木粉/聚丙烯复合界面分子运动弛豫过程解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步探明木塑复合界面特性和偶联剂作用机理及最佳用量问题,本文利用直接热压工艺和先造粒后热压工艺制备不同木粉含量和不同偶联剂种类及添加量的毛白杨木粉/聚丙烯复合材料,通过动态热机械分析(DMA)、介电弛豫和应力松弛方法从分子运动弛豫过程的角度对其界而特性进行了研究。
     本研究得到如下结论:
     (1)DMA研究结果表明,毛白杨木粉/聚丙烯复合材料的储存模量E′随温度的升高而减小,添加偶联剂后,储存模量E′显著升高,表明偶联剂与木粉发生反应并和聚丙烯分子链产生缠绕作用,界面结合强度增强。复合材料在温度0℃附近区域出现一个松弛峰,添加偶联剂后,松弛峰增大,表明偶联剂使复合材料内无定形分子链段运动受到更多的限制,木粉与聚丙烯产生新的结合,木塑界面结合更加紧密。
     (2)对毛白杨木粉/聚丙烯复合材料的介电弛豫研究表明,未添加偶联剂以及添加马来酸酐接枝聚丙烯(MAPP)和硅烷偶联剂的复合材料在温度为0℃、频率为5MHz附近均出现一个介电弛豫过程,该过程基于木材细胞壁中无定形区中伯醇羟基(CH2OH)的回转取向运动,弛豫强度(εs-ε∞)与木粉含量以及偶联剂种类和添加量有关。弛豫强度随木粉含量增大而增大,随偶联剂添加量增加先逐渐降低,而后缓慢增大。MAPP和硅烷偶联剂均能与木材无定形区中纤维素分子链上的伯醇羟基发生反应,使产生回转取向运动的伯醇羟基数量减少,因此弛豫强度降低。偶联剂超过理想用量后,弛豫强度缓慢增大,有可能是未参与反应的偶联剂所致。
     (3)根据Eyring绝对速度反应论计算得到毛白杨木粉/聚丙烯复合材料在介电弛豫过程中的表观活化能(AE),用以定量表征木塑两相界面的结合作用。对未添加偶联剂的复合材料,当木粉含量为40%时,表观活化能最大,表明木塑两相相容性最好,界面结合作用最强。对添加两种偶联剂制备的复合材料来说,ΔE总体的变化趋势基本一致,随偶联剂添加量的增加先增大后减小。在木研究条件下,添加MAPP和硅烷偶联剂的复合材料均在添加量为2%时出现ΔE最大值,分别为33.52kJ/mol和28.12kJ/mol,与未添加偶联剂的复合材料(13.86kJ/mol)相比增加至2倍以上,表明弛豫过程中伯醇羟基回转取向运动需要克服的能垒增加,复合材料的内部结合力增强,性能更加稳定。但当MAPP和硅烷偶联剂过量后,ΔE分别降至22.0kJ/mol和16.0kJ/mol以下。硅烷偶联剂过量后ΔE下降更为明显,接近未添加偶联剂的水平,表明弛豫过程中伯醇羟基回转取向运动需要克服的能垒降低,过量的偶联剂存在于木粉与聚丙烯之间,造成界面结构不均匀,内部结合力减弱。
     (4)采用直接热压和先造粒后热压两种工艺制备添加MAPP的毛白杨木粉/聚丙烯复合材料并对其进行介电弛豫分析,结果表明:在相同的温度频率域都出现弛豫过程,弛豫损耗峰和弛豫强度的变化趋势一致。先造粒后热压制备的复合材料伯醇羟基的数量比直接热压制备的复合材料少,表明经过先造粒过程,复合材料分散性更好,有利于MAPP和伯醇羟基的反应。添加量2%时,直接热压法制备的复合材料ΔE为26.2kJ/mol,低于先造粒后热压法制备复合材料的ΔE值(33.5kJ/mol)。
     (5)毛白杨木粉/聚丙烯复合材料的应力松弛结果与介电弛豫研究结果一致。即木粉含量40%时,木塑两相界面相容性最佳,内部结合作用最强。MAPP和硅烷偶联剂添加量2%时,应力松弛最缓慢,木塑两相结合紧密,结构最稳定。由两种工艺制备的复合材料应力松弛及其速率随偶联剂添加量的变化趋势是一致,但先造粒后热压工艺制备的复合材料,应力松弛较缓慢,应力松弛速率较小,性能优于直接热压制备的复合材料。
To further ascertain the interface characteristics, mechanism and the optimal loading of coupling agent of the wood plastic composite, which was one of the different wood flour content, type and content of coupling agents using direct hot-pressing process and hot pressing process after granulating respectively were prepared in this study. In the research with the dynamic thermal mechanical analysis (DMA), the dielectric approach and the stress relaxation methods, the interface characteristics were investigated from relaxation process of molecular movement.
     The main conclusions are summarized as follows:
     (1) The storage modulus (E') of Simon poplar wood flour/polypropylene composite increased with the rising of temperature and significantly increased after adding coupling agent, because coupling agent could make interface bonding strength increase by reacting with wood flour and producing entanglement with polypropylene molecular chain. The relaxation peak was observed around0℃and was higher after adding coupling agent, because coupling agent had maken more difficulty of molecular chain segments motion in amorphous region by a new combination between wood flour and polypropylene, therefore wood flour/polypropylene composite interface was more closely.
     (2) There was relaxation process in Simon poplar wood flour/polypropylene composite without and with coupling agent which is based on reorientation of the methynol groups (CH2OH) in amorphous region of wood cell wall was related to the different wood flour content, type and content of coupling agents. The relaxation strength (εs-ε∞) was gradually increased with the wood flour content increasing and was first decreased then increased with loading levels of coupling agent, suggesting that the number of the motive methynol groups was deduced as a result of coupling agent reacting with methynol groups. But the relaxation strength was slowly increased above the optimal loading of coupling agent (2%), which may be caused by coupling agent that did not participate in the reaction.
     (3) The apparent activation energy (△E) was calculated according to the Eyring's absolute rate reaction theory in relaxation process of Simon poplar wood flour/polypropylene composite and quantitatively characterized the combination on wood flour-polypropylene interface. The apparent activation energy of the samples without coupling agent reached a maximum when wood flour content is40%, suggesting the best compatibility and strongest internal bonding between wood flour and polypropylene. The apparent activation energy of the samples with maleic anhydride grafted polypropylene (MAPP) or silane as coupling agent was almost the same change trend and first increased then decreased with coupling agent increasing, and began to increase above that value:33.52k.l/mol and28.12kJ/mol respectively, more than twice as likely to samples without coupling agent, when the optimal loading of coupling agent (2%); that was due to the strong hindrance to the reorientation of methylol groups and, therefore, suggested the best compatibility and strongest internal bonding between wood flour and polypropylene; but the apparent activation energy of samples with two coupling agents fell to22.0kJ/mol and16.0kJ/mol respectively above the optimal loading of coupling agent, especially that of sample with silane dropped to that of sample without coupling agent and, therefore, suggested the energy barrier to the reorientation of the methynol groups was lower, too much coupling agent was present in wood flour and polypropylene, which resulted in uneven interface structure and weaker internal binding force.
     (4) The same relaxation process of wood flour/polypropylene composites with MAPP by using hot-pressing process after granulating and using direct hot-pressing process was the same changed. It was compared with two processes that the relaxation strength of sample and the apparent activation energy of sample at MAPP loading of2%both were higher than those of the latter, because wood flour, polypropylene and coupling agent in granulating could be mixed more uniformly leading to improve dispersity and interfacial compatibility between wood flour and polypropylene.
     (5) The stress relaxation behavior of wood flour/polypropylene composites appeared similar trends with that of dielectric relaxation. It was the best compatibility and the strongest internal bonding between wood and polypropylene that wood flour content is40%, the mechanical properties could be obviously increased by adding MAPP or silane as coupling agent, but the optimal loading of coupling agent was related to wood content and the type of coupling agent. The trendency of both stress relaxation and stress relaxation rate were consistent with loading of coupling agent, the stress relaxation and stress relaxation rate of wood flour/polypropylene composites by using hot-pressing process after granulating was slower to by using direct hot-pressing process, therefore performance of materials is superior to by using direct hot-pressing process.
引文
[1]包建成,丁常楷.木塑复合材料应用进展[J].塑料加工,2008,44(2):9-13.
    [2]曹金珍.吸着·解吸过程中水分与木材之间的相互作用-从介电弛豫及吸附热力学[D].北京:北京林业大学,2001.
    [3]陈宏刚,项索云,吕秉玲.偶联剂及其应用[J].塑料科技,1996(1):15-20.
    [4]陈平,陈辉,刘其贤.偶联剂对玻璃纤维/环氧基复合材料界面介电性能的影响研究[J].复合材料学报,1996,13(3):1-4.
    [5]岑兰,陈福林,陈广汉.偶联剂对木/塑复合材料性能的影响[J].木材工业,2008,5:16-19.
    [6]揣成智,李树,蔺艳琴.聚丙烯/接枝木质纤维复合材料相容性及性能的研究[J].中国塑料,2000,14(5):23-28.
    [7]党文杰,宋永明,王清文.木纤维/聚丙烯复合材料界面相容性及增韧改性的研究[J].北京林业大学学报,2007,29(2):133-137.
    [8]符韵林.二氧化硅/木材复合材料的微细构造与物性.[D]北京:北京林业大学,2006.
    [9]符韵林,赵广杰.二氧化硅/木材复合材料的应力松弛[J].北京林业大学学报,2008,30(1):119-123.
    [10]符韵林,赵广杰.二氧化硅/木材复合材料的动态黏弹性[J].林业科学,2009,45(3):101-104.
    [11]符韵林,赵广杰,全寿京.二氧化硅/木材复合材料的微观结构与物理性能[J].复合材料学报,2006,23(4):52-59.
    [12]高黎,王正.木塑复合材料的研究、发展及展望[J].人造板通讯,2005,2:5-8,17.
    [13]郭宝华,陈静,周宁等.高性能木纤维增强聚丙烯复合材料的制备[J].工程塑料应用,2002,30(7):13-15.
    [14]黄丽.聚合物复合材料[M].北京:中国轻工业出版社,2001.
    [15]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版,2003:35-89.
    [16]纪占敏,杜仕国,施冬梅等.硅烷偶联剂在复合材料中的应用研究[J].现代涂料与涂装,2006,(12):44-46.
    [17]姜洪丽,刘欣,王小鹏等.木塑复合材料表面性能对力学性能的影响[J].泰山医学报.2008,4:241-243.
    [18]姜峰.木塑复合材料增韧性能的研究[D]北京:中国林业科学研究院,2007,47-48.
    [19]姜晓冰,许民,工克奇.聚乙烯、聚丙烯与木质纤维复合制板工艺[J].东北林业大学学报,2003,(2):9-10.
    [20]蒋佳荔,吕建雄.木材动态粘弹性的含水率依存性[J].北京林业大学学报,2006,28(增刊2):118-123.
    [21]李大纲,周敏,许小君.木塑复合材的产品性能及其应用前景[J].机电信息,2004,65(5):47-49.
    [22]李凯大,戴东花,谢雪甜等.偶联剂对木塑复合材料界而相容性的影响[J].林产工 业,2005,32(3):24-26.
    [23]李思远,杨伟,史炜等.木粉/聚丙烯复合材料力学性能及结晶行为研究[J].塑料工业,2005,33(增刊):146-149.
    [24]李思远,杨伟,杨鸣波.木塑复合材料挤出成型工艺及性能的研究[J].塑料工业,2003(11):22-24.
    [25]李志君,符新,余浩川等.改性橡胶木粉/HDPE复合材料结构和力学性能的研究[J].塑料,2006,35(3):1-5.
    [26]廖兵,黄玉惠,陈鸣才.改性i木质纤维对LDPE和木质纤维复合材料力学性能的影响[J].高分子材料科学与工程,1999(3):123-125.
    [27]廖兵,黄玉惠,赵树录等.接枝改性木纤维对聚氯乙烯/木纤维复合材料力学性能的影响[J].应用化学,1996,13(5):64-66.
    [28]廖俊,陈圣云,刘英伟等.硅烷偶联剂在涂料中的应用及其进展[J].精细与专用化学品,2006,14(19):1-19.
    [29]林建国,唐龙祥,何晓军.处理剂对木塑产品性能的影响[J].塑料工业,2006,34(2):52-54.
    [30]林群芳,周晓东.木粉增强聚丙烯力学性能的改善方法[J].现代化工,2002,22(5):37-41.
    [31]蔺艳琴,揣成智,张立平.聚丙烯/木纤维复合材料增强改性研究[J].现代塑料加工与应用,2000,12(1):14-17.
    [32]刘建勇,钟圣兆,夏成林等.木塑复合材料及其研究进展[J].合成塑料老化与应用,2004(3):48-50,55.
    [33]刘涛,何慧,洪浩群等.木塑复合材料研究进展[J].绝缘材料.2008(2):38-41.
    [34]刘涛,洪凤宏,武德珍.木粉表面处理对PVC/木粉复合材料性能的影响[J].中国塑料,2005(1):27-30.
    [35]刘文鹏,姚姗姗,陈晓丽等.影响聚丙烯基木塑复合材料力学性能因素[J].现代塑料加工应用,2006,18(2):19-22.
    [36]刘玉强,赵志曼.木塑复合材料及其发展[J].化工新型材料,2005(3):59-61.
    [37]刘智,曹金珍ACQ-D处理后杉木的拉应力松弛[J].北京林业大学学报,2008,30(2):119-123.
    [38]鲁博,张林文,曾竟成等.天然纤维复合材料[M].北京:化学工业出版社,2005.
    [39]吕建坤,柯毓才,漆宗能等.环氧/粘土纳米复合材料的形成机理及性能[J].高分子通报,2000,(2):18-26.
    [40]彭思来,蔡红珍,柏雪源.木塑复合材料的研究及其发展[J].科技信息(学术版),2006(2):73-75.
    [41]秦特夫.改善木塑复合材料界面相容性的途径[J].世界林业研究,1998(3):46-51.
    [42]秦特夫.木粉加入量对木/塑复合材料性能影响的研究[J].木材工业,2002(5):17-20.
    [43]秦特夫,姜锋,黄洛华.铝酸酯偶联剂对木粉活化性能的研究[J].塑料工业,2007,35(增刊):364-366.
    [44]秦特夫,阎吴鹏.木材表面非极性化原理的研究[J].木材工业,1999,13(4):17-20.
    [45]宋永明,工清文,郭垂根等EPDM-MA对木粉/聚丙烯复合材料性能的影响[J].林业科 学,2005(6):138-143.
    [46]宋永明,肖泽芳,王清文.木粉/再生聚苯乙烯复合材料的动态机械性质分析[J].东北林业大学学报,2004,132(5):29-31.
    [47]滕国敏,张勇,万超琪等.木塑复合材料的界面改性方法[J].化工新型材料,2005,33(5):7.
    [48]王爱平.木材—聚丙烯复合材料偶联剂MAPP的合成与性能研究[D].东北林业大学,2006.
    [49]王建军等.木质纤维—聚乙烯复合材料中聚乙烯改性的研究[J].木材工业,1995,9(2):10-13.
    [50]王海铡,宋永明,工清文等.针状木纤维/HDPE复合材料的力学性能[J].林业科学,2006,42(12):108-113.
    [51]工洁瑛,赵广杰,杨琴玲等.饱水和气干状态杉木的压缩成型及其热处理永久固定[J].北京林业大学学报,2000,22(1):72-75.
    [52]工洁瑛,赵广杰.空气介质热处理杉木压缩木材的蠕变[J].北京林业大学学报,2002,24(2):52-58.
    [53]王磊,曹金珍.偶联剂在木塑复合材料中应用及研究[J].林产工业,2008,35(6):9-14.
    [54]王立,宋国君,王海龙等.热塑性木塑复合材料研究进展[J].化学推进剂与高分子材料,2006,4(3):10-16.
    [55]王清文,工伟宏等.木塑复合材料与制品[M].北京:化学工业,2007:1-18.
    [56]王伟宏,宋永明,高华.木塑复合材料[M].北京:科学出版社,2010:158-159.
    [57]王颖.木塑复合材料研究概况上海塑料[J].2007,140(4):6-10.
    [58]王志玲,王正.木/塑复合材料界面增容研究的进展[J].木材工业,2005,19(3):12-15.
    [59]王正.木塑复合材料界面特性及其影响因子的研究[D].北京:中国林业科学研究院,2001.
    [60]王正,郭文静,王建军.木塑复合材料板制造工艺的因子研究[J].林产工业,1996,23(2):8-9.
    [61]王正,工志玲,任一萍等.功能性共聚物偶联剂制备麦秸—回收LDPE复合材料的性能及其影响因子[J].林业科学,2007,43(7):67-73.
    [62]沃丁柱.复合材料大全[M].北京:化学工业出版社,2002.
    [63]吴远楠,武军.HDPE基木塑复合材料力学性能的研究[J].北京印刷学院学报,2006,14(5):9-12.
    [64]肖泽芳,赵林波,谢延军等.木材—热塑性塑料复合材料的进展.东北林业大学学报,2003,31(1):39-41.
    [65]谢满华.化学处理木材的应力松弛[D].北京:北京林业大学,2006.
    [66]许民,姜晓冰,王克奇.木塑复合材料的研究现状与应用前景[J].林业科技,2004(3):29:41.
    [67]许民,高延明,才智等.木材纤维与回收聚丙烯的热压复合工艺研究[J].林产工业,2006,33(3):19-22
    [68]许民,李峰,王清文.桦木锯屑/聚丙烯挤出复合技术研究[J].木材加工机械,2006,(3):17-21.
    [69]许民,谭海彦,姜晓冰等.偶联剂对木塑复合材料性能的影响[J].林产工业,2006,33(4):30-32.
    [70]许民,谭海彦,姜晓冰.纤维热塑性聚合物热压复合工艺的研究[J].林业科技,2006(2):43-45.
    [71]徐平涛.新型绿色建材—木质塑料的制备及其开发前景[J].中国建材科技,2001,4:50-52.
    [72]薛平,丁筠.木塑复合材料发展现状及前景[J].建材工业信息,2003(12):6-8.
    [73]薛平,王哲,贾明印等.木塑复合材料加工工艺与设备的研究[J].人造板通讯,2004(11):9-13.
    [74]薛平,张明珠,何亚东等.木塑复合材料及挤出成型特性的研究[J].中国塑料,2001,15(8):53-59
    [75]薛振华.蒙脱土/木材复合材料的构造与流变学特性[D].北京,北京林业大学,2006.
    [76]薛振华,赵广杰.蒙脱土/木材复合材料应力松弛性能的初步研究[J].北京林业大学学报,2006,28(增刊):115-117.
    [77]闫丽.甘汕预处理固定杨木压缩变形机理及应用[D].北京林业大学,2010.
    [78]杨文斌.木塑复合材料制造技术及复合机理[M].东北林业大学出版社,2005.
    [79]尹锐,赵丽媛.木塑复合材料产业发展速度快市场需求旺[J].国际木业,2008(7):14-15.
    [80]袁新恒,张隐西,张祥福.马来酸酐接枝聚丙烯在纸粉填充聚丙烯体系中偶联作用的研究.高分子材料科学与工程,1999,15(6):112-114.
    [81]臧克峰,项素云,路萍等PP-g-MAH及偶联剂处理木粉填允PP的研究[J].中国塑料,2001,15(12):71-73.
    [82]张明珠,薛平.木粉/再生热塑性塑料复合材料性能的研究[J].塑料,2000,29(5):39-39.
    [83]章文贡,汪联辉,章永化.配位性铝酸酯偶联剂的合成及其空间构型研究[J].中国塑料,2000,14(7):79-85.
    [84]赵广杰.木材细胞壁中吸着水的介电弛豫[M].北京:中国林业出版社,2002.
    [85]赵孔双.介电谱方法及应用[M].北京:化学工业出版社,2008,307-314.
    [86]赵义平,刘敏江,张环.木粉填充LDPE回收料的研究[J].塑料加工应用,2001,23(4):13-15.
    [87]赵永生,工克俭,朱复华等.蒙脱土/硅烷改性木粉/PVC复合材料[J].复合材料学报,2007,24(3):63-71.
    [88]赵贞,张文龙,陈宇.偶联剂的研究进展和应用[J].塑料助剂,2007,(3):4-9.
    [89]赵学峰,白树林,楚小瀛.木塑复合材料的发展回顾[J].材料导报,2004,18(2):52-55.
    [90]郑景新,庞浩,陈永等.木塑复合材料的研发与进展[J].化学建材,2008,24(3):1-4.
    [91]郑水林.粉体表面改性技术[M].中国建材工业出版社,2003:56.
    [92]郑玉涛,陈就记,曹德榕.改进植物纤维/热塑性塑料复合材料界面相容性的技术进展[J].纤维素科学与技术,2005,13,(1):45-55.
    [93]米德钦,刘希荣,生瑜.聚合物基木塑复合材料的研究进展[J].塑料工业,2005,33(12):1.
    [94]朱晓群,周亨近,魏浩等.木粉/HDPE复合材料的力学性能与流动性能[J].北京化工大学学报,2001,28(1):56-58.
    [95]周海鸥,王宝成.木塑复合材料的研究进展[J].化工科技市场,2008,31(11):13-14,24.
    [96]卓存诚.铝酸酯偶联剂在塑料复合材料中的应用[J].福建师大福清分校学报,1996(2):63-66.
    [97]Aoki T, Yamada T. Creep of wood during decrystallization and of decrystallized wood [J].Mokuzai Gakkaishi,1977,23(1):10-16.
    [98]Aoki T, Yamada T.Chemorheology of wood.IV.Relaxation time and rate constant [J].Mokuzai Gakkaishi,1978b,24(11):784-789.
    [99]Aradoaei S.. Ciobanu R., Trandabat A., et al. Technological analysis via dielectric spectroscopy of materials containing recycled PET and wood derivates[J]. Proceedings of the 2004 IEEE International Conference on Solid Dielectrics ICSD 2004, (1):462-465.
    [100]Backman A C, Lindberg K A H. Interaction between wood and polyvinyl acetate glue studied with dynamic mechanical analysis and scanning electron microscopy [J].Journal of Applied Polymer Science,2004,91 (5):3009-3015.
    [101]Balasuriya P W, Ye L, Mai Y W. Mechanical properties of wood flake-polyethlene composites. Part2:Interface Modification [J].Journal of Applied Polymer Science,2002, 83:2505-2521.
    [102]Behzad K. Effect of wood flour content on the hardness and water uptake of thermoplastic polymer composites [J].World Applied Sciences,2011,12(9):1632-1634.
    [103]Bengtsson M, Oksman K. Silane crosslinked wood plastic composites:Processing and properties [J].Composites Science and Technology,2006,66(13):2177-2186.
    [104]Bhattacharyya D, Manikath J, Jayaraman K.Stress relaxation of woodfiber-thermoplastic composites [J]. Journal of Applied Polymer Science,2006:401-407.
    [105]Bledzki A K, Faruk O, Huque M. Physlcomechanical Studies of Wood Fiber Reinforced Composites [J]. Polymer-plastics Technology and Engineering,2002,41(3):435-451.
    [106]Bledzki A, Gassan J.Composites reinforced with cellulose based fibres [J]. Progress in Polymer Science,1999,24(2):221-274.
    [107]Bledzki A. K., Reihmane S, Gassan J. Properties and modification methods for vegetable fibers for natural fiber composites [J]. J Appl Polym Sci,1996,59 (8):1329-1336.
    [108]Bledzki A K, Reihmane S, Gassan J. Thermoplastics reinforced with wood fillers:a literature review [J]. Polymer-Plastics Technology and Engineering,1998,37(4):451-468.
    [109]Burgstaller C, Stadlbauer W. Processing of wood-plastic composites-influence of temperature and shear [J].9th International Conference on Wood & Biofiber Plastic Composites,2007:79-85.
    [110]Cao J Z, Xie M H, Zhao G J. Tensile stress relaxation of copper-ethanolamine (Cu-EA) treated wood [J].Wood Science and Technology,2006,40(5):417-426.
    [111]Cao J, Wang Y, Xu W, Wang L.Preliminary study of viscoelastic properties of MAPP-modified wood flour/polypropylene composites [J].Forestry studies in China, 2010:12(2):85-89.
    [112]Cao J Z, Zhao G J. Dielectric relaxation based on adsorbed water in wood cell wall under non-equilibrium state.1 [J]. Holzforschung.2000,54(3) 321-326.
    [113]Cao J Z, Zhao G J. Dielectric Relaxation Based on Adsorbed Water in Wood Cell Wall under Non-Equilibrium State 2[J]. Holzforschung.2001,55(1)87-92.
    [114]Cao J Z, Zhao G J. Dielectric relaxation based on adsorbed water in wood cell wall under non-equilibrium state [J]. Holzforschung.2002.56(6):655-662.
    [115]Clemons C, Sabo R, Kaland M. et al. Effects of silane on the properties of wood-plastic composites with polyethylene-polypropylene blends as matrices[J]. Journal of Applied Polymer Science,2011,119(3):1398-1409.
    [116]Chotirat L, Chaochanchaikul K. Sombatsompop N. On adhesion mechanisms and interfacial strength in acrylonitrile-butadiene-styrene/wood sawdust composites [J]. International Journal of Adhesion and Adhesives,2007,27(8):669-678.
    [117]Colom X, Carrasco F, Pages P. Effects of different treatments on the interface of HDPE/ lignocellulosic fiber composites [J]. Composites Science and Technology,2003,63(2):161-169.
    [118]Dastoorian F, Tajvidi M, Ebrahimi G. Evaluation of time dependent behavior of a wood flour/high density polyethylene composite [J]. Journal of re forced plastics and composites. 2010:132-143.
    [119]Dwianto W, Inoue M, Norimoto M. Fixation of compressive deformation of wood by heat treatment. Mokuzai Gakkaishi [J].1997.43(4):303-309.
    [120]Dwianto W, Morooka T, Norimoto M.The compressive stress relaxation of Albizia (Paraserienthes falcata Becker) wood by heat treatment [J].Mokuzai Gakkaishi,1998,44(6):403-409.
    [121]Englund K and Olson B. Processing Influences on Wood-Plastic Composite Properties Extrusion Screw Speed [J].9th International Conference onWood & Biofiber Plastic Composites, 2007:87-91.
    1122] Espert A, Carnacho W, Karlson S.Thermal and thermomechanical properties of biocomposites made from modified recycled cellulose and recycled polypropylene [J]. Journal of Applied Polymer Science,2003,89:2353-2360.
    [123]Filex J M, Gatenholm P. The nature of adhesion in composites of modified cellulose fibers and polypropylene [J]. Journal of Applied Polymer. Science,1991,42(3):609-620.
    [124]Fing D, Caulfield D F, Sanadi A R. Effect of compatibilizer on the structure-property relationships of Kenaf- fiber/polypropylene composites [J]. Polymer Composites,2001, 22(4):506-517.
    [125]Fu Y L, Zhao G J. Dielectric properties of silicon dioxide/wood composite[J]. Wood Science and Technology.2007,41 (6):511-522.
    [126]Gassan J, Bledzki A K. Effect of moisture content on the properties of silanized jute-epoxy composites [J].Polymer composites,1997.18(2):179-184.
    [127]George J, Tomas S.A review on interface modification and characterization of natural fiber reinforced plastic composites [J]. Poly Eng Sci,2001,41:14-71.
    [128]Ghasemi I, Azizi H, Nacimian N. Investigation of the dynamic mechanical behavior of polypropylene/(wood flour)/(kenaf fiber) hybrid composites [J]. Journal of Vinyl & Additive Technology,2009,15(2):113-119.
    [129]Gibson E J. Creep of wood:role of water and effect of changing moisture content.Nature, 1965,206(4980):213-215.
    [130]Glasstone S, Laidler K, Eyring H.The theory of rate processes [M]. McGraw Hill, New York, 1941:544-551.
    [131]Glukhov V I, Matveev V K, Shiryaeva G V. Dielectric properties of various wood-plastics [J].Soviet Plastics (English translation of Plasticheskie Massy),1973, (5):26-29.
    [132]Guo C G, Wang Q W. Compatibilizing effect of maleic anhydride grafted styrene-ethylene-styene(MAH-g-SEBS)on the Polypropylene and Wood Fiber Composites [J].Journal of Reinforced Plastics and Composites,2007,26(17):1743-1752.
    [133]Herrera-Franco P J, Valadez-Gonzalez A. A study of the mechanical properties of short natural-fiber reinforced composites [J]. Composites Part B:Engineering,2005,36(8):597-608.
    [134]Hoffmann G, Poliszko S, Hilczer T. Model approach to dielectric-thermal analysis of wood modified with polymer [J].Journal of Applied Polymer Science,1990, (39):153-167.
    [135]Hristov V, Vasileva S. Dynamic mechanical and Thermal properties of modified Poly (propylene) Wood Fiber Composites [J].Macromoi. Mater. Eng.2003,288,798-806.
    [136]Hristov V N, Vasileva S T. Deformation Mechanisms and Mechanical Properties of Modified Polypmpylene/Wood Fiber Composites [J]. Polymer Composites,2004,25(5):521-526.
    [137]Inoue M, Minato K, Norimoto M. Permanent fixation of compressive deformation of wood by crosslinking [J]. Mokuzai Gakkaishi,1994,40(9):931-936.
    [138]Jahani Y. The Effect of epoxy-polyester hybrid resin on mechanical properties, rheological behavior, and water absorption of polypropylene wood flour composites [J].Polymer Engineering and Science,2007,47(12):2041-2048.
    [139]Jiang K Y, Guo Y L, Zeng W L, et al. Effeet of Alkaline Treatment of wood Flour on Strength of wood-Plastic Composites for Seleetive Laser Sintering. Advanced Materials Research,2010, 10(136):131-134.
    [140]Kazayawoku M, Balatinecz J J, Woodhams R T. Diffuse reflectance fourier transform infraredspectra of wood fibers treated with maleated polypropylenes [J]. Journal of Applied Polymer Science,1997,60(6):1163-1173.
    [141]Kol H S. Thermal and dielectric properties of pine wood in the transverse direction [J]. Bioresources.2009,4(4):1663-1669.
    [142]Li Q, Matuana L. Effectiveness of maleated andacrylic acid-functionalized polyolefin coupling agents for HDPE-wood-flour composites [J]. J Thermoplast Compos Mater,2003,16 (6): 551-564.
    [143]Li Q, Matuana L. Efectiveness of Maleated and A.crylic Acid-Functionalized Polyolefin Coupling Agents for HDPE-Wood-Flour Composites[J].Journal of Thermoplastic Composite Materials,2003,16:551-564.
    [144]Li Q, Matuana L.Surface of cellulosic materials modified with functionalized polyethylene coupling agents [J]. Journal of Applied Polymer Science,2003,88(2):278-286.
    [145]Lu J, Negulescu I, Wu Q. Maleated wood-fiber/high-density-polyethylene composites: coupling mechanisms and interfacial characterization [J]. Compos Int,2005,12 (1):125-140.
    [146]Lu J, Wu Q, Negulescu I. Maleated wood fiber/high-density-polyethylene composites: coupling agent performance [J]. J Appl Polym Sci,2005,96 (1):93-102.
    [147]McCrum N.G., Reed B.E. and Williams G. Anelastic and Dielectric Effects in Polymer Solids [M]. Wiley, New York,1967, PP:377-387.
    [148]Maldas D, Kokta B V, Raj R G, et al. Improvement of the mechanical properties of sawdust wood fibre-polystyrene composites by chemical treatment [J]. Polymer,1988,29(7):1255-1265.
    [149]Maldas D, Kokta B V, Daneaulf C. Composites of poly vinyl chloride-wood fibers. IV. Effect ofthe nature of fibers [J]. J Vinyl Techn.1989,11(2):90-99.
    [150]Mankikadan R C,Nair S M.Sabu T,et al.Tnesile Properties of Short Sisal Fibe Reinforced Polystyrene Composites[J].Journal of Applied Polymer Science,1996(60):1483-1497.
    [151]Marcovich N E, Villar M A. Thermal and Mechani. Cal Characterization of Liner Low Density Polyethylene/Wood Flour Composites [J]. Journal of Applied Polymer Science,2003, 90(10):2775-2784.
    [152]Matuana L, Balatinecz J, Park C, Sodhi R. S.X-ray photoelectron spectroscopy study of si lane-treated newsprint-fibers. Wood Science and Technology,1999,33:259-270.
    [153]Matuana L M, Park C B, Balatinecz J J. Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites [J].Polymer Engineering and Science,1998, 38(11):1862-1872.
    [154]Matuana L M, Woodhams R T, Balatinecz J J, et al. Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites[J].Polymer Composites,1998,19(4):446-455.
    [155]Maldas D, Kokta B V. Effect of recycling on the mechanical properties of wood fiber-polystyrene composites. Part Ⅰ:Chemithermomechanical pulp as a reinforcing filler [J].Polymer Composites,1990, 11(2):77-83.
    [156]Nakano T.A theoretical description of creep behavior during water desorption [J]. Holzforschung,1996,50(1):49-54.
    [157]Norimoto M. Dielectric properties of wood [J]. Wood Research.1976,60(59):106-152.
    [158]Norimoto M, Yamada T. The dielectric Porperties of wood IV, on dielectric dispersion of oven-dried wood. Wood research,1970, (50):36-49.
    [159]Oksman K. Improved interaction between wood and synthetic polymers in wood/polymer composites [J]. Wood Science and Technology,1996,30(3):107-205.
    [160]Oksman K, Clemons C. Mechanical properties and morphology of impact modified polypropylene-wood flour composites [J].Journal of Applied Polymer Science,1998,67:1503-1513.
    [161]Oksman K, Lindberg H. Interaction between wood and synthetic polymers [J]. Holzforschung, 1995,9(3):249-254.
    [162]Oksman K, Lindberg H, Holmgren A.The Nature and Location of SEBS-MA Compatibilizer in Polyet hylene:Wood Flour Composite [J].Journal of Applied Polymer Science,1998,69:201-209.
    [163]Poliszko S, Hoffmann G. Dielectric behavior of wood-polystyrene composite [J].Journal of Applied Polymer Science,1985,30(2):799-80.
    [164]Qin T, Huang L, Li G. Effect of chemical modification on the properties of wood/polypropylene composites [J]. Journal of Forestry Research,2005,16(3):241-244.
    [165]Raj R G, Kokta B V. Reinforcing high density polyethylene with cellulosic fibers. I:The effect of additives on fiber dispersion and mechanical properties [J]. Polymer Engineering & Science,1991, 31(18):1358-1362.
    [166]Raj R G, Kokta B V, Daneault C. Effect of chemical treatment of fibers on the mechanical properties of polyethylene-wood fiber composites [J].Journal of Adhesion Science and Technology, 1989,3(1):55-64.
    [167]Sato S, Shiraishi N, Sadoh T, et al. Setting of wood using cellulose and lignin-solvents [J].Material,1975,24(264):885-889.
    [168]Sazbo T, Ifju G. Influence of stress on creep and moisture distribution in wooded beams under sportion conditions [J].Wood science,1970,2(3):159-167.
    [169]Sernek M, Kamke F A. Application of dielectric analysis for monitoring the cure process of phenol formaldehyde adhesive [J]. International Journal of Adhesion and Adhesives.2007, 27(7):562-567.
    [170]Schneider M H. Wood polymer composites [J].Wood and Fiber Science,1994,26(1):142-151.
    [171]Stark N M, Berger M J. Effect of particle size on properties of wood-flour reinforced polypropylene composites[C].The Fourth Interna-tional Conference on Woodfiber-plastic Composites, 1997,134-143.
    [172]Stark N M, Rowlands R E. Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites [J].Wood and Fiber Science,2003,35(2):167-174.
    [173]Sugimoto H, Norimoto M. Dielectric relaxation of heat-treated wood [J].Zairyo/Journal of the Society of Materials Science.2003,52(4):362-367.
    [174]Sugimoto H, Norimoto M. Dielectric relaxation due to the heterogeneous structure of wood charcoal [J]. Journal of Wood Science.2005,51(6):554-558.
    [175]Sugimoto H, Takazawa R, Norimoto M. Dielectric relaxation due to heterogeneous structure in moist wood[J]. Journal of Wood Science.2005,51(6):549-553.
    [176]Sugimoto H, Kanayama K, Norimoto M. Dielectric relaxation of water adsorbed on wood and charcoal [J].Holzforschung.2007.61(1):89-94.
    [177]Sugimoto H. Miki T, Kanayama K. et al. Dielectric relaxation of water adsorbed on cellulose [J]. Journal of Non-Crystalline Solids.2008,354(27):3220-3224.
    [178]Sugiyama M, Norimoto M. Dielectric relaxation spectra of chemically treated woods[J]. Journal of Applied Polymer Science.2005,96(1):37-43.
    [179]Sugiyama M, Norimoto M. Dielectric relaxation of water adsorbed on chemically treated woods [J]. Holzforschung.2006,60(5):549-557.
    [180]Sugiyama M, Obataya E, Nomroto M. Viscoelastic Properties of the matrix substance of chemically treated wood [J].Joumal of materials scienee,1998, (33):3505-3510.
    [181]Suzuki Y, Kuroda N. Dielectric properties of wood with high moisture content 1. Dielectric properties in the high frequency range [J]. Mokuzai Gakkaishi.2003,49(3):161-170.
    [182]Takatani M, Ikeda K. Sakamoto K, et al. Cellulose esters as compatibilizers in wood/poly (lactic acid) composite [J].Journal of Wood Science,2008,54(1):54-61.
    [183]Tomppo L, Tiitta M, Laakso T. et al. Dielectric spectroscopy of Scots pine [J]. Wood Science and Technology.2009,43(7):653-667.
    [184]Torgovnikov G I. Dielectric properties of wood and wood-based materials. Springer-Verlag. Berlin,1993.
    [185]Trejo-O'Reilly J A, Cavaille J Y, Paillet M, et al. Interfacial properties of regenerated cellulosefiber/polystyrene composite materials:Effect of the coupling agent's Structure on the micromechanical behavior [J]. Polym Comp,2000,21(1):65-71.
    [186]Wang L, Cao J Z, Wang Y. Dielectric properties of Simon poplar wood flour/polypropylene composite at oven-dry state [J]. Forestry Studies in China,2008, 10(4):265-269.
    [187]Wang Y, Cao J Z, Zhu L Z. Stress relaxation of wood flour/polypropylene composites at room temperature [J]. Wood and Fiber Science,2011,43,262-270.
    [188]Wang Y, Cao J Z, Zhu I, Z, et al. Interfacial compatibility of wood flour/polypropylene composites by stress relaxation method [J]. J of Appl Polym Sci,2012,126, E89-E95.
    [189]Wu J, Yu D, Chan C M, et al. Effect of fiber pretreatment condition on the interfacial strength and mechanical properties of wood fiber/PP composites[J].Journal of Applied Polymer Science, 2000,76(7):1000-1010.
    [190]Yang Ch M, Qi Y J. Sun Y H. Practical mesh analysis and application prospects of formation of sub-nano wood flour. Journal of Norestry Unversity.2008,36(10):64-72.
    [191]Yu L. Cao J. Zhao G. Tensile stress relaxation of wood impregnated with different ACQ formulations at various temperatures[J].Holzforschung,2010,64:111-117.
    [192]Yuan X, Zhang Y, Zhang X. Studies on compatibilization of newspaper flour/PP composites [J]. Polymer Materials Science and Engineering,1999,15(6):112-114.
    [193]Zaini M J, Fuad M Y A, Ismail Z, et al. The effete of filler content and size on the meehanieal properties of polypropylene/oil palm wood flour composites [J]. Polymer International,2006,40(1): 51-55.
    [194]Zhang S, Rodrigue D, Riedl B. Preparation and morphology of polypropylene/wood flour composite foams via extrusion [J]. Polymer composites,2005,26(6):731-738.
    [195]Zhao G J. Dielectric relaxation of water adsorbed on wood [J]. Mu kuzaiG akkaishi,1990, 36(4):257-263.
    [196]Zhao Y, Wang K, Zhu F, et al. Properties of poly (vinyl chloride)/wood flour/montmorillonite composites:Effects of coupling agents and layered silicate [J].Polymer Degradation and Stability, 2006,91(12):2874-2883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700