相邻电容传感器设计及ECT技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然电容传感器是很早的技术之一,但是由于用于测量电容的外部电路以及电容传感器在工艺制作方面的不足,直到近年来关于电容传感器技术的应用才得到了突飞猛进的发展。从电脑、手机等电器设备的屏幕触摸功能的广泛应用,到电容断层层析成像ECT (Electrical Capacitance Tomography,)技术的出现,都证明了电容传感器技术尤其是相邻电容传感器技术在精密测试领域的有着广阔的应用前景。相邻电容传感器的设计成为电容传感器技术研究的热门课题。因此,研究相邻电容传感器的结构设计并结合具体系统工程中的应用给出更好的参数优化规则,具有重要的理论意义和实际应用价值。
     本文主要围绕相邻电容传感器在设计中出现的参数平衡问题,针对不同系统工程应用中的特殊要求,以软件仿真与实际测试数据为依据,对其工作原理及若干相邻电容传感器设计中的关键参数调试、参数确定、应用系统和新型工业应用ECT技术等进行了系统的深入研究。本文的主要工作及贡献如下:
     1.给出了电容边缘效应在特定电容传感器模型下的数学描述,证明了影响边缘电容的传感器设计参数。此外,针对目前应用较为广泛的多种传感器技术,深入探讨了传感器技术发展的背景、分类;研究了经典传感器技术——光电传感器,压电传感器技术,相邻电容传感器技术的典型应用以及基本测量原理,系统实现方案、传感器技术的优缺点;补充了三类流行传感器技术,并对此三类传感器技术进行了基础分析;结合已出现的多种传感器技术及其在系统工程中应用,对其进行了操作原理的总结与主流应用归类。
     2.建立了相邻电容传感器的性能综合评价标准体系,填补了以往在设计相邻电容传感器时没有执行或优化标准的空白。将相邻电容传感器性能分为穿透深度,信号强度,测量灵敏度与图像重组分辨率等。通过有限元法(Finite Element Method,FEM)对传感器总体设计参数,包括相邻电容传感器极板几何尺寸、材料选择、极板数量、间距以及屏蔽层等,与传感器测量性能之间的关系进行了定量分析,以验证设计参数对测量性能影响的结论,并对如何进行参数间的平衡优化给出了定量化实验结果。
     3.设计了三种用于工业电容断层层析成像系统的ECT电容传感器结构,包括矩形、正八边形与传统圆形ECT传感器,并以圆形ECT传感器为例,给出了传感器设计参数总体优化规则,对今后ECT传感器设计起到了指导作用。通过仿真与实际测量实验,推断电容传感器空间结构对于电容测量结果的影响。利用有限元法(FEM),对传感器进行了3D建模,数值分析与仿真,针对屏蔽保护极板对ECT传感器测量结果的影响进行了深入讨论与分析,利用已优化的ECT电容传感器结合成熟的成像算法对实验结果进行图像重组,效果理想。
     4.设计了一种针对未知液体安全特性检测的基于电容传感器技术的系统,弥补了在安全检测方面,对液体等非导电,非金属物质的检测空白。围绕其中的关键技术进行了深入系统的研究;明确了利用相邻电容传感器技术实现该系统工程的可行性与重要意义;设计了带状4极板平面板电容传感器与柱型8极板电容传感器两种多极板相邻电容传感器结构,并进行了详细的分析与讨论,总结了各传感器结构的优缺点;针对柱型8极板电容传感器进行了大量软件仿真与实际测量实验;提出了将快速图像重组技术应用于液体特性检测中的理论。通过大量的成像实验,验证了设计的柱型8极板电容传感器在保证分辨率的情况下能够大量的降低系统成本,并且可以应用于未知液体特性检测系统。
     5.设计了一种基于相邻电容传感器的车辆雨雾检测控制系统,并提出了一种传感器优化设计方案。该系统能够根据车辆挡风玻璃上的雨雾量自动控制雨刷工作速度;对相邻电容传感器作为雨雾探测单元进行了可行性分析与系统结构分析,针对专门用于雨雾探测的相邻电容传感器提出了优化设计,并对最终设计的传感器进行了性能测试与结果分析;由于利用电容边缘效应测量的相邻电容传感器采集到的信号非常微弱,为了提高系统灵敏度,设计了相应的集成数据采集,数据转换与系统控制单元的PCB电路;提出了系统的软件算法设计,并最终对系统实验结果出现的误差进行了分析。
Amongst all types of electrical devices, the capacitor is definitely the oldest. However, the real application of the capacitive sensing technique is developed rapidly until recently. All of these applications, from the technique of touch screen on computers and cellphones to the new technology - electrical capacitance tomography (ECT), have proven that the capacitive sensing technique especially the proximity capacitive sensing technique is potential and powerful. As an important part of sensing technique, the design of sensor which directly decides the measured results of the system is always attractive and fascinating. To find out the rules of capacitive sensor design, plenty of research works are needed to be realized and improved. It is also believed that the optimization of design parameters is important and necessary.
     The thesis focuses on the problems of tradeoff among parameters in procession of capacitive sensor design. By using simulation software, such as COMSOL and Matlab, and practical test platform (ECT test system), the relations between design parameters and the performance of the designed sensor are presented and the detailed design parameters are listed at the end of the paper. The main research works in the dissertation are as follows:
     1. A mathematical modeling of capacitive fringe effect under the special conditions is presented based on the operation principle of capacitive sensor. It indicates the exact parameters of sensor design which will affect the sensor performance. For many types of sensing techniques, which have been developed and applied in various field, the background and the categories of them are introduced. Three typical sensing techniques, such as optical, piezoelectric and proximity capacitive sensing techniques are discussed. The working principles, merits and shortcomings of these techniques are analyzed. In addition, other three sensing techniques are introduced as the supplements. By investigating and reading a large number of the references, the basic working principle and application field are summarized and classified.
     2. The evaluation standards of capacitive sensor performance were established. Firstly, the performances of designed proximity capacitive sensor were concluded into several parts including penetration depth, signal strength, sensitivity of the measurements and reconstruction imaging resolution. Then, by using Finite Element Method (FEM), the relations between general parameters, which include geometry and size of the sensor electrodes, sensor materials, number of the sensor electrodes, gaps between the electrodes and the outer earthed screen, etc.. At the last, the sensor measurement performances are quantitative analyzed.
     3. Three types of ECT sensor, including square-shaped, octagon-shaped and traditional circular-shaped ECT sensor structures are designed for application of industrial tomography system., and the general parameter optimization standards are concluded and presented. By numerical experiments, the influence of different sensor structures on capacitive sensor measurement is concluded. By using finite element method (FEM),3D modeling of designed capacitive sensors are built. The influences of earthed outer screen, axial driven guards, axial earthed end guards and radial earthed guards on sensor performance is discussed and analyzed. The reconstruction imaging test by using optimized sensor with proper imaging algorithms indicates satisfied results.
     4. An unknown liquid properties detection system based on multi-electrode of capacitive sensor is presented. Two types of sensor structures including plannar-electrode sensor and traditional cylindrical sensor are designed and compared. The disadvantages and merits of each type of sensor are listed. For an 8-electrode cylindrical capacitive sensor, a large number of simulations and practical test have been completed. An algorithm for system image reconstruction is presented. The image reconstruction results indicate that the 8-electrode cylindrical capacitive sensor is feasible to be used in liquid properties detection, and the same time, it clearly decreases the cost of the system.
     5. Based on the measurement features of the proximity capacitive sensor, an automatic car wiper control system is presented. Moreover, a new capacitive sensor structure is assumed. The system can adjust the operation speed of car wiper automatically according to the amount of the liquid on the windshield. Three types of capacitive sensor are designed, and 4-leaves-shape sensor is selected to be a data acquisition unit of the system. Sensor design parameters are optimized, and the sensor performance is simulated and practically tested. Since the signal of the sensor derived is very weak, the circuit for signal detection is designed. The software algorithms are developed at the last, and the system errors are analyzed.
引文
[1] R Narayanaswarny. Optical sensors [C], Sensors and the International Conference on new Techniques in Pharmaceutical and Biomedical Research, 5-7 Sept. 2005, Kuala Lumpur, Malaysia, 1-4
    [2]王云新,刘铁根,朱均超,等.嵌入式人体手背静脉图像采集系统的研制[J].仪器仪表学报, 2009, 30(2): 308-312
    [3]李志全,王志斌,吴朝霞.一种基于偏振调制的光纤电压传感器的研究[J],仪器仪表学报, 2002, (05)
    [4] P. Klokoc, I. Lujo, M. Bosiljevac, Burum, N. Optical sensor system for vibration measuring [C], 50th International Symposium ELMAR 2008, Zadar, Croatia, 10-12 Sept. 2008: 625-628
    [5] C. Gaber, K. Chetehouna, H. Laurent, et al. Optical sensor system using computer vision for the level measurement in oil tankers [C], 2008 IEEE International Symposium on Industrial Electronics, June 30-July 2, 2008: 1120-1124
    [6] M. Borecki. Intelligent fiber optic sensor for estimating the concentration of a mixture-design and working principle [J], Sensors, 2007, 7: 384-399
    [7] Nan Li, B.L Guo, Pai Wang. Proximity capacitance sensor design for noncontact liquid detection [C], in Proceedings of 2nd International Conference on Image and Signal Processing CISP 2009, Tianjin, China, 17-19th Oct. 2009: 4680-4683
    [8] S.F.A. Bukhari, W.Q. Yang. Multi-interface level sensors and new development in monitoring and control of oil separators [J], Sensors, 2006, 6: 380-389
    [9] R.C. Luo, Z.H. Chen. Modeling and implementation of an innovative micro proximity sensor using micromachining technology [C], IEEE/RSJ International Conference on Intelligent Robots and Systems, 26-30th, July 1993, Yokohama, Japan, 1709-1716
    [10] G.A.Bertone, Z.H. Meiksin, and N.L.Carroll. Investigation of a capacitance-based displacement transducer [J], IEEE Transactions on Instrumentation and Measurement, 1990, 39 (2): 424-428,
    [11] J.D.Garratt, Survey of displacement transducers below 50 mm [J], J. Phys. E: Sci. Instrum., 1979, 12: 563-573
    [12] P.H.Sydenham, Microdisplacement transducers [J], J. Phys. E: Sci. Instrum., 1972, 5: 721-735
    [13] L. Michelson, Greater precision for noncontact sensors [J], Mach. Des., 1979, 117-121
    [14] X.J. Li, G. de Jong, G.C.M. Meijer, The influence of electric-field bending on the nonlinearity of capacitive sensors [J], IEEE Transactions on Instrumentation andMeasurement, 2000, 49(2): 256-259
    [15] L. Larson, R. Sawchuk, L. Tyler, D. Ruben, IC fringe capacitance shift as a result of encapsulation [J], Semiconductor International, 1996, 19(6): 257-258,260
    [16] B. Bury, Proximity sensing for robots [J], in IEE colloquium on Robot Sensors, 1991: 3/1-3/18
    [17] S. Bhat, J.G. Webster, W.J.Tompkins, J.J. Wertsch, Piezoelectric sensor for foot pressure management [C], Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Images of the Twenty-First Century., 9-12 Nov, 1989, Seattle, WA, USA, 5: 1435-1436
    [18] M. Henning, P.R. Cavanagh, H.T. Albert, and N.H. Macmillan, A piezoelectric method of measuring the vertical contact stress beneath the human foot [J], J. Biomed. Eng., 1982, 4: 213-222
    [19] S.G.Karr, T. Karwoshi, J.E. Jacobs, and L.F. Mockros, Transducer system for the noninvasive recording of arterial pressure contours [J], Ann. Biomed. Eng., 1985, 13: 425-442
    [20] A. Starita, F. Basta, B. Carbone, P. Dario, D. De Rossi, C.C. Perfetti, A computerized platform for the analysis of spatio-temporal foot-ground pressure patterns [C], Proc. Int. Conf. Med. Biol. Eng., Espoo, Finland, 1985, 420-421
    [21]田武刚,潘孟春,罗飞路,陈棣湘.高速磁浮列车磁场测量系统的设计[J],仪表技术与传感器, 2004,4: 16-17
    [22] J.B. Kammerer, L. Hebrard, V. Frick, P. Poure, F. Braun, Horizontal Hall effect sensor with high maximum absolute sensitivity [J], Sensors Journal, IEEE, 2003, 3(6): 700– 707
    [23] L.K. Baxter, Capacitive sensor [M], IEEE Press, Piscataway N.J., 1997.
    [24] R. Pallas-Areny, J.G. Webster, Sensors and signal conditioning [M], Wiley Publishers, 1991
    [25] R. Taylor, Data acquisition for sensor systems [M], Chapman and Hall, 1997
    [26] R. Loxton, P. Pope, Instrumentation: A Reader [M], Chapman and Hall, 1986
    [27] M.G. Silk, Ultrasonic Transducers for Non-Destructive Testing [M], Adam Hilger, 1984
    [28] J. Krautkramer, H. Krautkramer, Ultrasonic testing of materials [M], Springer Verlag, 1990
    [29] C.R. Chase, S. Van Bibber, T.P. Muniz, Development of a non contact oil spill detection system [J], Proceedings of MTS/IEEE, Washington, DC, 17-23 Sept. 2005: 1352-1357
    [30] M. Jagiella, S.Fericean, R. Droxler, New non-contacting linear displacement inductive sensors for industrial automation [C], IEEE sensors 2006, EXCO, Daegu, Korea, Oct.22-25, 2006: 534-537
    [31] M.S. Damnjanovic, L.D. Zivanov, L.F. Nagy, S.M. Djuric, B.N. Biberdzic, A novel approach to extending the linearity range of displacement inductive sensor [J], IEEE Transactions on Magnetics, 2008, 44(11): 4123-4126
    [32] Y. Tomikawa, S. Okada, Piezoelectric angular acceleration sensor [C], IEEE Symposium on Ultrasonics, 2003, 2: 1346-1349
    [33] R. Marat-Mendes, C.J. Dias, J.N. Marat-Mendes, Development of a piezoelectric sensor to measure angular acceleration [C], Proceedings. 10th International Symposium on Electrets, ISE 10, Athens , Greece, 1999, 759-762
    [34] C. Francesco, R. Giannetti, A new approach to strain gauge selection in outdoor stress analysis [C], IEEE Proceedings on 'Sensing, Processing, Networking'., Instrumentation and Measurement Technology Conference, IMTC/97, 1997:
    [35] S. Djuric, L. Nagy, M. Damnjanovic, Determination of the acting point of contact force in a foot of humanoid robot using inductive displacement sensor [C], 7th International Symposium on Intelligent Systems and Informatics-SISY '09. 2009, 49-52
    [36] W.J. Fleming, Overview of automotive sensors [J], IEEE Sensors Journal, 2001, 1(4): 296-308
    [37] B. Stadlober, M. Zirkl, J. Groten, A. Haase, A. Fian, Pyroelectric polymer sensors: Fabrication, characterization and application in organic electronics [C], 13th International Symposium on Electrets-ISE-13, 2008: B1102-B1102
    [38] W. Warsito, Q. Marashdeh, F. Liang-Shih, Electrical capacitance volume tomography [J], IEEE Sensors Journal, 2007, 7(4): 525-535
    [39] R.B. McIntosh, P.E. Mauger, S.R. Patterson, Capacitive transducers with curved electrodes [J], IEEE Sensors Journal, 2006, 6(1): 125-138
    [40] E. Pritchard, M. Mahfouz, B. Evans, S. Eliza, M. Haider, Flexible capacitive sensors for high resolution pressure measurement [C], IEEE conference on Sensors, Oct. 26-29, 2008: 1484-1487
    [41] P. Kosina, L. Hajkova, J. Sandera, T. Symersky, The capacitive sensor [C], 32nd International Spring Seminar on Electronics Technology, ISSE 2009, May 13-17, 2009: 1-4
    [42] S.C. Bera, J.K. Ray, S. Chattopadhyay, A low-Cost noncontact capacitance-type level transducer for a conducting liquid [J], IEEE Transactions on Instrumentation and Measurement, 2006, 55(3): 778-786
    [43] H. Canbolat, A novel level measurement technique using three capacitive sensors for liguids [J], IEEE Transactions on Instrumentation and Measurement, 2009, 58(1): 3762-3768
    [44] B. Pottier, L. Rasolofondraibe, D. Nuzillard, A novel capacitive safety device for target localization and identification [J], IEEE Sensors Journal, 2008, 8(10):1640-1647
    [45] J.C. Gamio, C.O. Aleman, R. Martin, Electrical capacitance tomography two-phase oil-gas pipe flow imaging by the linear back-projection algorithm [J], Geofisica Internacional, 2005, 44(3): 265-273
    [46] W.Q. Yang, Further developments in an ac-based capacitance tomography system [J], Review of Scientific Instruments, 2001, 72(10): 3902-3907
    [47] W.Q. Yang, W.F. Conway, Measurement of sensitivity distributions of capacitance tomography sensors[J], Review of Scientific Instruments, 1998, 69(1): 233-236
    [48] C.T. Chiang, C.S. Wang, Y.C. Huang, A Low-Cost CMOS Integrated Sensor Transducer Implemented as a capacitance-to-Frequency Converter for Capacitive measuring [C], Instrumentation and Measurement Technology Conference-IMTC 2007, Warsaw, Pland, May 1-3, 2007: 1-4
    [49] C.T. Chiang, Y.C. Huang, A semi-cylindrical capacitive sensor with signal conditioner for flow meter applications [J], IEEE Sensors 2006, EXCO, Daegu, Korea, Oct. 22-25, 2006: 1139-1142
    [50] Y. Dou, J. Qin, X.M. Chang, The study of a capacitance sensor and its system used in measuring ice thickness, sedimentation and water level of a reservoir [C], 2009 International Forum on Infromation Technology and Applications, Chengdu, China, May 15-17, 2009, 3: 616-619
    [51] P. Monajemi, F. Ayazi, Design optimization and implementation of a micro gravity capacitive HARPSS accelerometer [J], IEEE Sensors Journal, 2006, 6(1): 39-46
    [52] Z.H. Chen, R.C. Luo, Design and implementation of capacitive proximity sensir using microelectromechanical system technology [J], IEEE Transactions on industrial Electronics, 1998, 45(6): 886-894
    [53] D.C. Wang, J.C. Chou, S.M. Wang, P.L. Lu, L.P. Liao, Application of a fringe capacitive sensor to small-distance measurement [J], Japanese Journal of Applied Physics, 2003, 42: 5816-5820
    [54] Nan Li, B.L Guo, and Chuan Huang, Characterisation of liquid properties by electrical capacitance tomography sensor for security applications [C], in Proceedings of International Symposium on Electronic Commerce and Security, ISECS 2009, Nanchang, China, 2009, 1: 305-308
    [55] Q. Marashdeh, W. Warsito, L.S. Fan, F.L. Teixeira, A multimodal tomography system based on ECT sensors [J], IEEE Sensors Journal, 2007, 7(3): 426-433
    [56] W.Q. Yang, Tomographic imaging based on capacitance measurement and industrial applications [C], IEEE International Workshop on Imaging Systems and Techniques-IST 2007, Krakow, Poland, May 4-5, 2007: 1-6
    [57] D.M.G. Preethichandra, K. Shida, A simple interface circuit to measure very small capacitance changes in capacitive sensors [J], IEEE Transactions on Instrumentationand Measurement, 2001, 50(6): 1583-1586
    [58] D. Marioli, E. Sardini, A. Taroni, Measurement of small capacitance variations [J], IEEE Transactions on Instrumentation and Measurement, 1991, 40(2): 426-428
    [59] X. Li, G.de. Jong, G.C.M. Meijer, The effect of electric-field bending on the linearity of capacitive position sensors with various electrode structures [C], Proceedings of the 16th IEEE on Instrumentation and Measurement Technology Conference-IMTC/99. 1999, 3: 1348-1351
    [60] X. Li, G.de. Jong, G.C.M. Meijer, The application of the capacitor's physics to optimize capacitive angular-position sensors [J], IEEE Transactions on Instrumentation and Measurement, 1997, 46(1): 8-14
    [61] S.H. Khan, L. Finkelstein, F. Abdullah, Investigation of the effects of design parameters on output characteristics of capacitive angular displacement sensors by finite element field modelling [J], IEEE Transactions on Magnetics, 1997,33(2): 2081-2084
    [62] K. Sundara-Rajan, L. Byrd, A.V. Mamishev, Moisture content estimation in paper pulp using fringing field impedance spectroscopy [J], IEEE Sensors Journal, 2004, 4(3): 378-383
    [63] X. Li, A.S. Zyuzin, A.V. Mamishev, Measuring moisture content in cookies using dielectric spectroscopy [J], 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2003: 459-462
    [64] J. Graham, M. Kryzeminski, Z. Popovic, Capacitance based scanner for thickness mapping of thin dielectric films [J], Review of Scientific Instruments, 2000, 71(5): 2219-2223
    [1] B.E. Noltingk, A novel proximity gauge [J], Journal of Scientific Instruments, 1969,2(2): 356-360
    [2] B.E.Noltingk, A.E.T. Nye, H.J. Turner, Theory and application of a proximity gauge using fringing capacitance [C], in Proc. ACTAIMEKO, 1976, 537-549
    [3] R.C. Luo, Z.H. Chen, Modeling and implementation of innovative micro proximity sensor using micromachining technology [C], IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993: 1709-1716
    [4] Z.H. Chen, R.C. Luo, Design and implementation of capacitive proximity sensir using microelectromechanical system technology [J], IEEE Transactions on industrial Electronics, 1998, 45(6): 886-894
    [5]彭珍瑞,祁文哲,吴刊选,孟建军,电容层析成像技术的近期研究进展[J],自动化仪表, 2008, 29(9): 1-5, 9
    [6] W.Q. Yang, W.F. Conway, Measurement of sensitivity distributions of capacitance tomography sensors [J], Review of Scientific Instruments, 1998, 69(1): 233-236
    [7] P.P. Silvester, R.L. Ferrari, Finite elements for electrical engineers [M], 2nd ed., Cambridge: Cambridge University Press, 1990
    [8] S.H. Khan, F. Abdullah, Finite lement modelling and design of capacitive angular displacement sensors [M], in Studies in Applied Electromagnetics and Mechanics 10, eds., A.J. Moses and A. Basak, The Netherlands: IOS Press, 1966: 704-707
    [9] S.H. Khan, F. Abdullah, Modelling and computation of electrostatic fields in capacitive angular displacement sensors used in limited angle actuators [M], in Sensors and Their Applications VII, ed. A.T. Augousti, Bristol: Institute of Physics Publishing, 1995: 381-386
    [10] S.H. Khan, F. Abdullah, Finite element modelling of multielectrode capacitive systems for flow imaging [C], IEE Proceedings-G, 1993, 140(3): 216-222
    [11] W.Q. Yang, L. Peng, Image reconstruction algorithms for electrical capacitance tomography [J], Measurement Science and Technology, 2003, 14: R1-R13
    [12] R.A. Williams, M.S. Beck, Process tomography: principle,techniques and applications [M], Oxford, U.K.: Butterworth-Heinemann, 1995
    [13] A.J. Jaworski, G.T. Bolton, The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity [J], Meas. Sci.Technol., 2002, 11: 743–757
    [14] W.Q. Yang. Hardware design of electrical capacitance tomography systems [J],Meas. Sci.Technol.,1996, 7: 225–232
    [15] W.Q. Yang, L. Peng, Image reconstruction algorithms for electrical capacitance tomography [J], Measurement Science and Technology, 2003, 14: R1-R13
    [16] M. Soleimani, M. Vauhkonen, W.Q. Yang, A. Peyton, B.S. Kim, X.D. M, Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter [J], Meas. Sci. Technol., 2007, 18: 3287-3294
    [17] C. Mou, L. Peng, D. Yao, B. Zhang, D. Xiao, Numerical analysis of three dimensional space effect with electrical tomography sensor [C], in Proc. 4th World Congr. Ind. Process Tomography, Aizu, Japan, Sep. 5–8, 2005: 47–51
    [18] R. K. Wangsness, Electromagnetic Fields [M], 2nd ed. Hoboken, NJ: Wiley, 1979: 353–358
    [19] H.A. Haus, J.R. Melcher, Electromagnetic Fields and Energy [M], Englewood Cliffs, NJ: Prentice-Hall, 1989: 148–151. 220–22
    [1] G. Demoment, Image Reconstruction and restoration-overview of common estimation structures and problems [J], IEEE Trans. Acoust. Speech Signal Process., 1989, 37(12): 2024-2036
    [2] Y.K. Sheiretor, M. Zahn, Dielectrometry measurements of moisture dynamics in oil-impregnated pressboard [J], IEEE Trans. Dielectr. Electr. Insul., 1995, 2: 329-351
    [3] V. Shrauss, A. kalpinsh, V. Lomanovskis, J. Rotbahs, Tomographuic imaging by electrical methods [J], Latvian J. Phys. Tech. Sci., 1995, (3): 23-47
    [4] B.E. Noltingk, A novel proximity gauge [J], Journal of Scientific Instruments, 1969,2(2): 356-360
    [5] B.E.Noltingk, A.E.T. Nye, H.J. Turner, Theory and application of a proximity gauge using fringing capacitance [C], in Proc. ACTAIMEKO, 1976, 537-549
    [6] R.C. Luo, Z.H. Chen, Modeling and implementation of innovative micro proximity sensor using micromachining technology [C], IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993: 1709-1716
    [7] Z.H. Chen, R.C. Luo, Design and implementation of capacitive proximity sensir using microelectromechanical system technology [J], IEEE Transactions on industrial Electronics, 1998, 45(6): 886-894
    [8] X.B. Li, S.D. Larson, A.S. Zyuzin and A.V. Mamishev, Design of multichannel fringing electric field sensors for imaging Part I: generl design principles [C], Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, Indianapolis, U.S.A, Sep.19-22, 2004: 406-409
    [9] A.V. Mamishev, B.C. Leieutre and M. Zahn, Optimization of multi-wavelength interdigital dielectrometry instrumentation and algorithms [J], IEEE Trans. Dielectrics and Electrical Insulation. 1998, 5(3): 408-420
    [10] A.V. Mamishev, Y. Du, J.H. Bau, B.C. Leieutre and M. Zahn, Evaluation of diffusion-driven material property profiles using three-wavelength interdigital sensor [J], IEEE Trans. Dielectr. Electr. Insul. 2001, 8(5): 785-798
    [11] X.B. Li, V.V. Inclan, G.I. Rowe and A.V. Mamishev, Parametric modeling of concentric fringing electric field sensors[C], 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Oct.16-19, 2005: 617-620
    [12] R. Pallas-Areny and J.G. Webster,“Sensors and signal conditioning [M],”2nd ed., John Wiley & Sons, New York, 2001
    [13] J.G. Webster,“The Measurement, instrumentation and sensors handbooks [M],”The CRC PRESS, IEEE PRESS, 1999
    [14] G. Demoment, Image-reconstruction and restoration– overview of common estimation structures and problems [J], IEEE Trans. Acoust. Speech Signal Process., 1989, 37(12): 2024-2036
    [15] H.X. Wang, W.L. Yin, W.Q. Yang and M.S. Beck, Optimum design of segmented capacitance sensing array for multi-phase interface measurement [J], Measurement Science & Technology, 1996, 7(1): 79-86
    [16] A.J. Jaworski and G.T. Bolton, The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity [J], Measurement Science & Technology, 2000, 11(6): 743-757
    [17] K.J. Elkow and K.S. Rezkallah, Void fraction measurements in gas-liquid flows under 1-g and Mu-g conditions using capacitance sensors [J], International Journal of Multiphase Flow, 1997, 23(5): 815-829
    [18] A.V. Mamishev, A.R. Takahashi, Y. Du, B.C. Leieutre and M. Zahn, Assessment of performance of fringing electric field sensor arrays [C], in Proc. IEEE Conf. on Electrical Insulation and Dielectric Phenomena, 2002: 918-921
    [19] J. Jagur-Grodzinski, Electronically conductive polymers [J], Polymers for Advanced Technologies, 2002, 13(9): 615-625
    [20] A.V. Mamishev, Interdigital dielectrometry sensor design and parameter estimation algorithms for nondestructive materials evaluation [M], Ph.D dissertation, Dept. Elect. Eng. Comput. Sci., Mass. Inst. Technol., Cambridge, 1999
    [21] J.G. Webster, Electrical impedance tomography [M], J.G.Webster, Ed. New York: Adam Hilger, 1990: 21-28
    [22] W.Q. Yang, A.L. Stott, M.S Beck, High frequency and high resolution capacitance measuring circuit for process tomography[J], IEE Proceedings- Circuits, Devices and Systems, 1994, 141(3): 215-219
    [23] D.M.G. Preethichandra and K. Shida, A simple interface circuit to measure very small capacitance changes in capacitive sensors, IEEE Transactions on Instrumentation and Measurementation and Measurement, 2001, 50(6): 1583-1586
    [24] X. Li, A.S. Zyuzin and A.V. Mamishev, Measuring moisture content in cookies using dielectric spectroscopy [C], Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2003: 459-462
    [25] A.V. Mamishev, K. Sundara-Rajan, F. Yang; Y.Q. Du, M. Zahn, Interdigital sensors and transducers [J], Proc. IEEE, 2004, 92(5): 808-845
    [26] B.C. Lesieutre, A.V. Manishev, Y.Du, E. Kekiner, M.Zahn, G.C. Verghese, Forward and inverse parameter estimation algorithms of interdigital dielectrometry sensors [J], IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(4): 577-588
    [27] A.V. Mamishev, M. Zahn, B.C. Lesieutre, B.A. Berdnikov, Influence of geometric parameters on characteristics of an interdigital dielectrometry sensor [C], IEEE Conference on Electrical Insulation and Dielectric Phenomena, San Francisco, 20-23 Oct. 1996: 550-553
    [28] A.V. Mamishev, B.C. Lesieutre, M. Zahn, Parameter estimation using an interdigital dielectrometry sensor with finite-element software [C], IEEE Conference on Electrical Insulation and Dielectric Phenomena, Minneapolis, MN, 19-22 Oct. 1997: 234-237
    [29] X.J. Li, G. de Jong,; G.C.M. Meijer, The effect of electric-field bending on the linearity of capacitive position sensors with various electrode structures [C], IEEE Conference on Instrumentation and Measurement Technology Conference, 24-26 May, 1999:
    [1] T. York, Status of electrical tomography in industrial applications [J], Journal of Electronic Imaging, 2001, 10(3): 60-619
    [2] H. Griffiths, A phantom for electrical impedance tomography [J], Clin. Phys. Physiol. Meas., 1988, 9: Suppl. A, 15-20
    [3] C.G. Xie, A. Plaskowski, M.S. Beck, 8-electrode capacitance system for two-component flow identification. Part 1: Tomographoc flow imaging [C], IEE Proc. A, 1989, 136(4): 173-183
    [4] C.G. Xie, A. Plaskowski, M.S. Beck, 8-electrode capacitance system for two-component flow identification. Part 2: Flow regime identification [J], IEE Proc. A, 1989, 136(4): 184-190
    [5] C.G. Xie, S.M. Huang, B.S. Hoyle, R. Thorn, C. Lenn, D. Snowden, M.S. Beck, Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors [J], IEE Proc. G, 1992, 139(1): 89-98
    [6] T. Dyakowski, S.J. Wang, D. Geldart, M.S. Beck, Tomographic studies of flow patterns within a circulating fluidized bed [J], Chem. Engng Commun, 1999, 175: 117-130
    [7] W.Q. Yang, M.S. Beck, M. Byars, Electrical capacitance tomography-from design to application [J], Meas. Control, 1995, 28: 261-266
    [8] J. Gamio, A comparative analysis of single- and multiple-electrode excitation methods in electrical capacitance tomography [J], Meas. Sci.Technol., 2002, 13: 1799– 1809
    [9] A.J. Jaworski, G.T. Bolton, The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity [J], Meas. Sci.Technol., 2002, 11: 743–757
    [10] W.Q. Yang. Hardware design of electrical capacitance tomography systems [J], Meas. Sci.Technol.,1996, 7: 225–232
    [11] W.Q. Yang, L. Peng, Image reconstruction algorithms for electrical capacitance tomography [J], Measurement Science and Technology, 2003, 14: R1-R13
    [12] M. Soleimani, M. Vauhkonen, W.Q. Yang, A. Peyton, B.S. Kim, X.D. M, Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter [J], Meas. Sci. Technol., 2007, 18: 3287-3294
    [13] C. Mou, L. Peng, D. Yao, B. Zhang, D. Xiao, Numerical analysis of three dimensional space effect with electrical tomography sensor [C], in Proc. 4th World Congr. Ind. Process Tomography, Aizu, Japan, Sep. 5–8, 2005: 47–51
    [14] R. K. Wangsness, Electromagnetic Fields [M], 2nd ed. Hoboken, NJ: Wiley, 1979: 353–358
    [15] H.A. Haus, J.R. Melcher, Electromagnetic Fields and Energy [M], Englewood Cliffs, NJ: Prentice-Hall, 1989: 148–151. 220–223
    [16] W.Q. Yang, S. Liu, Electrical capacitance tomography with a square sensor [J], 1st World Congress on Industrial Process Tomography, Buxton Greater Manchester, UK, April 14-17, 1999: 313-316
    [17] H. Yeung, A. Ibrahim, Multiphase flows sensor response database [J], Flow Meas. and Inst., 14:219–223, (2003)
    [18] A.N. Tikhonov, V.Y. Arsenin, Solutions of ill-posed problems [M], Washington, DC: Winston, First edition, 1977
    [19] M. Bertero, P. Boccacci, Introduction to inverse problems in imaging [M], Bristol: Institute of Physics Publishing, 1998
    [20] L.H. Peng, H. Merkus, B. Scarlett, Using regularization methods for image reconstruction of electrical capacitance tomography [J], Part. Part. Syst. Charact.,2000, 17:96-104
    [21] W.R.B. Lionheart, Reconstruction algorithms for permittivity and conductivity imaging [C], Proc. 2nd World Congr. On Industrial Process Tomography, Hannover, 2001: 4-11
    [22] W. Warsito, L-S. Fan, Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography [J], Meas. Sci. Technol.,2001 12:2198–2210
    [23] N. Reinecke, D. Mewes, Resolution enhancement for multi-electrode capacitance sensors [C], Proc, 1st ECAPT conf., March:Manchester, 1992
    [24] N. Reinecke, D. Mewes, Resolution enhancement for multi-electrode capacitance sensors[C], Proc, 1st ECAPT conf., March:Manchester, 1992
    [25] R.A. Williams, M.S. Beck, Process tomography: principle,techniques and applications [M], Oxford, U.K.: Butterworth-Heinemann, 1995
    [26] A.M. Olmos, J.A. Primicia, J.L. Marron, Simulation design of electrical capacitance tomography sensors [J], IET Sci. Meas. Technol., 2007, 1(4): 216-223
    [27] M. Soleimani and W.R.B. Lionheart, Nonlinear image reconstruction for electrical capacitance tomography using experimental data [J], Meas. Sci. Technol., 2005,16(10): 1987-1996
    [28] H. yan, F. Shao, S. Wang, Simulation study of capacitance tomography sensors [J], in Proc. 1st World Congr. Ind. Tomography, Buxton, U.K., April 14-17, 1999: 388-394
    [29] C.Mou, L.Peng, D. Yao, B. Zhang, D. Xiao, Numerical analysis of three dimensional space effect with electrical tomography sensor [J], in Proc. 4th World Congr. Ind. Process Tomography, Aizu, Japan, Sep.5-8, 2005: 47-51
    [30] Pai Wang, Nan Li, B.L Guo and Ajith Abraham“Three-dimensional Analysis on Resistance Tomography Sensors and Research on ERT System Denoising Technology Excited by Bi-directional Pulse Current,”Sensors, 2009 (Accept for publication)
    [31] Pai Wang, Nan Li and B.L. Guo. " Three-dimensional Analysis on Resistance Tomography Sensors and Its Application in Inspection of Milk Flow," in Proceedings of 8th IEEE International Conference on Control & Automation (ICCA’10), June 9-11, 2010, Xiamen, China ( Accepted for publication)
    [1] H. Eren, L.D. Sandor, Fringe-Effect Capacitive Proximity Sensors for Tamper Proof Enclosures [C], Sensors for Industry Conference, Houston, Texas, 2005: 22-26
    [2] W.Q. Yang, K.A Hennessey, Patent No. 7119553. 2006, United States
    [3] D.S. Holder, Electrical impedance tomography: methods, history and applications (Series in Medical Physics and Biomedical Engineering) (Hardcover) [M], the Institute of Physics, London, 2005: 295-300
    [4] M.S. Beck; M. Byars; T. Dyakowski; R. Waterfall; R. He; S.I. Wang; W Q Wang, Principles and industrial applications of electrical capacitance tomography [J], Measurement and Control, 1997(30): 197-200
    [5] S.P. Luke, R.A. Williams, Industrial applications of electrical tomography to solid conveying [J], Measurement and Control, 1997(30): 201-205
    [6] L.F.C. Jeanmeure, T. Dyakowski, W.B.J. Zimmerman, W. Clark, Direct flow-pattern identification using electrical capacitance tomography [J]. Experimental Thermal and Fluid Science, 2002, 26(7): 763-773
    [7] N. Reinecke, D. Mewes, Recent developments and industrial/research applications of capacitance tomography [J], Measurement Science andTechnology, 1996, 7(3): 325-327
    [8] M. Wang, Seeing a new dimension-The past decades developments on electrical impedance tomography [J]. Progress in natural science, 2005, 15(13): 1-13
    [9] M. Cheney, D. Isaacson, J.C. Newell, Electrical impedance tomography [J], SIAM Review, 1999, 40(1): 85-101
    [10]彭珍瑞,祁文哲,吴刊选,孟建军,电容层析成像技术的近期研究进展[J],自动化仪表, 2008, 29(9): 1-5, 9
    [11] W.Q. Yang, W.F. Conway, Measurement of sensitivity distributions of capacitance tomography sensors [J], Review of Scientific Instruments, 1998, 69(1): 233-236
    [12]李楠,郭宝龙,王湃,车辆自动雨刷系统中的传感器设计[J],机械工程学报(已录用,尚未发表)
    [13]李楠,郭宝龙,黄川,一种绝缘体表液体自动测试系统[J],仪器仪表学报,2010,31(1): 38-44
    [14] S.H. Khan, F. Abdullah, Modelling and computation of electrostatic fields in capacitive angular displacement sensors used in limited angle actuators [M], in Sensors and Their Applications VII, ed. A.T. Augousti, Bristol: Institute of PhysicsPublishing, 1995: 381-386
    [15] S.H. Khan, F. Abdullah, Finite element modelling of multielectrode capacitive systems for flow imaging [C], IEE Proceedings-G, 1993, 140(3): 216-222
    [16] W.Q. Yang, L. Peng, Image reconstruction algorithms for electrical capacitance tomography [J], Measurement Science and Technology, 2003, 14: R1-R13
    [17] R.A. Williams, M.S. Beck, Process tomography: principle,techniques and applications [M], Oxford, U.K.: Butterworth-Heinemann, 1995
    [18] K.J. Alme, , S. Mylvaganam, Electrical capacitance tomography—sensor models, design, simulations, and experimental verification [J], IEEE Sensors Journal, 2006, 6(5): 1256-1266
    [19] A.M. Olmos, J.A. Primicia, J.L. Marron, Influence of Shielding Arrangement on ECT Sensors [J], Sensors , 2006, 6: 1118-1127
    [20] W.Q. Yang, D.M. Spink, J.C. Gamio, M.S. Beck, Sensitivity distributions of capacitance tomography sensors with parallel field excitation [J], Measurement Science and Technology, 1997, 8: 562–569
    [21] S.M. Huang, A.B. Plaskowski, C.G. Xie, M.S. Beck, Tomographic imaging of two-component flow using capacitance sensors [J], Journal of Physics E: Scientific Instruments
    [22]王志春,李文涛,胡晓丽,王建国,电容层析成像系统(ECT)软场特性研究[J],仪器仪表学报, 2003, 24(4): 404, 405, 410
    [23]李文涛,王志春,王建国,基于Matlab的电容层析成像系统软场特性仿真研究[J],自动化仪表, 2004, 25(9): 13-16
    [24] W.Q. Yang, T. A. York, New AC-based capacitance tomography system [J], IEE Proceedings - Science, Measurement and Technology, 1999, 146(1): 47-53
    [25] Agilent Technologies.. Manual of the 4192A impedance analyzer. 2010-2-25, Retrieved from http://www.agilent.com
    [26] W.Q. Yang, Further developments in an ac-based capacitance tomography system [J], Review of Scientific Instruments, 2001, 72(10), 3902-3907.
    [27] W.Q. Yang, M. Byars, An improved normalisation approach for capacitance tomography [C], Proc. of 1st World Congress on Industrial Process Tomography, Buxton, UK, 1999: 215-218
    [28]李楠,黄川,郭宝龙,应用于液体安全性检测的电容层析传感器设计[J],西安电子科技大学学报, 2010, 37(1): 125-129, 157
    [29] H.J. Grandin, Fundamentals of the Finite Element Method [M]. New York: Macmillan, 1986
    [30] ?. Isaksen, J. E. Nordtvedt, A new reconstruction algorithm for process tomography [J], Measurement Science and Technology, 1993, 4: 1464-1475
    [1]李楠,郭宝龙,王湃,车辆自动雨刷系统中的传感器设计[J],机械工程学报(已录用,尚未发表)
    [2]李楠,郭宝龙,黄川,一种绝缘体表液体自动测试系统[J],仪器仪表学报,2010,31(1): 38-44
    [3] Ford Scorpio (2001), Automatic wiper for the Ford Scorpio 95+, http://www.fordscorpio.co.uk/autowiper.htm
    [4] A. A. S. Mohammed, W. A. Moussa, E. Lou, High sensitivity MEMS strain sensor: design and simulation [J], Sensors 2008, 8, 2642-2661
    [5] Z.H. Chen, R.C. Luo, Design and implementation of capacitive proximity sensir using microelectromechanical system technology [J], IEEE Transactions on industrial Electronics, 1998, 45(6): 886-894
    [6]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,液体绝缘材料相对电容率、介质损耗因数和直流电阻率的测量(GB/T5654-2007) [M],中国标准出版社,2008
    [7] S.N. Hari, Handbook of low and high dielectric constant materials and their applications [M], Academic Press, 1999
    [8]中华人民共和国国家质量监督检验检疫总局,全国汽车标准化技术委员会,汽车安全玻璃(GB9656-2003) [M],中国标准出版社,2004
    [9] Rogers Corporation, RT/duroid 5870/ 5880 Data Sheet, http://www.rogerscorporation.com/mwu/pdf/5000data.pdf, 2006
    [10] Lee M, , CapSense best practices, http://www.psocdeveloper.com/uploads/tx_piapappnote/an2394_2_.pdf,(2007)
    [11] J. Kolb, Y. Minamitani, S. Xiao, et al. The permittivity of water under high dielectric stress [C], Pulsed Power Conference, IEEE, Jun. 13-17 2005,1266-1269
    [12] W.Q. Yang, Charge injection compensation for charge/discharge capacitance measuring circuits used in tomography systems [J], Measurement Science and Technology, 1996, 7: 1073-1078
    [13] S.Y. Peng, M.S. Qureshi, P.E. Hasler, A. Basu, F.L Degertekin, A charge-based low-power high-SNR capacitive sensing interface circuit [J], IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55(7): 1863–1872
    [14] T. Eberharter, G. Brasseur, Improvements of the charge amplifier used in a capacitive angular-position sensor [C], Proceedings. 'Sensing, Processing, Networking' of Instrumentation and Measurement Technology Conference, May 19-21, 1997, 2: 1273 - 1277
    [15] Y. Hu, J.L. Solere, D. Lachartre, R. Tutchetta, Design and performance of a low-noise, low-power consumption CMOS charge amplifier for capacitive detectors[J], IEEE Transactions on Nuclear Science, 1998, 45(1): 119-123
    [16] S.R. Norsworthy, I.G. Post, H.S. Fetterman, A 14-bit 80-kHz sigma-delta A/D converter: modeling, design and performance evaluation [J], IEEE Journal of Solid-State Circuits, 1989, 24(2): 256-266
    [17] P.C. Maulik, M.S. Chadha, W.L. Lee, P.J Crawley, A 16-bit 250-kHz delta-sigma modulator and decimation filter [J], IEEE Journal of Solid-State Circuits, 2000, 35(4): 458-467
    [18] G. Lainey, R. Saintlaurens and P. Senn, Switched-capacitor second-order noise-shaping coder [J], Electronics Letters, 1983, 19(4): 149-150
    [19] J. O'Dowd, A. Callanan, G. Banarie, E.Company-Bosch, Capacitive sensor interfacing using sigma-delta techniques [C], IEEE Conference Proceedings of Sensors, Oct. 30-Nov. 3, 2005, 951-954
    [20] J.C. Lotters, W. Olthuis, P.H. Veltink, P.Bergveld, A sensitive differential capacitance to voltage converter for sensor applications [J], IEEE Transactions on Instrumentation and Measurement, 1999, 48(1): 89-96
    [21] Microchip, PIC18FXX2 Datasheet, http://ww1.microchip.com/downloads/en/DeviceDoc/39564c.pdf 2006
    [22] R.S. Jachowicz, S.D. Senturia, A thin-film capacitance humidity sensor [J], Sensors and Actuators, 1981, 2: 171-186
    [23] B.C. Lesieutre, A.V. Manishev, Y.Du, E. Kekiner, M.Zahn, G.C. Verghese, Forward and inverse parameter estimation algorithms of interdigital dielectrometry sensors [J], IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(4): 577-588
    [24] N. Boules, T.W. Nehl, Design optimization of glass-embedded capacitive-type water sensors [J], IEEE Transactions on Industry Applications, 1988, 24(3): 402-410
    [25] Nan Li, B.L. Guo, Pai Wang, and Chuan Huang. "Capacitance-based sensor design and application in automatic system," in Proceedings of 7th IEEE International Conference on Control & Automation-ICCA’09, Christchurch, New Zealand, Dec. 9-11, 2009: 1703-1707
    [26] Nan Li, B.L Guo, and Pai Wang. "Proximity capacitance sensor design for noncontact liquid detection," in Proceedings of 2nd International Conference on Image and Signal Processing-CISP 2009, Tianjin, China, Oct. 17-19th, 2009,9: 4680-4683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700