建筑玻璃隔热涂料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究建筑玻璃隔热涂料,从隔热材料的选择,隔热粉体的制备及隔热效果与电学性能的关系,纳米隔热浆料制备技术,建筑玻璃隔热涂料的合成及表征,和建筑玻璃隔热涂料的实际热工测试等方面对建筑玻璃隔热涂料技术进行研究,属于材料科学与建筑技术科学的交叉学科。
     本文从纳米ATO隔热粉体的制备入手,通过溶胶-凝胶法制备了不同Sb/Sn掺杂比例的ATO粉体,Cu,Fe掺杂的SnO2粉体及Zn共掺杂ATO粉体,研究了制备工艺对粉体微观结构,表面形貌,电学性能和光学性能的影响,并对隔热材料的隔热性能和其它性能进行了分析。
     当Sb/Sn=6~10at%,凝胶烧结温度600~800℃,保温60min时,ATO粉体具有较低的电阻率,随着Sb掺量的增加,粉体的电阻率逐渐下降,当Sb/Sn>10at%后,电阻率开始上升,ATO晶粒约为10nm。ATO粉体的电阻率与其近红外线阻隔率有着内在的联系,即降低ATO粉体的电阻率能够提高其近红外线的阻隔率即提高隔热性能。
     研究了pH值、分散剂和研磨时间等因素对浆料稳定性的影响。实验表明pH值在6~10的范围内,ATO浆料具有较高的稳定性。聚丙烯酰胺和多聚磷酸钠能显著改善ATO浆料的稳定性;当多聚磷酸钠为分散剂,在研磨过程中加入适量稳定剂和增稠剂可大幅提高浆料的稳定性,浆料常温保存两年没有发生沉降,延长了产品的保存期。研究的ATO浆料其固含量最高为56wt%。
     系统研究了建筑玻璃隔热涂料隔热性能的影响因素,并测试了建筑玻璃隔热涂料的安全性,耐水性等物理性能。降低纳米ATO浆料的平均粒径能将涂料的近红外线阻隔率提高10~20%;ATO浆料固含量的提高也能增强隔热涂料的隔热性能。
     H1粉体能够阻隔800~1400nm的近红外线,而对1400nm~2600nm波段的近红外线阻隔效果较差。H2粉体能够阻隔600~1200nm波段的光,对1200~2600nm波段的近红外线则基本不具有阻隔作用。将H1、H2粉体分别与ATO粉体以不同比例进行复合制备成隔热浆料。随着H1、H2在复合粉体中所占比例的升高,涂料的隔热性能得到提高,但后者的可见光透射比大幅降低。
     采用无机硅树脂作为透明基体,与溶剂型ATO浆料配制无机硅玻璃隔热涂料。在涂料中加入H3化合物能有效提高涂料的近红外线阻隔率,同时又能尽量减少对可见光的影响。当H3含量为0.5wt%时,隔热涂料的近红外线阻隔率为93.7%,可见光透射比为61.7%,遮阳系数为0.52,τv/Se值较高为1.19。
     将自制的建筑玻璃隔热涂料在实际工程中进行了应用,并选取了一个相似的房间作为对比间(不应用玻璃隔热涂料),对涂膜间与对比间进行实际热工测试,以检验建筑玻璃隔热涂料的实际隔热效果。涂膜玻璃与未涂膜玻璃相比能够阻隔大约50%的太阳总辐射。距离窗户较近的空气温度温差和黑球温度温差较其它测点大,一般西向窗户测点的温差更明显,随着测点远离窗户,测点的空气温度,黑球温度及其温差都会降低。
     采用红外热像仪对涂膜间与对比间的窗户进行拍摄,包括有窗帘和无窗帘两种情况,当有窗帘时,涂膜间窗帘的温度比对比间的要低约3.5℃。无窗帘时,对比间窗框温度高于玻璃温度,是隔热的薄弱环节,涂膜间的玻璃内表面温度较对比间高约7℃。玻璃涂膜后虽然提高了玻璃内表面的温度,加大了向室内的二次辐射,但其阻隔太阳辐射的能力占了主导作用,总体讲玻璃隔热涂料的隔热效果还是比较好的。
     通过DesT软件对两房间的室内温度进行了模拟,结果为模拟室内温度与实测的房间平均温度基本吻合,模拟值与实测值差值在0.5℃内,而且变化趋势基本一致。对比间的全年冷负荷为162.3 kW·h /m2,而涂膜间全年冷负荷为156.0 kW·h /m2。
Building Glass Thermal Insulated Paint was mainly studied in this paper. The research was focused on the preparation of thermal insulated nano powder, the relationship between near infrared ray blocking and electricical properties, the preparation of nano slurry, the synthesis and characterization of building Glass Thermal Insulated Paint, and comparative thermal test on one classroom with building Glass Thermal Insulated Paint used on windows in one building of our school. This research field belonged to interdiscipline of material science and building science and technology.
     Antimony, Copper, Iron and Zinc, Antimony doped SnO2 based materials were studied by sol-gel method, especially antimony-doped tin oxide (ATO). The factors of preparation on microstrcture, surface morphology, electricity and optical properties were analyzed. ATO nano powder had low resistivty with Sb/Sn=6~10at%, calcined to 600~800℃for 60 min, ATO nano crystallite size was 10nm. NIR blocking ratio of nano ATO powder was increased with the increasing Sb concentration. When Sb/Sn>10at%, NIR blocking ratio declined. Though the resistivity and NIR blocking ratio of ATO powder were not linear, they were related. When the resistivity was decreased, the NIR blocking ratio would be improved.
     pH value, dispersant and grinding time were studied to prepare stable nano ATO slurry. When pH value=6~10, ATO slurry was stable. C3H5ON and Na5P3O10 could effectively improve the stability of ATO slurry. Stabilizing agent and thickener agent were added into the slurry during the process of grinding with Na5P3O10 as dispersant, which could get high stability nano slurry. The high solid content of ATO slurry was 56wt%.
     The effects on NIR blocking were discussed during the synsis of nano transparent thermal insulated glass paint, and environment, water resistance, hardness and anti-aging properties were mearsured. The NIR blocking ratio could be improved 10~20%, when the mean grain size of nano ATO slurry was decreased effectively. The high content of ATO slurry in paint, high solid content ATO slurry could enhance the NIR blocking.
     Coating with ATO can only shield the near infrared from 1500nm to 2500nm. H1 powder could shield NIR from 800nm to 1400nm, and H2 powder could shield NIR from 600nm to 1200nm. H1 and H2 were added to ATO powder individually, which were prepared to get nano composite slurry. NIR blocking ratio of glass paint was increased with the increasing H1, H2 content in composite powder, and the transmittance of visible light of H2 was low.
     Inorganic silicon resin was first used to prepare nano transparent thermal insulated glass paint with solvent based ATO slurry. It was found that the NIR blocking rate of thermal glass paint could be improved by adding H3 compound. When H3 content was 0.5wt%, the NIR blocking rate was 93.7%, transmittance of visible light (τv) was 61.7%, Se value was 0.52, andτv/Se was 1.19.
     Nano transparent thermal insulated glass paint was put into practice in the classrooms of our school. Two similar classrooms were choosen as contrasted rooms, and one of them was coated with glass paint. Solar radiation, room temperature, black globe temperature, and long- wave radiation were measured. Solar radiation of coated glass was 50% of uncoated glass. The room temperature difference and black globe temperature difference near the windows were bigger than that of other measuring points. The surface temperature of curtains and windows were measured by hand-hold infrared thermal camera. The surface temperature of curtains in coated room was 3.5℃lower than that of uncoated room, and the surface temperature of glass was 7℃higher than that of uncoted room.
     DeST-c was applied to simulate the room temperature of two rooms. The simulation temperature was almost consistent with the practical temperature in classroom, and the temperature difference was less than 0.5℃. The cooling load of uncoated room was 162.3 kW·h /m2, and coated room 156.0 kW·h /m2.
引文
[1]李曙光.浅谈我国建筑节能现状与对策.应用能源技术. 2003, 1: 1-3
    [2]梁彩群.可持续发展视角下的我国建筑节能[J].广西大学学报.2007,29(10):69-70
    [3]江亿.建筑节能——实现可持续发展的必由之路[J].科技潮. 2005, 6:1-1
    [4]施玉安,陆芳.节能玻璃与建筑节能[J].建设科技. 2002, 9: 43-44
    [5]刘志海. LOW-E玻璃发展现状及趋势[J].中国建材.2004, 4: 58-61
    [6]徐美君.中国建筑镀膜玻璃的生产发展与市场[J].建材发展导向.2006, 2: 17-22
    [7]鲁大学.低辐射镀膜玻璃在建筑节能中的优势[J].建设科技. 2003, 12: 20-21
    [8]莫娇,王睿等.贴膜玻璃及《贴膜玻璃标准》[J].建筑玻璃与工业玻璃. 1998, 3: 19-21
    [9]谭坚.玻璃贴膜掀起“保健旋风”[J].医疗保健器具. 2006,10:53-54
    [10]李玲,向航.功能材料与纳米技术[M],北京,化学工业出版社,2002年,13-17
    [11]陈飞霞.纳米氧化铟锡透明隔热涂料的制备及性能研究[D].南京:南京工业大学,2004
    [12] M. R. S. Castro, H. K. Schmidt. Transparent conducting antimony-doped tin oxide films containing functionalized multi-walled carbon nanotubes[J]. phys. stat. sol. (a) 2007, 204(10): 3380–3386
    [13] T. Morimoto, Y. Sanada, H. Tomonaga. Wet chemical functional coatings for automotive glasses and cathode ray tubes[J]. Thin Solid Films.2001, 392: 214-222
    [14] Zhang Xiaoping, Yu Shanqing, Ma Minwei. ZnS/Me heat mirror systems[J]. Solar Energy Materials and Solar Cells. 1996, 44: 279-290
    [15] G. Leftheriotis, P. Yianoulis. Characterisation and stability of low-emittance multiple coatings for glazing applications[J]. Solar Energy Materials & Solar Cells. 1999, 58: 185-197
    [16] G. Leftheriotis , P. Yianoulis, D. Patrikios. Deposition and optical properties ofoptimised ZnS/Ag/ZnS thin films for energy saving applications[J]. Thin Solid Films. 1997, 306: 92-99
    [17] G. Leftheriotis, S. Papaefthimiou, P. Yianoulis. Development of multilayer transparent conductive coatings[J]. Solid State Ionics. 2000, 136–137: 655–661
    [18] Ma Quan-Bao, He Hai-Ping, Ye Zhi-Zhen, et al. Effects of Mg doping on the properties of highly transparent conductive and near infrared reflective Zn1-xMgxO:Ga films[J]. Journal of Solid State Chemistry. 2008, 181: 525-529
    [19] Okada Masahisa, Tazawa Masato, Jin Ping, et al. Fabrication of photocatalytic heat-mirror with TiO2/TiN/TiO2 stacked layers[J]. Vacuum. 2006, 80: 732–735
    [20] Jesus Chavez-Galan, Rafael Almanza. Solar filters based on iron oxides used as efficient windows for energy savings[J]. Solar Energy. 2007, 81: 13–19
    [21] Pop Ileana, Nascu Cristina, Ionescu Vioteta, et al. Structural and optical properties of PbS thin films obtained by chemical Deposition[J]. Thin Solid Films. 1997, 307: 240-244
    [22] Tuquabo Tesfamichael, Anders Hoel, Ewa W? Ckelg?rd, et al. Optical characterization and modeling of black pigments used in thickness-sensitive solar-selective absorbing paints[J]. Solar Energy. 2000, 69(1-6):35–43
    [23] Gcineka Mbambisa, Tebello Nyokong. Synthesis and electrochemical characterisation of a near infrared absorbing oxo vanadium (IV) octapentylthio-phthalocyanine[J]. Polyhedron. 2008, 27: 2799–2804
    [24] G. Guzman, B. Dahmani, J. Puetz, et al. Transparent conducting sol–gel ATO coatings for display applications by an improved dip coating technique[J]. Thin Solid Films. 2006, 502: 281–285
    [25] Feng Jie, Huang Baoyuan, Zhong Mingqiang. Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding[J]. Journal of Colloid and Interface Science. 2009, 336: 268–272
    [26] Yang Fen, Zhang Xue-jun, Tian Fang, et al. Preparation of Highly Dispersed Antimony-doped Tin Oxide Nano-powder via Ion-exchange Hydrolysis of SnCl4 and SbCl3 and Azeotropic Drying[J]. Chinese Journal of Aeronautics. 2007, 20: 181-186
    [27] C. Goebbert, H. Bisht, N. AL-Dahoudi. Wet chemical ceposition of crystalline, cedispersable ATO and ITO nanoparticles[J]. Journal of Sol-Gel Science and Technology. 2000, 19: 201-204
    [28] Zhang Jianrong, Gao Lian. Antimony-doped tin oxide nanocrystallites prepared by a combustion process[J]. Materials Letters.2004, 58: 2730-2734
    [29] Pan Wei, Zou Hantao. Characterization of PAN/ATO nanocomposites prepared by solution blending[J]. Bull. Mater. Sci.2008, 31(5): 807–811.
    [30] Willem Posthumus, Jozua Laven, Gijsbertus de With, et al. Control of the electrical conductivity of composites of antimony doped tin oxide (ATO) nanoparticles and acrylate by grafting of 3-methacryloxypropyltrimethoxysilane (MPS) [J]. Journal of Colloid and Interface Science. 2006, 304: 394–401
    [31] M. V. Vinokurova, A. A. Vinokurov, L. E. Derlyukova. Effect of antimony dopants on the sorption properties of SnO2[J]. Russian Chemical Bulletin, International Edition. 2003, 52(7): 1492—1495
    [32] C.S. Sandu, V.S. Teodorescu, C. Ghica. Excimer Laser Crystallization of SnO2:Sb Sol-Gel Films[J]. Journal of Sol-Gel Science and Technology. 2003, 28: 227–234
    [33] M. I. B. Bernardi, C. M. Barrado, L. E. B. Soledade, et al. Influence of heat treatment on the optical prpperties of SnO2:Sb thin films deposited by dip coating using aqueous solution[J]. Journal of materials science: materials in electronics. 2002, 13: 403-408
    [34] V. Kisand, J. Shulga, T. T?tte, et al. Preparation of structured sol–gel films using tape casting method[J]. Materials Science and Engineering B. 2007, 137: 162–165
    [35] J. PüTz, D. Ganz, G. Gasparro, et al. Influence of the Heating Rate on the Microstructure and on Macroscopic Properties of Sol-Gel SnO2:Sb Coatings[J]. Journal of Sol-Gel Science and Technology. 1998, 13: 1005–1010
    [36] Young-Sang Cho, Gi-R Yi, Jeong-Jin Hong, et al. Colloidal indium tin oxide nanoparticles for transparent and conductive films[J]. Thin Solid Films. 2006, 515: 1864–1871
    [37] K. Daoudia, B. Canuta, M.G. Blanchina, et al. Densification of In2O3:Sn multilayered films elaborated by the dip-coating sol-gel route[J]. Thin Solid Films. 2003, 445: 20–25
    [38] Junichi Ebisawa, Eiichi Andot. Solar control coating on glass[J]. Current Opinion in Solid State & Materials Science. 1998, 3: 386-390
    [39] A. De, P.K. Biswas, J. Manara. Study of annealing time on sol-gel indium tin oxide films on glass[J]. Materials Characterization. 2007, 58: 629–636
    [40] Ming-Shyong Tsai, Chang-Long Wang, Min-Hsiung Hon. The preparation of ITO films via a chemical solution deposition process[J]. Surface and Coatings Technology. 2003, 172: 95–101
    [41] I. Isom?ki, M. H?m?l?inen, W. Gierlotka, et al. Thermodynamic evaluation of the In–Sn–O system[J]. Journal of Alloys and Compounds. 2006, 422: 173–177
    [42] K. Daoudi, B. Canut, M.G. Blanchin, et al. Tin-doped indium oxide thin films deposited by sol–gel dip-coating technique[J]. Materials Science and Engineering C. 2002, 21: 313–317
    [43] Bagas Pujilaksono, Uta Klement, Lars Nyborg, et al. X-ray photoelectron spectroscopy studies of indium tin oxide nanocrystalline powder[J]. Materials Characterization. 2005, 54: 1–7
    [44]马勇,孔春阳. ITO薄膜的光学和电学性质及其应用[J].重庆大学学报. 2002, 25(8): 114-117
    [45]史月艳,潘文辉,殷志强.氧化铟锡(ITO)膜的光学及电学性能[J].真空科学与技术. 1994, 14(1): 35-40
    [46] C. Li, M. Furuta, T. Matsuda, et al. Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering [J]. Thin Solid Films. 2009, 517(11): 3265-3268
    [47]葛春桥,薛亦渝,夏志林. AZO透明导电薄膜的制备技术、光电特性及应用[J].真空电子与技术. 2004, 6: 51-54
    [48]高善民,周升旺,张江,等. ZnO:Al透明导电薄膜的制备与性能研究[J].鲁东大学学报. 2006, 22(3): 197-200
    [49]董晓刚,王炜,沈长斌,等.溶胶凝胶法制备ZAO薄膜[J].大连铁道学院学报. 2006, 27(1): 79-82
    [50] Cheng Ching-Hsuang, Ting Jyh-Ming. Transparent conducting GZO, Pt/GZO, and GZO/Pt/GZO thin films[J]. Thin Solid Films. 2007, 516: 203–207
    [51] C. G. Granqvist. Solar Energy Materials [J]. Appl. Phys. A. 1991, 52: 83-93
    [52]洪晓.掺杂SnO2纳米导电氧化物在透明隔热涂料中的应用及前景[J].知识窗. 2007, 22(10): 57-58
    [53]杨建广,唐谟堂,唐朝波,等.锑掺杂二氧化锡薄膜的导电机理及其理论电导率[J].微纳电子技术. 2004, 4: 18-21
    [54]王敏,蒙继龙,陈明光. ITO薄膜的光学性能研究[J].中国表面工程. 2003, (5):27-30
    [55]王树林,夏冬林. ITO薄膜的制备工艺及进展[J].玻璃与搪瓷. 2004, (5):51-54
    [56]常天海,黄光周,于继荣,等.汽车前挡风玻璃用ITO薄膜的隔热及节能实验研究[J].真空. 2002, (3):18-22
    [57]江锡顺. ITO透明导电薄膜的组分、微观结构及其光电特性研究[D].安庆:安徽大学, 2006
    [58]吕敏峰. ZnO薄膜的Sol-Gel制备与光电性能的研究[D].青岛:青岛科技大学,2003
    [59]陈飞霞,付金栋,韦亚兵.纳米氧化铟锡透明隔热涂料的制备及性能表征[J].涂料工业. 2004, 34(2): 48-52
    [60]何秋星,涂伟萍,胡剑青.透明隔热纳米涂料的研究进展[J].化工新型材料. 2005, 33(02): 8-12
    [61] Hae-Wook Lee, Daegu, Jin-Hong Park, Daegu. Composition for cutting off heat-ray, film formed thereform and method for forming the composition and the film[P]. Korea: US 2006/0021548 A1, 2006.02.02
    [62] Kuno, Hiroko. Near infra-red shielding single or multilayer film and a coating liquid for forming the same[P]. Japan: EP 0943587 A1, 1999.09.22
    [63] Hiromitsu Takeda, Kenji Adachi, Kayo Yabuki. Coating solution for forming a film for cutting off solar radiation and the film formed therefrom[P]. USA: US Patent 6319613, 2001.04.24.
    [64] Chonan, Takeshi, Adachi, Kenji. Sun shade and dispersion liquid for forming sun shade[P]. USA: US Patent 20060086928, 2006.04.27
    [65] Hayakawa I. Coating liquid used for solar-radiation shielding films, contains near-infrared-ray shielding component, and reaction material of glycidoxypropyl group-containing alkoxysilane and aminopropyl group-containing alkoxysilane as binder[P]. Japan: JP2008101111-A, 2008.5.1
    [66] Hiromitsu Takeda, Kenji Adachi, Kayo Yabuki. Coating solution for forming a film for cutting off solar radiation and the film formed therefrom[P]. USA: US Patent 6319613, 2001.11.20
    [67] Sumitomo Metal Mining CO, Tohoku Kako Kk. Indium-tin oxide powder for window glass of building, has preset average particle diameter, tin content, color value and pressed power resistance[P]. Japan: JP2007145712-A, 2007.6.14
    [68] Takeda Hiromitsu, Kuno Hiroko, Adachi Kenji. Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane[P]. Japan: 2000096034 A, 2000.4.4
    [69] Takeda Hiromitsu, Yabuki Kayo, Adachi Kenji. Dark Color Ink, and coating liquid, film, substrate, resin composition, and molded resin article prepared by using the same[P]. Japan: 2001262016 A, 2001.9.26 137
    [70] Maejima Katsumi, Shibue Toshiaki, Saito Koichi. Coating liquid for forming optical interference layer, optical interference layer produced by using the coating liquid, antireflection film, polarizing plate and display device[P]. Japan: 2005107093 A, 2005.04.21
    [71] Chonan, Takeshi. Fine particles of antimony tin oxide for sunscreen, dispersion thereof for sunscreen material formation, sunscreen material and transparent base material for sunscreen[P]. USA: 20050163999, 2005.7.28
    [72]胡志鹏.节能涂料:一个潜力巨大的市场[J].中国石油和化工经济分析. 2006, 18: 64-65
    [73]张永进,赵石林.聚氨酯纳米ATO透明隔热涂料的研制[J].化学建材. 2004, 6:18-20
    [74] Hiromistu Takeda, Keoji Adachi. Infrared shielding material microparticle dispersion infrared shield, process for producing infrared shield material microparticle and infrared shielding material microparticle[P]. USA: US 20060178254 A1, 2006.08
    [75] Takeda H, Kuno Y, Handa T. Infrared shielding-material microcapsule dispersion for infrared shielding material, is obtained by dispersing tungstic acid microparticles and/or composite tungstic acid microparticles and hindered amine optical stabilizer in medium[P]. Japan: JP2006282736-A, 2006.10
    [76] Shimada Y, Shimada M. Coating liquid for forming heat ray-ultraviolet ray shielding film, comprises metal oxide, infrared light shielding material, ultraviolet-ray absorbent material, diluent solvent and curing catalyst which cures at normal temperature[P]. Japan: JP2006291136-A, 2006.10
    [77] Osanami T, Adachi K, Kuno Y. Dispersion liquid for solar radiation shielding material, comprises microparticles containing complex metal oxide and having preset diameter and coloring property, dispersed in solvent[P]. Japan: JP2005226008-A, 2005.08
    [78] R·A·福吉尔, R·A·海斯.用于制备可用于阻断近红外光透射的聚合物薄膜的方法.中国:CN1894314.2007.1.10
    [79]透明隔热材料[J].中国建材科技.2003, 5: 44-44
    [80]张建荣,顾达,高濂等.纳米ATO粉体的制备及性能研究[J].硅酸盐通报.2003, 4: 3-6
    [81]李历历,段学臣.超声水解法制备抗团聚纳米ATO粉末[J].稀有金属与硬制合金.2004, 12: 17-20
    [82]秦长勇,古宏晨,方图南.新型多功能ATO超细导电粉体材料[J].上海化工. 2000, 13: 23-25
    [83]杨建广,唐谟堂,杨声海等.湿法制备纳米ATO粉体团聚的形成及消除方法[J].中国涂料. 2004, 7: 33-36
    [84]张建荣,高濂.ATO纳米粉体的燃烧合成研究[J].无机化学学报.2004, 7: 801-804
    [85]张永进,赵石林.聚氨酯纳米ATO透明隔热涂料的研制[J].化学建材.2004, 6: 18-20
    [86]王靓,赵石林.纳米氧化锡锑透明隔热涂料的制备及性能研究[J].涂料工业.2004, 10: 4-8
    [87]迟艳波.ATO超细导电粉水浆的制备与应用研究[D].上海:华东理工大学,2002
    [88]王龙梅.纳米ATO导电粉体及其浆料制备技术[D].上海:华东理工大学,2003
    [89]姚晨,赵石林,缪国元.纳米透明隔热涂料的特性与应用[J].涂料工业. 2007, 37(1): 29-32
    [90]侯翠红,孙吉梅,张宝林,等.红外反射涂料在玻璃上的隔热效果研究[J].郑州大学学报. 2007, 28(2): 54-57
    [91]刘蕤.锑掺杂二氧化锡纳米粉体的改性及在涂料中的应用[J].化工新型材料. 2009, 37(1): 97-99
    [92]傅欣,段学臣.透明隔热反射玻璃发展近况[J].稀有金属与硬质合金. 2008, 36(4): 57-60
    [93] 2020年前1. 5万亿元“大蛋糕”用于建筑节能[J].辽宁建材. 2007, 2: 12-12
    [94]季振国.半导体物理[M].杭州,浙江大学出版社,2005.9: 129-141
    [95]李青山,张金朝,宋鹂.三防纳米级ATO透明导电薄膜材料的研究和应用[J].材料导报. 2002, 16(2):34-36
    [96]王玉恒,马瑾,计峰,等.射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究[J].物理学报. 2005, 54(4): 1731-1735
    [97]陈甲林,赵青南,张君.射频磁控溅射法制备SnO2:Sb透明导电薄膜的光电性能研究[J].液晶与显示. 2005, 20(5): 406-411
    [98]陈甲林,张君,赵青南.直流磁控反应溅射工艺参数对SnO2:Sb薄膜光学带隙的影响[J].河南建材. 2004, 4: 7-9
    [99]郭玉忠,王剑华,黄瑞安,等.掺杂SnO2透明导电薄膜电学及光学性能研究[J].无机材料学报. 2002, 17(1): 131-138
    [100]郝喜红.喷雾热解法制备掺杂二氧化锡导电薄膜[D].西安:西安建筑科技大学,2005
    [101] Claes G. Granqvist, Transparent conductors as solar energy materials: A panoramic review[J], Solar Energy Materials & Solar Cells. 2007, 91: 1529–1598
    [102]赵岚. Sb掺杂SnO2薄膜的溶胶凝胶法制备及性能研究[D].武汉:华中科技大学, 2004
    [103]高桂兰,段学臣.锑掺杂二氧化锡纳米新型导电材料的制备[J].化工新型材料. 2004, 32(1): 16-19
    [104] C. Terrier, J.P. Chatelon, J.A. Roger. Analysis of antimony doping in tin oxide thin films obtained by the Sol-Gel method[J]. Journal of Sol-Gel Science and Technology. 1997, 10: 75–81
    [105] V. Senthilkumar, P. Vickraman, M. Jayachandran. Structural and electrical studies of nano structured Sn1-x SbxO2(x = 0.0, 1, 2.5, 4.5 and 7 at%) prepared by co-precipitation method[J]. J Mater Sci: Mater Electron. 2010, 21:343–348
    [106] Jeon Hyung-Joon, Jeon Min-Kyu, Kang Misook. Synthesis and characterization of antimony-doped tin oxide (ATO) with nanometer-sized particles and their conductivities[J].Materials Letters. 2005, 59: 1801–1810
    [107]薄占满.掺Sb二氧化锡半导体导电机理的实验探讨[J].无机材料学报. 1990, 5(4): 324-329
    [108]杨建广,唐漠堂,杨声海,等.锑掺杂二氧化锡(ATO)导电机理及制备方法研究现状[J].材料导报. 2004, 18(3): 17-20
    [109]高善民,杨玮,姜炜,等. Na2SO4辅助水热合成SnO2纳米晶[J].无机化学学报. 2006, 22(4): 673-678
    [110] Bai Fanfei, He Yun, He Ping, et al. One-step synthesis of monodispersed antimony-doped tin oxide suspension[J]. Materials Letters. 2006, 60: 3126-3129
    [111] Azam Anaraki Firooz, Ali Reza Mahjoub, Abbas Ali Khodadadi. Preparation of SnO2 nanoparticles and nanorods by using a hydrothermal method at low temperature[J]. Materials Letters. 2008, 62:1789–1792
    [112] Zhang Jianrong, Gao Lian. Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles by a new hydrothermal method[J]. Materials Chemistry and Physics. 2004, 87: 10–13
    [113] Li Lili, Mao Liming, Duan Xuechen. Solvothermal synthesis and characterization of Sb-doped SnO2 nanoparticles used as transparent conductive films[J]. Materials Research Bulletin. 2006, 41: 541–546
    [114]杨建广,唐谈堂,张保平,等.锑掺杂二氧化锡导电机理及制备方法研究现状[J].中国粉体技术. 2004, 1: 38-43
    [115]刘小强,杜仕国,闰军,等.国内纳米ATO导电粉体制备的研究现状[J].表面技术. 2005, 34(4): 6-8
    [116] D. E. Dyshel, T. F. Lobunets. Effect of heat treatment on the dispersity of Sn(IV)-Sb-O powders and the prrosity of thick-film gas sensors based on them[J]. Powder Metallurgy and Metal Ceramics.1999, 38:309-313
    [117] ?zge Acarbas, Ender Suvacl, Ayd?n Do?an. Preparation of nanosized tin oxide (SnO2)powder by homogeneous precipitation[J]. Ceramics International. 2007, 33: 537–542
    [118] Zhang Jianrong, Gao Lian. Antimony-doped tin oxide nanocrystallites prepared by a combustion process[J]. Materials Letters. 2004, 58: 2730– 2734
    [119] Zhang Jianrong, Gao Lian. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate–citrate combustion method[J]. Materials Research Bulletin. 2004, 39: 2249–2255
    [120] Song K C , Kim J H. Synthesis of high surface area tin oxide powders via water-in-oil microemulsions[J]. Powder Technology. 2000, 107:268-272
    [121]肖功利,杨宏艳.掺锑二氧化锡薄膜的喷雾热解法制备与热处理[J].半导体光电. 2008, 29(3): 357-361
    [122]钟明,赵高扬.喷雾热解法制备SnO2:F+Sb薄膜的结构及性能研究[J].功能材料. 2005, 36(9): 1429-1432
    [123]张聚宝,侯春,翁文剑,等.喷雾热解法制备SnO2:Sb透明导电薄膜[J].硅酸盐学报. 2003, 31(11):1063-1068
    [124]郅晓,赵高扬,雷静果,等.喷雾热解法制备SnO2薄膜的结构及性能研究[J].洛阳理工学院学报. 2008, 18(2):5-7
    [125]王东.喷雾热解法制备掺锑氧化锡透明导电膜[J].无机盐工业.2005, 37(11): 29-31
    [126] H. Bisht, H.T. Eun1, A. Mehrtens, et al. Comparison of spray pyrolyzed FTO, ATO and ITO coatings for at and bent glass substrates[J]. Thin Solid Films. 1999, 351: 109-114
    [127] S. Shanthi, C. Subramanian, P. Ramasamy. Investigations on the optical properties of undoped, fluorine doped and antimony doped tin oxide films[J]. Cryst. Res. Technol. 1999, 34(8): 1037-1046
    [128]吴春春,杨辉,陆文伟. sol-gel法制备ATO透明导电薄膜[J].电子元件与材料. 2005, 24(3): 44-47
    [129]吕敏峰,崔作林,张志焜.Sol-Gel法制备ZnO:Al透明导电薄膜[J].2003, 21(2): 224-227
    [130]王小兰,李历历,段学臣.溶胶-凝胶法制备ATO纳米粉体的团聚及其控制[J].材料导报. 2004, 18(2): 154-158
    [131] Daoli Zhang, Liang Tao, Zhibing Deng, et al. Surface morphologies and properties of pure and antimony-doped tin oxide films derived by sol–gel dip-coating processing[J]. Materials Chemistry and Physics. 2006, 100: 275–280
    [132] C. Terrier, J.P. Chatelon, J.A. Roger. Analysis of antimony doping in tin oxide thin films obtained by the Sol-Gel method[J]. Journal of Sol-Gel Science and Technology. 1997, 10: 75–81
    [133] G. Guzman, B. Dahmani, J. Puetz, et al. Transparent conducting sol–gel ATO coatings for display applications by an improved dip coating technique[J]. Thin Solid Films. 2006, 502: 281-285
    [134] C.S. Sandu, V.S. Teodorescu, C. Ghica. Excimer laser crystallization of SnO2:Sb Sol-Gel films[J]. Journal of Sol-Gel Science and Technology. 2003, 28: 227–234
    [135] Christian Goebbert, Guido Gasparro, Thomas Schuler, et al. Influence of the layer morphology on the electrical properties of Sol Gel transparent conducting oxide coatings[J]. Journal of Sol-Gel Science and Technology. 2000, 19: 435–439
    [136] Zhang Daoli, Deng Zhibing, Zhang Jianbing, et al. Microstructure and electrical properties of antimony-doped tin oxide thin film deposited by sol-gel process[J]. Materials Chemistry and Physics. 2006, 98: 353–357
    [137] M. Guglielmi, E. Menegazzo. Sol-Gel deposited Sb-doped tin oxide films[J]. Journal of Sol-Gel Science and Technology. 1998, 13: 679–683
    [138] Sung-Soon Park, Haixing Zheng, J.D. Mackenzie. Sol-gel derived antimony-doped tin oxide coatings on ceramic cloths[J]. Materials Letters. 1995, 22: 175-180
    [139]王志强.掺杂及未掺杂二氧化锡纳米微粒的制备及性能研究[D].开封:河南大学, 2005
    [140]王建.超声波-溶胶-凝胶法制备超细二氧化锡粉体的研究[D].昆明:昆明理工大学, 2002
    [141]王苹魏明坤.高固体含量陶瓷料浆稳定机理及粉体表面改性方法[J].佛山陶瓷. 2001, 11(4):6-8
    [142]王岚.纳米ATO有机极性浆料的制备及在抗静电涂屏液中的应用[D].上海:华东理工大学, 2004
    [143]王龙梅.纳米ATO导电粉体及其浆料制备技术[D].上海:华东理工大学, 2003
    [144]贾晓林,谭伟.纳米粉体分散技术发展概况[J].非金属矿. 2003, 26(4):1-4
    [145]王瑞刚,吴厚政,陈玉如.陶瓷料浆稳定分散进展[J].材料科学与工程. 1999, 17(2): 66-70
    [146]马文有,田秋,曹茂盛,等.纳米颗粒分散技术研究进展——分散方法与机理(1) [J].中国粉体技术. 2002, 8(3):28-31
    [147]王相田,胡黎明,顾达,等.超细颗粒分散过程分析[J].化学通报. 1995, 5: 13-17
    [148]李晓贺,丰平,贺跃辉.纳米粉末在水中分散性的探讨[J].纳米科技. 2007, 4(1): 17-21
    [149]王靓,赵石林.纳米氧化锡锑透明隔热涂料的制备及性能研究[J].涂料工业. 2004, 24(10):4-9
    [150]方俊鑫,陆栋.固体物理学(下册)[M].上海:上海科学技术出版社:1981: 101-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700