.
    [8]金美花.超疏水性纳米界面材料的制备及研究.吉林大学博士学位论文,2004,第37页.
    [9]Hideki sakai, Tomiko Fujii.The Dependence of the Apparent Contact Angles on Gravity [J]. Journal of Colloid and Interface Science 1999,210(1):152-156.
    [10]Yoshida N, Abe Y, Shigeta H, et al. Sliding behavior of water droplets on flat polymer surface[J].J Am Chem Soc.2006,128(3):743-747.
    [11]禹营,汪家道,陈大融.超疏水表面膜的制备[J].润滑与密封,2007,32(8):37-38.
    [12]Richard D., Clanet C., Quere, D..Contact time of a bouncing drop[J].Nature, 2002,417:811-811.
    [13]A.Venkateswara Rao, Sanjay S. Latthe, Digambar Y. Nadargi. Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method[J]Journal of Colloid and Interface Science,2009,332,484-490.
    [14]Shirtcliffe N J, Mchale G, Newton M I, et al.Porous materials show super-hydrophobic to superamphiphilic switching[J].Chem Commun,2005,15: 3135-3137.
    [15]Michele Manca, Alessandro Cannavale, Luisa De Marco. Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol-Gel Processing[J].Langmuir,2009,25(11):6357-6362.
    [16]Sunetra L. Dhere, Sanjay S. Latthe, Charles Kappenstein.Transparent water repellent silica films by sol-gel process[J].Applied Surface Science,2010,256, 3624-3629.
    [17]Satish A. Mahadik,Mahendra S. Kavale,S.K. Mukherjee. Transparent Super-hydrophobic silica coatings on glass by sol-gel method[J].Applied Surface Science 2010,257,333-339.
    [18]Sanjay S. Latthe a, Hiroaki Imai b, V. Ganesan. Porous superhydrophobic silica films by sol-gel process[J].Microporous and Mesoporous Materials 2010, 130,115-121.
    [19]Xu J, Jiang L, Xie Q D, et al. Facile creation of a super-amphiphobic coating surface with bionic microstructure[J].Adv.Mater.,2004,16,302-305.
    [20]Han JT, Lee DH, Ryu CY, Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding. J Am Chem Soc.2004,126(15):4796-4797.
    [21]Yabu H, Shimomura M. Single step fabrication of transparent superhydrophobic porous polymer films[J]. Chem Mater,2005,17,5231-5234.
    [22]A.Nakajima, K Abe, K Hashimoto.PreParation of hard super-hydroPhobic films with visible light transmssion[J].Thin Solid Films,2000,376(122):140-143.
    [23]Jiang L., Liu H., Feng L., et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and super-hydrophilicity[J]. Langmiur,2004,20,5659-5661.
    [24]Lau K KS, Bico J, Teo K B K, et al. Superhydrophobic carbon nanotube forests[J].Nano letters,2003,3(12):1701-1705.
    [25]N Zhao, F Shi, L Jiang, et al. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces[J].Langmuir 2005,21(10):4713-4716.
    [26]T J McCathy. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability[J].Langmuir,2000,16(20):7777-7782.
    [27]Sun T, Wang G, Feng L, et al.Reversible Switching between Super-hydrophilicity and Superhydrophobicity [J]. Angew.Chem.. Int.Ed.,2004,43(3): 357-360.
    [28]金美花,廖明义,江雷.超疏水性聚二甲基硅氧烷膜的制备及其表面吸附性研究[J].高等学校化学学报,2008,28(5):996-998.
    [29]BALDACCHINI, Craey T,Zhou JE. Superhydrophobic Surfaces Prepared by Micro-structuring of Silicon Using a Femtosecond Laser. Langmuir(Letter), 2006,22,4917-4919.
    [30]Khorasani M T, Mirzadeh H, Kermani Z.Wettability of porous polydimethylsiloxane surface:Morphology study[J]. Appl Surf Sci,2005, 242,239-245.
    [31]Ma M,Mao Y, Gupta M, et al. Superhydrophobic fabric produced by electrospingning and chemical vapor deposition[J].Macromolecules,2005,38 (23):9742-9748.
    [32]Zhao Y,Zhai J, Jiang L. A lotus-leaf-like superhydrophobic surface:a porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angew Chem Int Ed.2004,43,4338-41.
    [33]王丽芳,赵勇,江雷,等.静电纺丝制备超疏水TiO2纳米纤维网膜[J].高等学校化学学报,2009,30(4):731-734.
    [34]Iijima S. Helical microtubes of graphite carbon[J].Nature,1991,354:56-58.
    [35]Paul Roach, Neil J. Shirtcliffe, Michael I. Newton.Progess in superhydrophobic surface development[J].Soft Matter,2008,4,224-240.
    [36]Huang L, Lau SP, Yang HY,et al.Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film[J].2005,109(16):7746-7748.
    [37]D. Xu, H. Liu, L. Yang,et al.Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes[J]. Carbon,2006,44, 3226-3231.
    [38]Tongfei Wu, Yongzheng Pan, Lin Li. Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid[J] Journal of Colloid and Interface Science,2010,348,265-270.
    [39]Georoakilas, V., Bourlinos, A. B., Zboril, R.,et al. Synthesis, Characterization and Aspects of Superhydrophobic Functionalized Carbon Nanotubes[J].Chem. Mater.,2008,20,2884-2886.
    [40]张超,郭述忠,汪伟志,等.含氟聚合物修饰碳纳米管及其聚氨酯复合疏水膜的研究[J].化学学报,2009,67(9):1001-1007.
    [41]Shirtcliffe, N. J., McHale, G.,Newton, M. I.,et al.Porous materials show superhydrophobic to superhydrophilic switching[J].Chem. Commun.,2005,25, 3135-3136.
    [42]Krupenkin, T. N.,Taylor, J. A., Wang, E. N., et al. Reversible Wetting Dewetting Transitions on Electrically Tunable Superhydrophobic Nanostructured Surfaces (letter).Langmuir,2007,23(18):9128-9133.
    [43]Zhu Y, Feng L, Xia F,et al. Chemical Dual-Responsive Wettability of Superhydrophobic PANI-PAN Coaxial Nanofibers[J].Macromol. Rapid Commun,2007,28,1135-1141.
    [44]Ho Sun Lim, Joong Tark Han, Donghoon Kwak,et al. Photoreversibly Switchable Superhydrophobic Surface with Erasable and Rewritable Pattern [J].Am.Chem. Soc.2006,128,14458-14459.
    [45]FengMing Chang, ShaoLiang Cheng, SiangJie Hong. Superhydrophilicity to superhydrophobicity transition of CuO nanowire films[J] Applied Physics Letters,96,114101-2010.
    [46]Feng,X., Feng,L., Jin,M.,et al. Reversible superhydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J].Am. Chem. Soc. 2003,126(1):62-63.
    [47]MingDe Pei, Bo Wang, Er Li, Xuehong Zhang.The fabrication of superhydrophobic copper films by a low pressure oxidation Method[J]. Applied Surface Science,2010,256,5824-5827.
    [48]Weixin Hou,Qihua Wang. UV-Driven Reversible Switching of a Polystyrene/Titania Nanocomposite Coating between Super hydrophobicity and Superhydrophilicity[J]. Langmuir,2009,25(12):6875-6879.
    [49]Lin Feng,Zhongyi Zhang,Zhenhong Mai, et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water[J]. Angewandte Chemie,2004,116(15):2046-2048.
    [50]Wang Y,Sims CE,Marc P, et, al. Allbritton NL. Micropatterning of living cells on a heterogeneously wetted surface[J].Langmuir,2006,22,8257-8262.
    [51]Aoley Sun, Hong Tan, Dong Han, et al.No platelet can adhere-largely improved blood compatibility on nanostructured supergydrophobic surfaces [J]. Small,2005,1 (10):959-963.
    [52]Khorasani M, Mirzadeh H. In Vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials[J]. Journal of applied polymer science,2004,91:2042-2047.
    [53]袁志庆,陈洪,汤建新.超疏水聚丙烯表面的制备及血液相容性研究[J].功能材料.2007,8(38):1359-1361.
    [54]曹宗顺,卢凤琦.界面现象与材料的生物相容性[J].化学通报.1994,7,15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700