长纤维热塑性复合材料的制备,性能和成型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车轻量化是节约能源、减少尾气排放的重要措施之一。中国是一个汽车消费大国,但是在汽车材料轻量化上,还处于应用不足以及技术匮乏的现状。以聚丙烯PP为基体的LFT复合材料(长纤维增强热塑性片材,long fiber reinforced thermoplastics sheet),具有轻质高强的优点,并且易于制造和实现成本优化,正在逐步成为工程塑料和金属材料的替代品,已是汽车轻量化使用的聚合物基复合材料首选。本文以此为背景,开发LFT-PP制备、应用的成套技术,并作相关基础研究。
     首先,通过改进单螺杆挤出机,建成年产200吨在线混合LFT中试生产线,提供了一种简便的制备LFT-PP片材的方法。开发过程中发现,采用强化混合螺杆、结合适宜的分流板和挤出口模,以及直接无捻粗纱,能够制备力学性能良好的LFT-PP复合材料。
     以自由流动螺杆为研究对象,考察了螺杆转速、混合长度、螺槽深度等因素对于RTD曲线(residence time distribution, RTD),以及平均停留时间(mean residence time)和标准化方差的影响。采用Yeh模型拟合RTD数据,柱塞流反应器(Plug flow reactor)分数P以及连续搅拌槽反应器(continuous stirred tank reactor)死体积分数d用作模型的双参数,并且将工艺参数和螺杆结构与纤维断裂和分散进行了关联。在RTD数据分析基础上,通过对纤维受到的熔体剪切作用分析,结合在线挤出过程中不同结构螺杆的混合特性,探讨了纤维断裂和分散的原因。从而为装置的进一步工程放大,实施LFT的工业化制备奠定必要的技术基础。
     再次,考察了基体,纤维以及界面结合等因素对LFT-PP力学性能的影响,纤维含量增加是提高LFT-PP力学性能最基本的因素;增加纤维长度能够明显改善强度和韧性,提高纤维分散能够改善刚性;界面改性剂PP-g-MAH能够提高LFT-PP的强度和刚性,但是会降低韧性。
     采用Kelly-Tyson模型、Cox混合定律以及强度-应变关系,结合纤维长度因子以及纤维分散度因子,分别对LFT-PP的拉伸强度、拉伸模量和冲击强度进行了模拟,试验数据和模拟数据的一致性良好。
     添加界面改性剂PP-g-MAH会导致LFT-PP韧性下降,组合增强和界面优化可改善韧性,探讨了组合增韧效应。研究表明,组合增强以及采用弱极性界面相容剂PP-g-KH570,能够得到强度韧性均衡的材料,特别是PP/LGF/Nano-CaCO3组合增强体系,能够兼顾高强度高刚性和高韧性。
     最后,对LFT-PP产品的流动模塑成型进行研究,考察LFT-PP片材预热,模内冷却过程的温度变化,以及模具温度和成型压力对LFT-PP流动模压的影响。结合发动机防护罩和汽车前端模块的模压试制,探讨坯料设计对模压成型的影响,提供了LFT-PP流动模塑成型的关键参数,并且对成型过程中可能出现的缺陷进行讨论,可以作为LFT-PP制品成型工艺的指导。
     利用自主开发的在线混合LFT生产线,成功研制了适用于发动机防护罩的LFT-PP材料,通过模压工艺优化,试制了合格的产品,并得到工业应用,自2006年以来,累计生产片材超过100吨。制备以及成型技术均获得相关企业认可,并用于某企业国产车型的多种零部件。
Lightweight of automobile is one of the effective ways for energy-saving and emissions-reducing. With the development of our society, there is a big amount of vehicle consumption in China. However, lightweight of automobile is still in the status of lacking of application and technology. Long fiber reinforced thermoplastics sheet with PP matrix (LFT-PP) has advantages of light mass, high strength, easy molding and low cost. It is becoming a substitute for engineering plastics and metal material. It is the first choice of polymer composites for lightweight of automobile. In this context, this article will do some fundamental study based on the development of LFT-PP and application of technology.
     First of all, a simple technique of LFT-PP manufacture is proposed with LFT production line of 200 ton annually by using in-line compounding from modified single screw extruder. It was found that improved mixing screw combining of moderate spreader-plate and extrusion die with direct zero twist roving can be used to manufacture LFT-PP with better mechanical properties.
     In the case of free flow screw, the influences of different conditions such as variation of screw speed, mixing length, and channel depth on RTD (residence time distribution), MRT (mean residence time) and normal variance are investigated. Yeh model is applied for fitting RTD, and Percent of Plug flow reactor P, and dead volume of continuous stirred tank reactor d are two parameters. Process parameters and screw configurations are associated with fiber breakage and dispersing by P and d. Based on RTD data analysis and mixing characterizations of in-line compounding with different geometry screw of free flow screw, grooved screw, and pinned screw, the mechanism available for fiber breakage and dispersing was given with fiber shear analysis applied by the melt. It is technical fundament for further enlargement and industrialization of LFT-PP.
     Secondly, the influences of matrix, fiber, and the interface on LFT-PP mechanical properties are investigated. The results show adding fiber contents is key factor for increasing mechanical properties. Strength and toughness could be enhanced by fiber length addition; on the other hand, stiffness could be increased by fiber dispersion improvement. At the same time, interfacial agent PP-g-MAH would increase the strength and stiffness, whereas reduce toughness.
     By combining with fiber length factor and fiber dispersion factor, the consistency of tensile strength, tensile modulus and impact strength were simulated with Kelly-Tyson's model simulation, Cox mixing principle, and strength-strain relation are applied in the study respectively. It is found that experiment status and simulation status are favorable.
     Adding interface agent PP-g-MAH would reduce the toughness of LFT-PP; however, hybrid reinforcement and interfacial optimization can be applied for improving the toughness of LFT-PP. The study shows good balance of strength and toughness could be achieved by interface optimization of PP-g-KH570. Meanwhile, excellent integration of high strength, high stiffness and high toughness could be from hybrid composite of LFT-PP filled by Nano-CaCO3.
     Finally, flow molding of LFT-PP is investigated with temperature change of pre-heating and cooling process. In addition, the influences of tooling temperature and molding pressure on LFT-PP flow molding are studied. Blank design is optimized with compression molding of engine under shield and car front module, and key parameters of LFT-PP flow molding is listed, at the same time possible shortages and its resolutions of flow molding are summarized.
     LFT-PP fitting for engine under shields is manufactured from in-house LFT-PP production line by in-line compounding, and qualified parts is molded with process optimization. Since 2006, and total volume of LFT-PP has increased for more than 100 ton. It has good economic returns and social benefits. In addition, manufacturing capacities and molding technique are accepted by cooperative companies. It is applied for many parts on specific domestic cars.
引文
[1]中国汽车寻求破解低碳之道[J].质量与市场,2010,(2):24-25
    [2]周宏沪.节能减排的重要课题——汽车轻量化[J].轿车情报,2010,(10):152-155
    [3]工业和信息化部,国家发展和改革委员会.汽车产业发展政策[R/OL].http://www.gov.cn/flfg/2009-08/28/content_1403581.htm
    [4]冯奇,范军锋,王斌等.汽车的轻量化技术与节能环保[J].汽车工艺与材料,2010,(2):4-7
    [5]肖永清.低碳经济助力轻量化材料,驱动汽车的未来[J].市场研究,2010,(7):25-29
    [6]方鲲,吴丝竹,邓云飞。长纤维增强热塑性塑料在汽车轻量化与节能减排中的应用[J].新材料产业,2010,(4):15-21
    [8]孟岩,潘建亮。汽车轻量化材料的应用[J].技术与应用,2010,18(5):24-27
    [9]俞凌琳.中国汽车轻量化调查[J].中国民营科技与经济,2009,(11):33-34
    [10]Frank Henrming, Heinrich Ernst, Richard Brussel. LFTs for automotive applications [J]. Reinforced plastics,2005,49(5):24-33
    [11]戴干策,孙斌.热塑性复合片材的应用技术——汽车零部件开发及最新进展[J].新材料产业,2007,(11):46-50
    [12]Michael Schemmer. LFT-development status and perspectives [J]. Plastics additives & compounding,2008, (3-4):38-43
    [13]刘学习,戴干策.玻璃纤维增强热塑性复合材料的研究进展[J].纤维复合材料,2004,21(4):55-58
    [14]Robert C Constable, Louis N Kattas. Long glass fiber composites:rapid growth and change [C]. ANTEC,2002,60 (2):2140-2143
    [15]欧文斯科宁(中国)投资有限公司.长纤增强热塑性塑料(LFT)[J].上海建材,2005,(4):9
    [16]Oelgarth A, Dittmer H, Stockreiter W, et al. A comparison of long-fibre-reinforced thermoplastics [J]. Kunststoffe,88 (4),1998:480-485
    [17]Jennifer Markarian. Long fibre reinforced thermoplastics continue growth in automotive [J]. Plastics additives & compounding,2007, (3-4):20-24
    [18]王颖.玻纤增强不饱和聚酯片状模塑料(SMC)制备及制品成型[J].塑料科技,1990,(3):24-28
    [19]戴干策,张广平,沈春银等.GMT片材的制造与应用技术[J].玻璃钢,2005,(2): 1-4
    [20]余剑英.GMT复合片材的开发与应用[J].化学建材,1999,15(1):28-29
    [21]Handbook of polypropylene and polypropylene composites [M]. Second Edition. New York:Marcel Dekker, Inc.,2003
    [22]朱敏慧.引进LFT-D生产线耀华大中提升轻量化零部件制造水平[J].汽车与配件,2010,(31):37
    [23]Gupta V B, Mittal R K, Sharma P K et al. Some studies on glass fiber-reinforced polypropylene. Part I. Reduction in fiber length during processing [J]. Polym. Compos.,1989,10(1):8-15
    [24]K.Stade. Techniques for compounding glass fiber-reinforced thermoplastics [J]. Polym. Eng. Sci.,1977,17 (1):50-57
    [25]Robert A Schweizera. Glass Fiber Length Degradation in Thermoplastics Rocessing [J]. Polymer-Plastics Technology and Engineering,1982,18 (1):81-91
    [26]Gupta V B, Mittal R K, Sharma P K et al. Some studies on glass fiber-reinforced polypropylene. Part I. Reduction in fiber length during processing [J]. Polym. Compos.,1989,10(1):8-15
    [27]戚德海,徐永军,沈开亮等.长玻璃纤维增强热塑性塑料的开发应用[J].工程塑料应用,2007,35(4):46-49
    [28]Wolf H J. Screw plastication of discontinuous fiber filled thermoplastics: mechanisms and prevetion of fiber attribution [J]. Polym Compos,1994,15 (5): 375-383
    [29]Wolf H J, Darmstadt. Shortening of fibers in the processing of fiber reinforced t hermoplastics [J]. Kunststoffe Ger. Plastics,1993,83 (1):22-24
    [30]Shon Keungjin; White James L. A comparative study of fiber breakage in compounding glass fiber-reinforced thermoplastics in a buss kneader, modular co-rotating and counter-rotating twin screw extruders Polym [J]. Eng. Sci.,1999,39 (9):1757-1768
    [31]Todd D B, Bauman D K. Twin Screw Reinforced Plastics Compounding [J]. Polymer engineering and science,1978,18 (4):321-325.
    [32]Brast K, Michaeli W. Processing of long-fibre reinforced thermoplastics using the direct strand-deposition process [J]. Plastics, Additives and Compounding,2001,3 (6):22-24.
    [33]祝卫国,汪传生.单螺杆挤出机分散混炼的改进[J].特种橡胶制品,2003,24(4):31-35
    [34]张博,徐德增,郭静.螺杆挤出机中销钉对流体的混合效果[J].大连轻工业学院学报,2005,24(1):42-45
    [35]王贤慧,曹志清.单螺杆挤出机混合装置与混合机理研究的新进展[J].橡塑技术与装备,2006,32(4):12-16
    [36]Yoshihara N. Adjusting the lengths of glass fibers and the relationship between fiber length and mechanical properties for reinforced poly (ethylene terephthalate) [J]. Journal of polymer engineering,2006,26 (6):547-564.
    [37]J Grillo, P Andersen, E Papazoglon. Experimental Studies for Optimizing Screw and Die Design When Compounding Fiberglass Strand on the Co-Rotating Twin Screw Extruder [J]. J. Reinf. Plast. Compos.,1993,12 (3):311-327
    [38]Cianelli D A, Travis J E, Bailey R S. Processing of the New Long Fiber Reinforced Thermoplastics [J]. Plastics Technology,1988,34 (4):83-89.
    [39]Hu Zhou, Zhongzhong Qian, Xiangfu Meng, et al. Fiber Breakage and dispersion in carbon-fiber-reinforced nylon 6/clay nanocomposites [J]. J. Appl. Polym. Sci.,2007, 106:1751-1756
    [40]Melody M H Kuroda, Chris E Scott. Blade geometry effects on initial dispersion of chopped glass fiber [J]. Polym. Compos.,2002,23 (5):828-838
    [41]耿孝正.聚合物加工中固相的分散及填充改型设备的选用[J].中国塑料,2002,16(9):1-6
    [42]耿孝正.双螺杆挤出机及其应用[M]。中国轻工业出版社,2003:北京
    [43]G Lidor, Z. Tadmor. Theoretical analysis of residence time distribution functions and strain distribution functions in plasticizing screw extruders [J]. Polym. Eng. Sci., 16(6),1976:450-462
    [44]G Pinto, Z. Tadmor. Mixing and residence time distribution in melt screw extruders [J]. Polym. Eng. Sci.,1970,10 (5):279-288
    [45]丛海燕,杨峰,曾繁涤等.提高橡胶冷喂料挤出机排气效率的途径[J].特种橡胶制品,2002,23(5):43-45
    [46]张鹰,朱中南.苯乙烯聚合反应挤出过程中停留时间及其分布[J].华东理工大学学报:自然科学版,2002,28(15):506-510
    [47]吴崇周.单螺杆高剪切元件的设计1[J].塑料挤出,2004,(2):29-35
    [48]吴崇周.单螺杆高剪切元件的设计2[J].塑料挤出,2004,(3):24-30
    [49]Richard Gendron, Danielle Binet. State of dispersion:Polypropylene filled with calcium carbonate [J]. Journal of Vinyl and Additive Technology,1998,4(1):54-59
    [50]Nitin K. Borse, Musa R. Kamal Melt processing effects on the structure and mechanical properties of PA-6/clay nanocomposites [J]. Polym. Eng. Sci.,2006,46 (8):1094-1103
    [51]F Chavarria, R K Shah, D L Hunter et al. Effect of melt processing conditions on the morphology and properties of nylon 6 nanocomposites [J]. Polym. Eng. Sci.,2007, 47(11):1847-1864
    [52]J Li, M T Ton-That, W Leelapornpisit et al. Melt compounding of polypropylene-based clay nanocomposites [J]. Polym. Eng. Sci.,2007,47 (9):1447-1458
    [53]朱复华.挤出理论及应用[M].中国轻工业出版社,2001,北京
    [54]徐百平,谢芳,刘斌.单螺杆挤出机中非牛顿流体层流混合停留时间表征[J].上海塑料,2005,12(4):27-31
    [55]J. M. Ottino. The kinematics of mixing:stretching, chaos and transport [M]. Cambrige:Cambrige University Press,1990
    [56]J. M. Ottino, FJ Muzzo, M. Tjahjadi et al. Chaos, symmetry, and self-similarity: expoiting order and disorder in moxing processes [J]. Science,1992,257 (5):754-760
    [57]W. Bartok, S. G. Mason. Particle motions in sheared suspensions V.Rigid rods and collision doublets of spheres [J]. J. Colloid Sci.,1957,12:243-262
    [58]O. L. Forgacs, S. G. Mason. Particle motions in sheared suspensions IX. Spin and deformation of threadlike particles [J]. J. Colloid Sci.,1959,1:457-472
    [59]Salinas A, Pittman J F T. Bending and breaking fibers in sheared suspensions [J]. Polym. Eng. Sci.,1981,21 (1):23-31
    [60]Melody M H, Chris E Scott. Initial dispersion mechnisims of chopped glass fibers in polystyrene [J]. Polymer composites,2002,23 (3):395-405
    [61]王贤慧,曹志清.新型单螺杆CRD分散混合器的理论研究与应用[J].橡塑技术与装备,2003,32:1-5
    [62]性能数据来源于RTP公司网站[EB/OL]. http://www.RTPcompany.com
    [63]Menzolit SMC 0020 data sheet [EB/OL]. http://www.menzolit.com
    [64]刘学习.聚丙烯高性能化的组合改性技术[D].华东理工大学博士论文,2005
    [65]李中兵,张广平,闫国红等.高流动性GMT材料制备[J].塑料工业,2008,36(2):8-10
    [66]周晓东,潘敏.基体特性对GMT—PP复合材料力学性能的影响[J].合成树脂及塑料,2000,17(4):58-62
    [67]庄辉,任璞,刘学习,戴干策.基体树脂对长玻璃纤维增强PP力学性能的影响[J].合成树脂及塑料,2007,24(3):17-19
    [68]庄辉,刘学习,程勇锋.长玻璃纤维增强聚丙烯复合材料的韧性[J].合成树脂与塑料,2006,23(6):53-55
    [69]沈春银,张广平,潘敏等.GMT片材的制造与应用技术Ⅱ GMT片材的力学性能[J].玻璃钢,2005,(3):1-6
    [70]Nam-Jeong Lee, Jyongsik Jang. The effect of fibre content on the mechanical properties of glass fibre mat/polypropylene compsites [J]. Composites part A:applied science and manufacturing,1999,30 (6):815-822
    [71]K Senthil Kumar, Anup K Ghosh, Naresh Bhatnagar. Mchnical properties of injection molded long fiber polypropylene composites, part 1:tensile and flexural properties [J]. Polym. Compos.,2007,28 (2):259-266
    [72]K Senthil Kumar, Naresh Bhatnagar, Anup K Ghosh. Mchnical properties of injection molded long fiber polypropylene composites, part 2:impact and fracture toughness [J]. Polym. Compos.,2008,29 (5):525-533
    [73]Oelgarth A, Dittmar H, Stockreiter W, et al. A comparison of long-fibre-reinforced thermoplastics [J]. Kunststoffe,88 (4),1998:480-485.
    [74]Warden Schijve. High properties at medium fibre length in long glass fibre polypropylene. Plastics, Additives and Compounding,2000,2(12):14-21
    [75]Thomason J L. Micromechanical parameters from macromechanical measurements on glass reinforced polypropylene. Compos. Sci. Technol.,2002, 62(10-11):1455-1468
    [76]Skourlis T P, Mehta S R, Chassap C et al. Impact fracture behavior of injection molded long glass fiber reinforced polypropylene. Polym. Eng. Sci.,1998,38(1): 79-89
    [77]M. W. Darlington, B. K. Gladwell, G. R. Smith. Structure and mechanical properties in injection moulded discs of glass fibre reinforced polypropylene [J]. Polymer,1977,18 (12):1269-1274
    [78]杨卫疆,郑安呐.接枝聚丙烯蜡对玻璃纤维增强聚丙烯界面作用[J].华东理工大学学报:自然科学版,1997,23(5):566-570
    [79]徐蓉,邢帆等。聚丙烯/玻璃纤维的界面改性研究(Ⅲ):界面改性的复合效应[J].广州化工,2001,29(1):25-26
    [80]邵静波,刘涛,张师军等PP-g-MAH对玻璃纤维增强PP的影响[J]。合成树脂及塑料,2006,23(4):50-53
    [81]Khunova V, Sain M M, Brunovska Z. Studies on the effect of reactive polypropylene on the properties of filled polyolefin composites. Part 3. Effect of maleic anhydride grafted polypropylene on the nature of polyolefin matrix [J]. Polymer-Plastics Technology and Engineering,1993,32(4):311-320.
    [82]臧贵军,益小苏.长玻璃纤维/聚丙烯复合材料粒注塑制品的拉伸强度[J].复合材料学报,2001,18(2):41-45
    [83]陈二龙,周玉.GMT材料界面及性能研究[J].玻璃钢/复合材料,2001,(5):10-12
    [84]刘学习,戴干策PP-g-Si与PP-g-MAH对PP/GF的增容机理比较[J].高分子材料科学与工程,2007,23,(5):128-131
    [85]Rijsdijk H A, Contant M, Peijs A A J M. Continuous Glass Fibre Reinforced Polypropylene Composite:I. Influence of maleic-anhydride-modified polypropylene on mechanical properties [J]. Composites Science and Technology,1993,48:161-172
    [86]Mader E, Grundke K, Jacobasch H J,Wachinger G. Surface,Interphase and Composites Properties Relations in Fibre-Reinforced Polymers [J]. Composites,1994, 25 (7):739-751.
    [87]Van den Oever M, Peijs T. Influence of maleic-anhydride modified polypropylene on fatigue behavior [J]. Advanced Composite Letters,1994,3 (5): 177-181
    [88]Davies P,Echalier B. The Fibre-Matrix Interface Region in Stampable Glass/Polypropylene Composites [J]. J. Mater. Sci. Lett.,1989,8 (11):1241-1243.
    [89]戴干策.波纤毡增强热塑性聚合物结构复合材料[M].//第7章.胡春圃.材料科学与工程.北京:科学出版社,2007
    [90]赵若飞,戴干策.云母和纤维组合增强聚丙烯复合材料Ⅰ.力学性能研究[J].材料研究学报,2001,15(1):2-5
    [91]Zhao R, Huang J, Sun B et al. Study of the mechanical properties of mica-filled polypropylene-based GMT composites [J]. J. Appl Polym Sci.,2001,82 (11): 2719-2728
    [92]谢刚,赵大晔.聚丙烯—用偶联剂处理滑石粉填充塑料的流变特性及分析[J].黑龙江大学自然科学学报,2001,18(4):86-88
    [93]J. Hartikainen, M. Lindner, T. Harmia et al.. Mechanical propertie of polypropylene composites reinforced with long glass fibres and mineral fillers [J]. Plastics, rubbers and composites,2004,33 (2/3):77-84
    [94]J. Hartikainen, P. Hine, J. Szabo et al. polypropylene hybrid composites reinforced with long glass fibres and particulate filler [J]. Composites science and technology,2005,65 (2):257-267
    [95]C. Albano, J. Gonzalez, M. Ichazo et al. Mechanical and morphological behavior of polyolefin blends in the presence of CaCO3 [J]. Composite Structures,2000,48, (1-3):49-58
    [96]许笑非,王小华,宁艳梅.纳米碳酸钙微粒填充改型聚丙烯复合材料的力学性能和结晶行为研究[J].分析测试技术和仪器,2003,9(3):155-158
    [97]史大刚,姚子华,仇满德.纳米无机填料增强增韧聚丙烯的研究[J].塑料工业,2005,33(B05):81-83
    [98]佟妍,桑红源.碳酸钙/聚丙烯复合材料的力学性能对比研究[J].无机盐工业,2008,40(9):48-50
    [99]丁宏明,王健祥,吴小林.PP/GF/纳米碳酸钙复合材料的加工与性能研究[J].塑料工业,2009,37(3):59-62
    [100谢红波,陈丽莎,罗东梅.玻璃纤维增强纳米CaCO3改性聚氯乙烯基复合材料力学性能研究[J].广东建材,2008,(11):20-22
    [101]梁基照,刘冠生,杨铨铨等.PPS/GF/纳米碳酸钙三元复合材料的力学性能的研究[J]。塑料工业,2006,(9):18-19
    [102]李学闵,苏衍生,贾衍才.耐CaC03和玻纤增强PVC、HDPE、PP的力学性能研究[J].工程塑料应用,2005,33(7):20-22
    [103]Borden K A, Weil R C, Manganaro C R. Optimizing properties of talc-filled polypropylene systems with a polymeric coupling agent [C].ANTEC,1994,52: 2761-2765
    [104]钱欣,濮阳楠.相容剂对聚丙烯/滑石粉增容作用研究[J].中国塑料,1997,11(1):44-47
    [105]仇武林,麦堪成,曾汉民.SPP与KH550对聚丙烯/滑石粉体系的增容效果[J].高分子科学与工程,2000,16(5):161-164
    [106]王旭,唐伟,胡燕.高韧性高强度聚丙烯复合材料的研究[J].工程塑料应用,2006,34(5):19-21
    [107]温峰,余剑英.聚丙烯共混改性及其连续玻纤毡增强复合材料的性能[J].材料开发与应用,1999,14(5):33-37
    [108]黄绪棚,蔡浩鹏,王钧.EVA改性PP/GMT复合材料冲击性能的研究[J].武汉化工学院学报,2005,27(2):56-58
    [109]徐维强,董雨达.中长纤维增强热塑性复合材料制品的成型技术[J].纤维复合材料,1992,(4):51-57
    [110]戴干策,张麟峰,潘敏.玻璃纤维毡增强热塑性复合材料(GMT)的压缩模塑[J].化工进展,1999,(4):22-23
    [111]张广平,潘敏,沈春银,戴干策.GMT片材的制造与应用技术Ⅳ:GMT制品成型技术[J].玻璃钢,2005,(4):1-6
    [112]孙卫健,周晓东.汽车用热塑性复合材料(GMT)的开发及应用[J].轻型汽车技术,2001,(3):23-27
    [113]张郧生,周崎.纤维增强聚丙烯复合材料及其在汽车中的应用[J].现代塑料,2005,(7):52-55
    [114]Gleich, Klaus New developments in long fiber reinforced thermoplastic composites [J]. ANTEC,2002,60 (2):2130-2133
    [115]蒋鼎丰。GMT汽车前端模块框架制造技术[J].汽车与配件,2006,49:30-31
    [116]Ferrie van Hattum, Sjef van Breugel. LFT:the future of reinforced thermoplastics?. Reinforced Plastics,2001,45(6):42-44
    [117]叶鼎铨。LFT技术发展概况[J].玻璃纤维,2008,(4):48-50
    [118]方鲲,张国荣,吴丝竹等.长纤维增强热塑性复合材料在汽车零配件上的应用进展[J].中国塑料,2009,(3):13-18
    [119]范军锋,冯奇,何健等.热塑性复合材料在前端模块上的应用[J].汽车工艺与材料,2010,(9):44-47
    [120]Mael Garmier. In-line compounding and molding of long-giber reinforced thermoplastics (d-lft)-insight into a rapid growing technology [C]. ANTEC,2004, 62(3):3500-3503
    [121]Michael Schemme. LFT-development status and perspectives [J]. Reinforced plastics,2008,52 (1):32-39
    [122]刘学习,戴干策.玻璃纤维增强热塑性复合材料的研究进展[J].纤维复合材料,2004,21(4):55-58
    [123]蒋鼎丰。纤维增强聚合物助汽车轻量化[J].汽车与配件,2007,(19):25-27
    [124]Wolf D, Rescnick W. Residence time distributions in real system [J]. Industrial and engineering chemistry fundamentals,1963,2 (4):287-293
    [125]M Seker. Residence time distributions of starch with high moisture content in a single-screw extruder [J]. Journal of Food Engineering,2005,67 (3):317-324
    [126]M O Iwe, D. J. Van Zuilichem, P. O. Ngoddy et al. Residence time distribution in a single-screw extruder Processing Soy-Sweet Potato Mixtures [J]. Lebensmittel-Wissenschaft und-Technologie,2001,34 (7):478-483
    [127]Raman V Chiruvella, Y Jaluria, Mukund V Karwe. Numerical simulation of the extrusion process for food materials in a single-screw extruder [J]. Journal of Food Engineering,1996,30(3-4):449-467
    [128]Yeh A I, Jaw Y M. Modelling residence time distributions for single-screw extrusion process [J]. Journal of food engineering,1998,35 (2):211-232
    [129]G Pinto, Z. Tadmor. Mixing and residence time distribution in melt screw extruders [J]. Polym. Eng. Sci.,10(5),1970:279-288
    [130]Day R J, Cauich Rodrigea J V. Investigation of the micromechanics od the mocrobond test. Composites Sci. Technol.,1998,58:907-914
    [131]Roux C, Denault J, Champagne M F. Parameters regulating interfacial and mechanical properties of short glass fiber reinforced polypropylene. Journal of Applied polymer,2000,78(12):2047-2060
    [132]Friedrich Klaus. Application of fracture mechanics to composite materials [N]. Amsterdam:Elsevier,1989
    [133]A Kelly. Interface effects and the work of fracture of a fibrous composites [J]. Proc. Roy. Soc. Lond.,1970, A.319:95-116
    [134]曾庆敦.复合材料的细观破坏机制和强度[M].北京:科学出版社,2002
    [135]Outwater J O, Murphy M C. On the fracture energy of unidirectional laminate [C]. Proc.24th Conf. SPI。,1969, Paper 11C:1-8
    [136]A Kelly, W R Tyson. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum [J]. J. Mech. Phys. Solids,1965,13 (6): 329-350
    [137]Chou T W. Microstructural design of fibrous composites. Cambridge: Cambridge Press,1992
    [138]Krenchel H. Fibre Reinforcement. Copenhagen:Ackademisk Forlag,1964
    [139]H L Cox, M A, F R Ae S et al. The elasticity and strength of paper and other fibrous materials [J]. Bri. J. App1. Phy.,1952,3:72-79
    [140]J. L. Thomason, M. A. Vlug Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene:4. Impact properties [J]. Composites Part A,1997,28 (3):277-288
    [140]沈燕,张诚,胡黎东.非弹性体增韧聚丙烯的研究进展.玻璃钢/复合材料,2005,(1): 50-52
    [141]Shao-Yun Fu, Xi-Qiao Feng, Bernd Lauke. Effects of particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polyper composites. Composites, 2008, B39:933-961
    [142]B Harris. Micromechanisms of crack extension in composites [J]. Metal Science, 1980,14(7):351-362
    [143]J K Kim, Y W Mai. High strength, high fracture toughness fibre compsites with interface control---A review [J]. Comp. Sci. Tech.,1991,41(4):333-378
    [144]Davies P, Echalier B. The Fibre-Matrix Interface Region in Stampable Glass/ Polypropylene Composites [J]. Mater. Sci. Lett.,1989,8:1241-1243.
    [145]Williams E D, Schadler L S, Lustiger A. Role of the interface in toughness of polypropylene/glass composites [J]. ANTEC,1998,56(2):2266-2770.
    [146]John A Nairn. Analytical fracture mechanics analysis of the single-fiber pull-out test and the microbond test including the effects of friction and thermal stresses. Advanced composite letter,2000,9 (6):373-383
    [147]赵若飞,戴干策.云母和纤维组合增强聚丙烯复合材料Ⅱ.界面性能研究[J].材料研究学报,2002,16(20):141-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700