热塑性复合材料制备过程中的流变与流动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热塑性复合材料轻质、高韧性、低能耗、耐化学腐蚀、成型方便、制造周期短、对环境友好,在环保意识逐渐增强的今天,得到极大的关注,其产品在国民经济及国防建设中的应用日益广泛。本文以聚合物常用改性方法即共混与复合为起点,对实施热塑性复合材料加工的基本设备——挤出机中的关键问题进行了计算分析。进而以新型热塑性复合材料——轻质热塑性复合片材的制备为主要研究对象,针对热塑性复合材料工业制备过程中的几个关键问题,探讨了复合材料微观相态结构、流变行为以及加工条件这三者之间的相互关系,以期为典型热塑性复合材料工业制备技术的开发及优化提供必要的基础。
     全文由三部分组成,即多相聚合物系流变学、挤出机螺槽中流动的数值模拟以及预混粉体浸渍技术中相关多相流动及其模拟分析。
     首先,选择弹性体增韧PET复合体系和石墨填充聚合物体系分别作为聚合物共混体系及粒子填充聚合物体系的代表,并借助力学性能测试及微观结构观察,着重分析了聚合物复合体系的流变行为与相态结构间的关系,讨论了聚合物复合体系的结构及加工工艺对其性能的影响。
     其次,针对纤维增强复合材料的制备过程,将单螺杆挤出机简化为三维方腔,利用粒子轨迹跟踪技术和有限元法研究了螺杆转速、螺槽深度以及聚合物流变行为对其混合特性的影响。并讨论了导致纤维发生断裂和分散的因素。为此,提出了适合加工长纤维增强热塑性复合材料的流场特征,给出了改善单螺杆挤出机混合的措施。
     最后,采用喷动流化床预混与双钢带压机浸渍的技术路线制备轻质热塑性片材。为了揭示喷动流化床内纤维分散机理,利用大涡模拟方法,对四种不同结构喷动流化床的流体动力学进行了数值模拟,分析了内构件对流型分布、湍流特性的影响,同时利用流变仪测量了纤维束的内聚力,为纤维束的筛选建立了标准。研究结果表明,内构件(导流筒和圆盘型挡板)的加入大大地改变了喷动流化床内的流场分布,这种独特的组合流场有助于纤维的分散。
     采用大涡模拟的基本思想,研究了喷动流化床内纤维的分布情况。通过求解组分质量守恒方程,借鉴絮团强度的概念,发现各区域的纤维浓度与流场特征密切相关,絮团的大小直接取决于纤维间的相互作用力及流场中的湍动程度。并且,提出了喷动流化床内纤维絮团产生的机理以及减少絮团的措施。
     应用REV尺度的格子Boltzmann方法,模拟了热塑性树脂沿轻质毡厚度方向的流动过程,考察了加压方式、载荷、温度、双钢带压机结构等对浸渍的影响。结果表明,与平板压机相比,双钢带压机通过施加高低交替的压力更能有效地浸渍轻质毡使浸渍时间缩短了10~15%。另外发现,浸渍不仅与树脂最大浸渍速度有关,还取决于片材在高压区的停留时间。通过增加载荷或升高温度均可提高树脂最大速度,而片材在高压区的停留时间则对压机辊柱直径及载荷更为敏感,仅依靠调节钢带运行速度不能达到缩短浸渍时间的目的。
Owing to the advantages of low weight, high toughness, low energy consumption, chemical resistance, convenient forming, short manufacture and environment-friendly, polymer composite has attracted great attention and its application has been widely increased in the important projects of national economy. Concerned with typical industrialized manufacture of the polymer composites, several key issues were investigated in this thesis, including the microscale structure of the composites, rheological behavior and processing conditions. The relationship between them was discussed in order to provide foundation for the development and optimization of industrialized manufacture process.
     The thesis consisted of three parts, namely rheology of multiophase polymer system, numerical simulation of the flow field in the screw's channel and the multiphase flow relating to the technology of premixing of resion powder with long glass fiber and impregnation. Firstly, toughened PET composites and graphite filled polymer composites were selected on behalf of the compounding and filled system, respectively. With the help of mechanical testing, SEM observation, the relationship between rheological behavior and the microscale structure of the composites was emphasized. The effects of the composite's structure and processing condition on properties were investigated.
     Secondly, aimed at the manufacturing of glass fiber reinforced composites, the single-screw extruder was simplified as a 3D rectangle cavity and the flow field of it was simulated by means of FEM and particle tracing technology. The effects of rotating speed of the screw, depth of the channel and viscoelastic behavior of the polymer on the mixing performance were evaluated. In order to apply the single-screw extruder in the manufacture of long fiber reinforced composites, appropriate flow field was suggested and approaches to promote the mixing performance was put forward.
     Thirdly, the maufacure of light-weight reinforced thermoplastic sheet (LWRT) was conducted by premixing of resin powder and long glass fiber in internally spout-fluid bed and impregnation in double-belt press. In order to illuminate the dispersion mechanism of fiber bundle in the spout-fluid bed, LES method was employed to simulate the hydrodynamics of the spout-fluid bed with different structures. These spout-fluid beds were installed with some internals and the effects of the internals on the flow distribution and turbulence characteristic were discussed. In addition, the cohension strength of the fiber bundle was measured by ARES and the purpose of it was to establish a criterion for fiber evaluation. The results showed that the addition of the internals had significantly modified the flow field. The combination of several sub flow was benefit to the dispersion of fiber bundles and the mixing of resion powder and long glass fiber was improved.
     In view of the basic idea of LES, the species transport model was employed to study the distribution of fiber in the spout-fluid bed. With the concept of flocculation intensity, it was found that the distribution of fiber in each region has close relationship to its flow field and the size of the floc was directly determined by the interaction of the fibers and turbulence in the flow field. On this basis, the mechanism causing fiber flocculation and measures to avoid it were put forward.
     The lattice Boltzmann method at representative elementary volume (REV) scale was used to simulate transverse impregnation for LWRT and the effect of press mode, loading, temperature and the geometry of the rollers on impregnation were investigated. The results showed that the double-belt press was more effective in shortening impregnation time by 10~15% owing to its undee pressure distribution. Besides, it was found that impregnation was determined by not only the maximum impregnation rate but also the residence time in the area with higher pressure. The maximum impregnation rate could be improved by enhancing loading and increasing the temperature as well. The residence time was more sensitive to the diameter of the roller and loadings. However, it was impossible to shorten the impregnation time only by adjusting the motion of the belt.
引文
[1]Sierakowski R. L., Hughes M. L. Force pretection using composite sandwich structure. Composites science and technology,2006,66,2500-2505.
    [2]杜善义,关志东.我国大型客机先进复合材料技术应对策略思考.复合材料学报,2008,25,(1),1-10.
    [3]马鸣图,杨洪,魏莉霞.汽车轻量化和塑料复合材料的应用.新材料产业,2007,(9),34-38.
    [4]肖加余,刘钧,曾竞成,周升.复合材料在高速列车上的应用现状与趋势.机车电传动,2003,B12,49-52.
    [5]戴干策,朱永全,王清国.车用GMT材料应用现状与发展预测.汽车技术,1999,(7),25-27.
    [6]杨岭,何华珍,顾海麟.玻璃纤维增强热塑性复合材料及其应用.汽车工艺与材料,2002,(6),28-31.
    [7]崔益华,陶杰.GMT片材及其在汽车工业中的应用.汽车工艺与材料,2003,(4),16-19.
    [8]戴干策,黄进,孙斌.搅拌-喷动流化床及其在制备纤维复合材料中的应用.专利号CN 1327905A,2001.
    [9]Leaversuch R. New option in lightweight PP/glass composites. Plastics Technology,2004, 50, (2),37-39.
    [10]Leaversuch R. Lightweight TP composite takes the driver's seat. Plastics Technology, 2004,50,(4),39-41.
    [11]Venkat Raghavendran, Haque E. Development of low density glass mat thermoplastic composites for structural applications. SAE 2001 World Congress,2001, Paper No. 2001-01-0100.
    [12]Petrie C. J. S. The rheology of fibre suspensions. Journal of Non-Newtonian Fluid Mechanics,1999,87,369-402.
    [13]戴干策,赵文忠,周晓东.热塑性树脂基复合材料开发与应用.化学世界,1997,增刊.
    [14]张淑萍,樊鸿斌,刘其贤.湿法制造热塑性片材的工艺技术研究.纤维复合材料,2002,(2),49-51.
    [15]戴干策,李黎,孙斌.喷动流化床的新结构与新应用.上海市化学化工学会80周年论文集,2003,115.
    [16]张广平,潘敏,沈春银,戴干策.GMT片材的制造与应用技术IV GMT制品成型技术.玻璃钢,2005,(4),1-6.
    [17]方鲲,吴丝竹,张国荣,张立群,李鹏.长纤维增强热塑性复合材料在汽车零部件上的应用进展.中国塑料,2009,23,(3),13-18.
    [18]戴干策,聚合物加工中的传递现象.北京:中国石化出版社:1999.
    [19]梁基照,聚合物材料加工流变学.北京:国防工业出版社:2008.
    [20]宋玉国,黄汉雄.单螺杆挤出机中PP/PS共混物微观结构及其流变性能的研究.塑料工业,2009,37,(11),34-38.
    [21]颜斌玉.流场类型对聚乳酸/醋酸淀粉共混物流变-形态-性能关系研究.华南理工大学硕士论文,武汉,2009.
    [22]陈绪煌,马桂秋,盛京.聚合物共混相态形成过程及其理论研究进展.高分子通报,2009,(1),31-36.
    [23]董琦琼.粒子填充高密度聚乙烯复合体系形态结构与动态流变行为.浙江大学博士论文,杭州,2005.
    [24]Payne A. R.. The dynamic properties of carbon black-loaded natural rubber vulcanizates. J. Appl. Sci.,1962,6, (19),57-63.
    [25]Payne A. R., Whitaker, R. E. Low strain dynamic properties of filled rubbers. Rubber Chem. Technol.,1971,44,440-479.
    [26]Gauhier C., Reynaud E., Vassoille R., Ladouce-Stelandre L. Analysis of the non-linear viscoelastic behavior of silia filled styrene butadiene rubber. Polymer,2004,45,2761-2771.
    [27]Cassagnau P. Payne effect and shear elasticity of silica-filled polymers in concentrated solution and in molten state. Polymer,2003,44,2455-2462.
    [28]Zheng Q., Song Y. H., Wu G., Song X... Relationship between the positive temperature coefficient of resistivity and dynamic rheological behavior for carbon black-filled high density polyethylene. J. Polym. Sci. Part B:polymer physics,2003,41,983-992.
    [29]Bird R. B., Steuart W. E., Lightfoot E. N., Transport phenomena. New York:John Wiley& Sons:2002.
    [30]Manas-Zloczower I., Tadmor Z. Mixing and compounding of polymers:theory and practice.2nd edition ed.; Munich:Hanser publishers:2009.
    [31]Spencer, R. S., Wiley R. M. The mixing of very viscous liquids. Journal of Colloid Science,1951,6,133-145.
    [32]Ottino J. M., Chella R. Laminar mixing of polymeric liquids:a brief review and recent theorectical developments. Polym. Eng.& Sci.,1983,23,357-379.
    [33]Danckwerts P. V. The definition and measurement of some characteristics of mixtures. Applied Science Research A,1952,3,279-296.
    [34]Harold P. G. Dispersion phenomena in high viscosity immisvible fluid systems and application of static mixiers as dispersion devices in such systems. Chemical Engineering Communications,1982,14,225-277.
    [35]Cheng J. J., Manas-Zloczower I. Hydrodynamic analyis of a Banbury mixer-2D flow simulations for the entire chamber. Polym. Eng.& Sci.,1989,29, (15),1059-1065.
    [36]Yang H. H., Manas-Zloczower I. Analysis of mixing performance in a VIC mixier. International Polymer Processing,1992,9, (3),291-302.
    [37]Agassant J. F., Poitou A., Mixing and compounding of polymers. New York:Hanser Publisher:1994.
    [38]Aref H. Stirring by chaotic advection. Journal of fluid mechanics,1984,143,1-21.
    [39]Kim S. J., Kwon T. H. Enhancement of mixing performance of single-screw extrusion processes via chaotic flows:Part I. Basic comcepts and experimental study. Adv. Polym. Technol.,1997,15,41-54.
    [40]Tjahjadi M., Foster R. W. Single screw extruder capable of generating chaotic mixing.US patent:5551777,1996.
    [41]徐百平,宋健,彭响方,谢芳,冯彦洪.混沌挤出过程相空间动力学行为分析与表征.高分子材料科学与工程,2008,24,(12),34-41.
    [42]Shih C. K., Royer D. J., Tynan D. G. In Visualization and variables affecting glass fiber dispersion in highly viscous model fluid (corn syrup) ANTEC, Boston,1995; Boston,1995; pp 2413-2418.
    [43]Kuroda M. M. H., Scott C. E. Initial dispersion mechanisms of chopped glass fibers in polystyrene. Polymer Composites,2002,23, (3),395-405.
    [44]Zumaeta N., Byrne E. P., Fitzpatrick J. J. Predicting precipitate breakage during turbulent flow through different flow geometries. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,292, (2-3),251-263.
    [45]Wengeler R., Nirschl H. Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. Journal of Colloid and Interface Science,2007,306, (2),262-273.
    [46]Yeung A., Gibbs A., Pelton R. Effect of Shear on the Strength of Polymer-Induced Flocs. Journal of Colloid and Interface Science,1997,196, (1),113-115.
    [47]Spicer P. T. Shear-induced aggregation-fragmentation:mixing and aggregate morphology effects. University of Cincinnati, Cincinnati,1997.
    [48]Hinze J. O. Fundamentals of the hydrodynamics mechanism of splitting in dispersion processes. AICHE,1955,1, (3),289-295.
    [49]Glasgow L. A., Hsu J.. An experimental study of floc strength. AICHE,1982,28, 779-785.
    [50]Bouyer D., C. Coufort, A. Line, Z. DoQuang. Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physicochemical conditions. Journal of Colloid and Interface Science,2005,292, (2),413-428.
    [51]Liu S. X., Glasgow L. A. Aggregate disintegration in turbulent jets. Water, Air, and Soil Pollution,1997,95,257-275.
    [52]Saffman P. G., Turner J. S. On the collision of drops in turbulent clouds. Journal of fluid mechanics,1956,1,16-30.
    [53]Abrahamson J. Collision rate pf small particles in a vigorously turbulent fluid. Chemical Engineering Science,1975,30, (11),1371-1379.
    [54]Kruis F. E., Kuster K. A. The collision rate of particles in turbulent flow. Chem. Eng. Comm.,1970,158,210-230.
    [55]赵海波,郑楚光,离散系统动力学演变过程的颗粒群平衡模拟.北京:科学出版社: 2008.
    [56]Balachandar S. Particle coagulation in homogeneous turbulence. Brown University, 1988.
    [57]Maxey M. R. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. Journal of fluid mechanics,1987,174, (441-465).
    [58]Squires K. D., Eaton J. K. Preferential concentration of particles by turbulence. Physics of fluids A:Fluid Dynamics,1991,3, (5),1169-1178.
    [59]Wang L. P., Maxey M. R. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of fluid mechanics,1993,256,27-68.
    [60]Reade W. C., Collins L. R. Effect of preferential concentration on turbulent collision rates. Physics of fluids,2000,12, (10),2530-2539.
    [61]Tsouris C., Tavlarides L. L. Breakage and coalescence models for drops in turbulent dispersions. AICHE,2004,40,395-406.
    [62]Hinze J. O., An introduction to its mechanism and theory.1st ed.; New York:McGraw Hill:1959.
    [63]Bouyer D., Alain Line, Do-Quang Z. Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank. AICHE,2004,50, (9),2064-2081.
    [64]戴干策,玻纤毡增强热塑性聚合物结构复合材料,112-145,材料科学与工程.胡春圃编著.北京:科学出版社:2007.
    [65]路慧玲.PP/GMT连续熔融浸渍.华东理工大学博士论文,上海,2001.
    [66]Rohatgi V., Patel N., Lee J. L. Experimental investigation of flow-induced microvoids during impregnation of unidirectional stitched fiberglass mat. Polym. Comp.,1996,17, (2), 161-170.
    [67]Pamas R. S., Flynn K. M., Dal-Favero M. E. A pemeability database for composites manufacturing. Polym. Comp.,1997,18, (5),623-633.
    [68]李铭,黄进,戴干策.GM T熔融浸渍中熔体在玻纤毡中的流动.复合材料学报,2000,17,(3),28-32.
    [69]Sangani A. S., Acrivos A., Slow flow through a perodic array of spheres. International Journal of Multiphase Flow,1982,8, (4),343-360.
    [70]Sangan A. S., Acrivos A. Slow flow past periodic arrays of cylinders with application to heat transfer. International Journal of Multiphase Flow,1992,8, (3),193-206.
    [71]BruschkeM. V. A predictive model for permeability and nonisothermal flow of viscous and shear-thinning fluids in anisotropic fibrous media. University of Delaware,1992.
    [72]Seo J. W., Lee W. I. A model of the resin impregnation in thermoplastic composites. Journal of composite materials,1991,25,1127-1141.
    [73]Kim T. W., Jun E. J., Um M. K., Lee W. I. Effect of pressure on the impregnation of thermoplastic resin into a unidirectional fiber bundle. Advances in Polymer Technology,1989, 4,275-279.
    [74]Springer G. S., Lee W. I. In Processing model of thermoplastic matrix composites, Proceedings of the 33rd International Sampe Symposium,1988:661-669.
    [75]Van West B. P., Byron Pipes R., B., Advani, S. G. The consolidation of Commingled thermoplastic fabrics. Polymer Composites,1991,12, (6),417-427.
    [76]Bafna S. S., Baird D. G. An impregnation model for the preparation of thermoplastic prepregs. Journal of composite materials,1995,26, (5),683-707.
    [77]Gutowski T. G., Cai Z., Bauer S., Boucher D., Kingery J., Wineman, S. Consolidation experiments for laminate composites. Journal of composite materials,1987,21,650-669.
    [78]Lam R. C., Kardos J. K. In The permeability of aligned and crossplied fiber beds during processing of continuous fiber composites, Proceedings of the Third Technical Conference,, Seattle, Washington,1988; Seattle, Washington,1988; pp 3-11.
    [79]Gebart B. R. Permeability of unidirectional reinforcements for RTM. Journal of composite materials,1992,26, (8),1100-1133.
    [80]Cai Z., Berdichevsky, A. L. Estimation of the resin flow permeability of fiber tow preforms using the self-consistent method. Polymer composites,1994,15, (3),240-246.
    [81]Lekakou C., Johari M. A., Bader M. G. Compressibility and flow permeability of two-dimensional woven reinforcements in the processing of composites. Polymer composites, 1996,17, (5),666-672.
    [82]Simacek P., Advani S. G. Permeability model for a woven fabric. Polymer composites, 1996,17, (6),887-899.
    [83]Wang M., Chen S. Y. Electroosmosis in homogeneously charger micro- and nanoscale random porous media. Journal of Colloid and Interface Science,2007,314,264-273.
    [84]郭照立,郑楚光,格子Boltzmann方法的原理及应用.科学出版社:2009.
    [85]Wang X. M., Mayer C., Neitzel M. Some issues on impregnation in manufacturing of thermoplastic composites by using a double belt press. Polymer Composites,1997,18, (6), 701-710.
    [86]路慧玲,黄进,戴干策.过程参数对GMT片材熔融浸渍的影响.华东理工大学学报2001,27,(1),16-19.
    [87]Tanrattanakul V., Hiltner A., Baer E., Perkins W. G., Massey F. L. Toughening PET by blending with a functionalized SEBS block copolymer. Polymer,1997,38, (9),2191-2200.
    [88]Wang X. D., Feng W., Li H. Q., Jin R. G. Compatibilization and toughening of poly(2,6-dimethyl-1,4-phenylene oxide)/polyamide 6 alloy with poly(ethylene 1-octene): mechanical properties, morphology, and rheology. J.Appl. Polym. Sci.,2003,88, (14), 3110-3116.
    [89]Wu D. Z., Wang X. D., Jin R. G. Toughening of poly(2,6-dimethyl-1,4-phenylene oxide)/nylon 6 alloys with functionalized elastomers via reactive compatibilization: morphology, mechanical properties, and rheology. European Polymer Journal,2004,40, (6), 1223-1232.
    [90]Chen J., Yang W., Liu Z. Y., Huang R. Influence of heat treatment on toughening of polyehtylene-octene copolymer (POE)/poly(ethylene terephthalate) (PET) blends. J. Mater. Sci.,2004,39, (2),4049-4051.
    [91]Hsien-Tang C., Hsiao Y.-K. Impact-modified poly(ethylene terephthalate)/polyehtylene -octene copolymer elastomer blends. J. Polym. Res.,2005,12, (5),355-359.
    [92]Mouzakis D. E., Papke N., Tanrattanakul, V. Fracture toughness assessment of poly(ethylene terephthalate) blends with glycidyl methacrylate modified polyolefin elastomer using essential work of fracture method. J. Appl. Polym. Sci.,2001,79, (5),842-852.
    [93]Tanrattanakul V., Hiltner A., Baer E., Perkins W. G., Massey F. L. Moet A. Effect of elastomer functionality on toughened PET. Polymer,1997,38, (16),4117-4125.
    [94]Otsubo Y. Dilatant flow of flocculated suspensions. Langmuir,1992,8, (9),2336-2340.
    [95]Otsubo Y. Size effects on the shear-thickening behavior of suspensions flocculated by polymer bridging. Journal of rheology,1993,37, (5),799-809.
    [96]Otsubo Y. Normal stress behavior of highly elastic suspensions. Journal of colloid interface science,1994,163, (2),507-511.
    [97]Ferry J. D., Viscoelastic properties of polymer. New York:John Wiley & Sons:1980.
    [98]Rohn C. L., Analytical polymer rheology. New York:Hanser publishers:1995.
    [99]ChiuH.-T.,Y.-K.Hsiao.Impact-modified poly(ethylene terephthalate)/polyethylene-octen elastomer blends. Journal of Polymer research,2005,12, (5),355-359.
    [100]Ismat A., Abu-isa Craig, Jaynes B., O'Gara J. F.. High-impact-strengthpoly(ethylene terephthalate) (PET) from virgin and recycled resins. J.Appl. Polym. Sci.,1996,59, (3), 1957-1971.
    [101]Xanthos M., Young M.W., Bieseberger J. A. Polypropylene/polyethylene terephthalate blends compatibilized through functionalization. Polym. Eng.& Sci.,1990,30, (6),355-365.
    [102]Heino M., Kirjava J. Compatibilization of poly(ethylene terephthalate)/polypropylene blends with styrene-ethylene/butylene-styrene (SEBS) bock copolymers. J. Appl. Polym. Sci., 1997,65, (2),241-249.
    [103]Guerrero C., Lozano T. Properties and morphology of poly(ethylene terephthalate) and high-density polyethylene blends. J. Appl. Polym. Sci.,2001,82, (6),1382-1390.
    [104]Lusinchi J. M., Boutevin B. In situ compatibilization of HDPE/PET blends. J. Appl. Polym. Sci.,2001,79, (5),874-880.
    [105]季根忠,刘维民,齐陈泽,阎逢元.刚性粒子增韧聚合物机理研究.高分子通报,2005,(2),50-54.
    [106]Wu S. H. A generalized criterion for rubber toughening:the critical matrix ligament thickness. J.Appl. Polym. Sci.,1988,35, (2),549-561.
    [107]Switzer L. H., Klingenberg D. J. Flocculation in simulations of sheared fiber suspensions. International Journal of Multiphase Flow,2004,30,67-87.
    [108]Shibley A. M., Lubin G. Handbook of composites. New York:Van Nostrand Reinhold Company:1982.
    [109]Takahashi M., Li L., Masuda T. Nonlinear viscoelasticity of ABS polymers in the molten state. J. Rheol.,1989,33, (5),709-723.
    [110]White J. L., Crowder J. W. The influence of carbon black on the extrusion characteristics and rheological propertie of elastomers:Polybutadiene and butadiene-styrene copolymer. J.Appl. Polym. Sci.,1974,18, (4),1013-1038.
    [111]Payne A. R. Dynamic properties of heat-treated butyl vulcanizates. J. Appl. Polym. Sci., 1963,7, (3),873-885.
    [112]Munsted H. T. Rheology of rubber-modified polymer melts. Polym. Eng.& Sci.,1981, 21, (5),259-270.
    [113]Memon N. A. Rheological properties and the interface in polycarbonate/impact modifier blends:effect of modifier shell molecular weight. J. Polym. Sci.,1994,36, (7),1095-1105.
    [114]Memon N. A. Rheology of polycarbonate/poly(butylenes terephthalate) blends containing a cel-shell modifier and high-moleculat-weight acrylic polymers:extrusion blow-moldable resins. J. Appl. Polym. Sci.,1994,54, (8),1059-1072.
    [115]Wu G., Lin J., Zheng Q., Zhang M. Q. Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene. Polymer,2006,47, 2442-2447.
    [116]Dzuy N. Q., Boger D. V. Yield stress meansurement for concentrated suspensions. Journal of rheology,1983,27, (4),321-349.
    [117]Cao Q., Yu L., Zheng L.Q. Rheological properties of wormlike micelles in sodium oleate solution induced by sodium ion. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,312, (1),32-38.
    [118]Chopra D., Kontopoulou M., Vlassopoulos D., Hatzukiriakos S. G.. Effect of malec anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheologica Acta,2002,41, (1-2),10-24.
    [119]Tian J. H., Yu W., Zhou C. X. The preparation and rheology characterization of long chain branching polypropylene. Polymer,2006,47, (23),7962-7969.
    [120]Agari Y., Uno T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci.,1986,32, (7),5705-5712.
    [121]李丽,王成国.导热塑料的研究与应用.高分子通报,2007,(7),25-31.
    [122]Wu G., Zheng Q., Estimation of agglomeration structure for conductive particles and fiber-filled high-density polyethylene through dynamic rheological measurements. J. Polym. Sci. Part B:polymer physics,2004,42, (7),1199-1205.
    [123]Wu G., Lin J., Zheng Q., Zhang M. Q. Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene. Polymer,2006,47, (7),2442-2447.
    [124]Von Turkovich R., Erwin L. Fiber fracture in reinforced thermoplastic processing. Polym. Eng.& Sci.,1983,17, (1),50-57.
    [125]Gupta V. B., Mittal R. K., Sharma P. K. Some studies on glass fiber-reinforced polypropylene. Part I:Reduction in fiber length during processing. Polym. Comp.,1989,10, (1),8-15.
    [126]Wolf H. J. Screw plasticating of discontinuous fiber filled thermoplastic:Mechanisms and prevention of fiber attrition. Polym. Comp.,1994,15, (5),375-383.
    [127]Kuroda M. M. H., Scott C. E. Blade Geometry Effects on Initial Dispersion of Chopped Glass Fibers. Polymer composites,2002,23, (5),828-838.
    [128]Todd D. B., Bauman D. K. Twin Screw Reinforced Plastics Compounding. Polym. Eng.& Sci.,1978,18, (4),321-325.
    [129]Mondadori N. M. L., Nunes R. C. R., Zattera A. J., Oliveria L. B., Canto L. B.. Relationship between processing method and microstructural and mechanical properties of poly(ethylene terephthalate)/short glass fiber composites. J. Appl. Polym. Sci.,2008,109, 3266-3274.
    [130]Brast K., Michaeli W. Processing of long-fibre reinforced thermoplastics using the direct strand-deposition process. Plastics, Additives and Compounding,2001,3, (6),22-24.
    [131]Mekelvey J. M., Polymer Processing. New York:John Wiley&Sons:1962.
    [132]Mohr W. D., Saxton R. L., Jepson C. H. Mixing in laminar flow systems. Ind. Eng. Chem.,1957,49,1855-1857.
    [133]Pinto G., Tadmor Z. Mixing and residence time distribution in melt screw extruders. Polym. Eng.& Sci.,1970,10, (5),279-288.
    [134]Bigio D. I., Boyd J. D., Erwin L. Mixing studies in the single screw extruder. Polym. Eng.& Sci.,1985,25, (5),305-310.
    [135]Ottino J. M., The kinematics of mixing:stretching, chaos and transport. New York: Cambridge University press:1989.
    [136]Mohr W. D., Saxton R. L., Jepson C. H. Theory of mixing in the single screw extruder. Ind. Eng. Chem.,1957,49,1857-1862.
    [137]Manan-Zloczower, Cheng I., H. F. Influence of design on mixing efficiency in the kneading disc region of co-rotating twin screw extruders. Journal of reinforced plastics and composites,1998,17, (12),1076-1086.
    [138]Rios A. C., Gramann P. J., Osswald T. A. Comparative study of mixing in corotating twin screw extruders using computer simulation. Adv. Polym. Technol.,1998,17, (2), 107-113.
    [139]Polyflow Mixing user's manual, Version 3.9.2,2001.
    [140]Levenspie 1. O., Chemical reaction engineering. New York:John Wiley & Sons:1972.
    [141]Todd D. B., Irving, F. Axial mixing and self-wiping reactor. Chemical Engineering Progress,1969,65, (9),84-89.
    [142]Rauwendaal C., Polymer extrusion. New York:Hanser Publisher:1985.
    [143]Han C. D., Multiphase flow in polymer processing. New York:Academic Press:1981.
    [144]Connelly R. K., Kokini, J. L. The effect of shear thinning and differential viscoelasticity on mixing in a model 2D mixer as determined using FEM with particle tracking. Journal of Non-Newtonian Fluid Mechanics,2004,123, (1),1-17.
    [145]Yin H. J., Zhong, H. Y., Fu, C. Q. Numerical simulations of viscoelastic flows through one slot channel. Journal of hydrodynamics,2007,19, (2),210-216.
    [146]Elkouss P., Bigio D. I., Wetzel, M. D., Raghavan, S. R. Influence of polymer viscoelasticity on the residence distributions of extruders. AIChE,2006,52, (4),1452-1459.
    [147]Rauwendaal C., Osswald C. New dispersive mixers for single screw extruders.56th SPE ANTEC,1998,277-283.
    [148]Shah P. N., Atsavapranee, P., Wei, T., Mchugh. J. The role of turbulent elongational stresses on deflocculation in paper sheet formation. Tappi Journal,2000,83, (4),1-8.
    [149]Blaser S. Flocs in Shear and Strain Flows. Journal of Colloid and Interface Science, 2000,225, (2),273-284.
    [150]Bouyer D., Escudi R., Lin A. Experimental Analysis of Hydrodynamics in a Jar-test. Process Safety and Environmental Protection,2005,83, (1),22-30.
    [151]Shamlou P. A., Gierczycki A. T., Titchener-Hooker N. J. Breakage of flocs in liquid suspensions agitated by vibrating and rotating mixers. The Chemical Engineering Journal, 1996,62,(1),23-34.
    [152]Tambo N., Hozumi H. Physical characteristics of flocs--Ⅱ. Strength of floc. Water Research,1979,13, (5),421-427.
    [153]Hosseini S. H., Zivdar M., Rahimi R. CFD simulation of gas-solid flow in a spouted bed with a non-porous draft tube. Chemical Engineering and Processing:Process Intensification,2009,48,1539-1548.
    [154]Haosheng Zhou, Flamant G.., Daniel Gauthier. DEM-LES of coal combustion in a bubbling fluidized bed. Part I:gas-particle turbulent flow structure. Chemical Engineering Science,2004,59,4193-4203.
    [155]Jakobsen H A, Sannes B. H., Grevskott S, Svendsen H. Modeling of vertical bubble-driven flows. Ind.Eng.Chem.Res.,1997,36,4052-4074.
    [156]Zhong W., Xiong Y., Yuan Z., Zhang M. DEM simulation of gas-solid flowbehaviors in spout-fluid bed. Chemical Engineering Science,2006,61,1571-1584.
    [157]Wu Z., Arun S. M. CFD modeling of the gas-particle flow behavior in spouted beds. Powder Technology,2008,183,260-272.
    [158]Zhao X. L., Li S. Q., Liu G. Q., Yao S. Q. Flow patterns of solids in a two-dimensional spouted bed with draft plates:PIV measurement and DEM simulations. Powder Technology,2008,183,79-87.
    [159]Steffe J. F., Rheological methods in food process engineering, second ed.; Freeman Press:1996.
    [160]Fukushima A., Aanen L., Westerweel J. In Simultaneous velocity and concentration measurements of an axisymmetric turbulent jet using a combined PIV/LIF,5th JSME-KSME Fluids Enginering Conference, Nagoya, Japan,, Novermber,2002; Nagoya, Japan,,2002; pp 17-21.
    [161]Lubbers C. L., Brethouwer G., Boersma B. J. Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dynamics Research,2001,28,189-208.
    [162]Kandakure M. T., Patkar V. C., Patwardhan A. W. Characteristics of turbulent confined jets. Chemical Engineering and Processing:Process Intensification,2008,47, (8), 1234-1245.
    [163]Berman N. S., Tan H. Two-component laser doppler velocimeter studies of submerged jets of dilute polymer solutions. AIChE,1985,31, (2),208-215.
    [164]Hussein H. J., George W. K., Capp S. P. Comparison between hot-wire and burst-mode LDA velocity measurements in a fully-developed turbulent jet. AIAA, Aerospace Sciences Meeting,26th, Reno, Nevada,1988,11-14.
    [165]Malmstrom T. G., Kirkpatrick A. T., Christensen B., Knappmiller K. D., Centreline velocity decay measurements in low-velocity axisymmetric jets. Journal of fluid mechanism, 1997,346,363-377.
    [166]Ashforth-Frost S., Jambunathan K., Whitney C. F. Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet. Experimental Thermal and Fluid Science.1997,14, (1),60-67.
    [167]Baydar E., Ozmen Y. An experimental investigation on flow structures of confined and unconfined impinging air jets Heat mass transfer,2006,42, (4),338-346.
    [168]Popiel C. O., Trass O. Visualization of a free and impinging round jet. Experimental Thermal and Fluid Science,1991,4, (3),253-264.
    [169]Astarita T., Cardone G. Convective heat transfer on a rotating disk with a centred impinging round jet. International Journal of Heat and Mass Transfer,2008,51,1562-1572.
    [170]Brodersen S., Metzger D. E., Fernando H. J. S. Flows Generated by the Impingement of a Jet on a Rotating Surface:Part Ⅰ— Basic Flow Patterns. Journal of fluid engineering, 1996,118,61-67.
    [171]Kang H. S., Yoo J. Y. Turbulence characteristics of the three-dimensional boundary layer on a rotating disk with jet impingement. Experiments in fluids,2002,33,270-280.
    [172]Motoyuki I., Masashi O., An experimental study of the radial wall jet on a rotating disk. Experimental Thermal and Fluid Science,1998,17,49-56.
    [173]Minagawa Y., Obi S., Development of turbulent impinging jet on a rotating disk. International Journal of Heat and Fluid Flow,2004,25,759-766.
    [174]李培珍,稀相喷动流华床流动特征研究.华东理工大学硕士论文.上海,2006.
    [175]Balamurugan S., Gaikar V. G., Patwardhan A. W. Hydrodynamic Characteristics of Gas-Liquid Ejectors. Chemical Engineering Research and Design,2006,84, (12),1166-1179.
    [176]Kandakure M. T., Gaikar V. G., Patwardhan A. W. Hydrodynamic aspects of ejectors. Chemical Engineering Science,2005,60, (22),6391-6402.
    [177]Viollet P. L., Simonin O., Modelling dispersed two-phase flows:closure,validation and software development. Appl. Mech. Rev.,1994,47, s80.
    [178]林建忠,超常颗粒多相流体动力学——圆柱状颗粒两相流.科学出版社:2008.
    [179]王刚,许元泽,周持兴.简单剪切流场中的长纤维形态变化的计算机模拟.第八届全国流变学学术会议,2006.
    [180]Beghello L. Some factors that influence fiber flocculation. Nordic pulp and paper research Journal,1998,13, (4),274-279.
    [181]Hourani M. J. Fiber flocculation in pulp suspension flow. Part 1:theoretical model. Tappi Journal,1989,71, (5),115-118.
    [182]Takeuchi N., Senda S., Namba K., Kuwabara G.. Formation and destruction of fiber flocs in a flowing pulp suspension. Appita,1983,37, (3),223-230.
    [183]Moayed A. R. Characterization of fibre suspension flows at papermaking consistencies. University of Toronto,1999.
    [184]Ma T. G. Large-eddy simulation of variable density flows. University of Maryland, 2006.
    [185]Hanjiang (John) Xu, Aidun C. K. Characteristics of fiber suspension flow in arectangular channel. International Journal of Multiphase Flow,2005,31,318-336.
    [186]Dong S., Feng X., Salcudean M., I. Gartshore. Concentration of pulp fibers in 3D turbulent channel flow. International Journal of Multiphase Flow,2003,29, (1),1-21.
    [187]Kao S. V., Manson S. G. Dispersion of particle by shear. Nature,1975,253,619-621.
    [188]戴干策,孙斌.轻质热塑性复合片材的制备技术与应用.纤维复合材料,2007,2,3-6.
    [189]Meng L., Ye L., Mai Y. W. Thermal de-consolidation of thermoplastic matrix composites II. "Migration" of voids and "re-consolidation". Composites science and technology,2004,64,191-202.
    [190]Rajamani R., Srinivas C., Nithiarasu P. Natural convection in axisymmetric porous bodies,. International journal for numerical methods in heat and Fluid flow,1995,5,829-837.
    [191]Poulikakos D., Bejan A. The departure form Darcy flow in natural convection in a vertical porous layer. Physics of fluids,1985,28,3477-3484.
    [192]Vasseur P., Wang C. H., Sen M.. Natural convection in an inclined rectangular porous slot:the Brinkman-extended Darcy model. ASME Journal of heat transfer,1990,112, 507-511.
    [193]Adrian Bejan, Ibrahim Dincer, Sylvie Lorente, Antonio F. Miguel, A. H. Reis, Porous and complex flow structures in modern technologies. USA:Springer:2004.
    [194]Tien C. L., Vafai K. Convective and radiative heat transfer in porous media. Adv. Appl. Mech.,1989,27,225-281.
    [195]Nithiarasu P., Seetaramu K. N., Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. International Journal of Heat Mass Transfer,1997, 40,3955-3967.
    [196]郭照立,郑楚光,格子Boltzmann方法的原理及应用.科学出版社:2009.
    [197]Guo Z.L. Lattice Boltzmann model for incompressible flows through porous media. Physical Review E.,2006,036304.
    [198]Kolodziej J. A., Ryszard Dziecielak, Z. Konczak. Permeability tensor for heterogeneous porous medium of fibre type. Transport in porous meida,1998,32,1-19.
    [199]黄君.轻质热塑性复合片材微结构及其性能研究.华东理工大学硕士论文,上海,2008.
    [200]罗继伟,罗天宇,滚动轴承分析计算与应用.机械工业出版社:2009.
    [201]Wolfrath J., Michaud V., Manson J.-A.E. Deconsolidation in glass mat thermoplastics: Influence of the initial fibre/matrix configuration. Composites Science and Technology,2005, 65,1601-1608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700