VGCF填充聚合物体系的结构、导电性与流变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气相纳米碳纤维(VGCF)具有优异的力学、导电、导热性能,可与碳管媲美,是一种极具潜力的增强体与导电填料。VGCF填充聚合物导电复合材料的性能与VGCF在基体中的分散及其形成的聚集体、网络结构密切相关。
     论文以VGCF填充聚苯乙烯(PS)、聚丙烯(PP)为模型体系,考察原料参数、加工工艺、外场作用等因素对其结构、导电性能与流变行为的影响,以揭示VGCF填充体系黏弹行为的本质,建立结构-导电性能-流变行为间的关联,并考察外场作用下VGCF结构的演化机制。
     采用两相模型描述PS/VGCF复合体系的线性动态流变参数,将填充体系的复数模量分解为基体相、填料相各自独立的贡献。研究结果表明,VGCF长径比越大,越易在基体相中相互搭接形成粒子网络结构,导致应变放大因子(Af)、填料相模量增大,填料相模量的频率依赖性降低。
     PS/VGCF体系的Payne效应随VGCF体积分数(φ)增大而变得更加明显,随增容剂苯乙烯-马来酸酐共聚物(SMA)的加入而减弱。大应变(γ)区域,考虑应变放大效应,复合材料的储能模量(G')~γ与损耗模量(G')~γ曲线均可平移叠加至PS的相关曲线。这表明填充体系大应变区域的Payne效应取决于基体分子链的解缠结。导电-流变同步测试与透射电镜(TEM)观测发现,VGCF在剪切作用下发生取向,使得VGCF间搭接点破坏、间距增大、表面PS链可能发生解吸附,导致小γ区域Payne效应的形成。填充体系的非线性松弛行为符合时间-应变可分离原则。φ≤8vol%时,填充体系以基体PS的松弛为主;φ≥12vol%时,填充体系还体现出明显的填料相松弛行为。增容剂SMA基本不影响体系的非线性松弛行为。
     导电-流变同步测试结果表明,剪切作用下VGCF网络结构的变化强烈依赖于作用模式:大γ振荡剪切造成VGCF网络结构崩溃;瞬态剪切仅造成小范围VGCF间搭接点的破坏。热处理、PS冷却固化均可促进VGCF网络结构的回复。就不同填充体系受剪切后的回复性而言,VGCF明显弱于炭黑等近似球形粒子。在PP/VGCF复合体系中,PP基体结晶(等温或非等温)首先造成渗流网络破坏,结晶程度超过一定程度后,VGCF在PP无定形区域聚集,重新形成渗流网络。在PP结晶过程中,VGCF网络的破坏和回复过程与VGCF尺寸、φ密切相关。VGCF直径越大、长径比越小、φ越低,VGCF网络对外场刺激的响应越强。
     熔融混合工艺(记为混合温度-转速-时间)对VGCF有显著破坏作用,即使采用短时间弱剪切工艺(如190℃-30rpm-2.5min), PS基体中VGCF长度也由原料的35μm降至约15μm。调控熔融混合工艺可实现VGCF在PS基体中分布结构的可控。剪切作用弱于190℃-30rpm-10min、190℃-60rpm-1 Omin时,复合体系内部可见明显的VGCF团聚体结构,VGCF分散性差。在混合加工过程中,转速越高、混合时间越长,VGCF在基体中的分散性越好,填料相模量越低,复合体系导电性越差。
     VGCF填充体系的稳态流变行为具有明显的φ、VGCF尺寸依赖性。低剪切速率下,VGCF填充体系在φ(φ=2 vol%)较低时既呈现剪切变稀现象。φ越高、VGCF直径越小、长径比越大,剪切变稀现象越明显。高剪切速率下,添加VGCF可显著提高VGCF填充体系的粘流活化能。VGCF的加入可降低填充体系的熔体弹性,明显抑制挤出胀大效应。φ越高、VGCF直径越小、长径比越大,VGCF降低熔体弹性、抑制挤出胀大效应的作用越强。
As one of the most important novel fillers, vapour grown carbon nanofibers (VGCFs), have extraordinary mechanical, thermal and electrical properties similar to carbon nanotube (CNT) and have been used as one of the most potential reinforcing materials and conductive fillers. The final performances of polymer/VGCF composites are always related to the dispersion, agglomeration and network formation of VGCF in the matrix.
     In this thesis, VGCF-filled polystyrene (PS) or polypropylene (PP) have been selected as research models. Influences of raw materials, mixing conditions and external fields on filler-phase structures, conductivity and rheological behaviors of the composites have been investigated in order to probe mechanisms of linear or nonlinear rheologies for VGCF-filled polymer, and detect response of VGCF network to actions of external fields, and establish relationship among VGCF-phase structure, conductivity and rheological behavior.
     The linear rheological behavior of VGCF-filled PS can be well fitted using the two phase model thus the global complex modulus of VGCF-filled polymers can be divided into a certain strain amplification e(?)ect and a structural contribution of the filler phase. These composites with high level of VGCF entanglement and contact have high values of strain amplification factor (Af) as well as characteristic moduli of the filler phase.
     Effect of volume fraction (φ) and aspect ratio of VGCF and coupling agent styrene-maleic anhydride copolymer (SMA) on nonlinear behaviors of VGCF-filled PS was investigated. The results indicate that the strain-softening strength increases with increasing (p and aspect ratio of VGCF, and decreases in case of SMA adding. Using Af arising from hydrodynamic effect as vertical and horizontal shifting factors, curves of the dynamic storage modulus (G) and the dynamic loss modulus (G") as a function of y for the composites can be superposed on those of pure matrix in large y region, suggesting that the matrix provides the main contribution to strain softening in large y region. Significant deflection from the master curves can be observed in small y region and the deflection becomes more marked at higher (p. Electrical resistance (R) tested as a function of y and TEM micrographs provide direct evidences for breakdown of filler-filler contact by y perturbation. Moreover, fiber slippage and orientation maybe accompanied by debonding of PS chain from the fiber surface, result in strain softening in small y region.
     Nonlinear relaxation behaviors of PS/VGCF composites follow time-strain separation principle. Whenφ≤8 vol%, composites show one relaxation behavior mainly arising from the matrix. When (φ≥12 vol%, composites exhibit another long-time relaxation due to filler network. Addition of SMA has no effect on nonlinear relaxation of composites.
     The evolution of VGCF network under shearing, heating or solidification of matrix was studied by using simultaneous measurements of G'and R. The results show that shearing destroys the percolation network and the destruction degree depends on the shearing mode. The VGCF network collapses under 100% oscillation strain shear and while it is just partly destructed under 1 s-1 steady shear. Moreover, thermal treatment and solidification of PS affect VGCF-network reformation. In PP/VGCF composites, crystallization of PP destroys the VGCF network firstly. When crystallinity is up to a certain value, VGCFs gather in the amorphous region to form a percolation network, and the shrink in volume upon cooling causes VGCF to get closer together.
     The processing-microstructure-property relationship for PS/VGCF composites was investigated. A remarked decrease in fiber length from 35 to 15μm was observed after mixing at low-shear condition (190℃-30rpm-2.5min). Composites with different dispersion levels of VGCF can be formulated by changing the mixing conditions. At low rate and short time mixing conditions, the composites have high Af values, characteristic moduli of the filler phase as well as electrical conductivity due to high entanglement level of VGCF.
     The effect ofφand VGCF size on viscosity and die-well ratio of VGCF filled polymers was studied through steady rheology measurement. Composites, containing 2 vol% VGCF exhibit shear thinning even at low shear rate and the shear thinning became more significant with increasingφand aspect ratio of VGCF. Addition of VGCF into polymer may increase flow activation energy and decrease primary normal stress difference (N1) and die-well ratio.It is noted that these effects were more significant with increasing (p and aspect ratio of VGCF.
引文
1. Chang J., Najeeb C. K., Lee J. H., Kim J. H., Single-Walled Carbon nanotubes/polymer composite electrodes patterned directly from solution. Langmuir 2011,27 (11), 7330-7336.
    2. Gomathi P., Do Ghim H., Ragupathy D., Preparation and characterization of conductive chitosan-poly N-(3-trimethoxysilylpropyl)aniline hybrid submicrostructures. Macromol-ecular Research 2011,19 (5),442-447.
    3. Hou Y. H., Zhang M. Q., Rong M. Z., Yu G., Zeng H. M., Improvement of conductive network quality in carbon black-filled polymer blends. Journal of Applied Polymer Science 2002,84 (14),2768-2775.
    4. Meyer J., Glass transition temperature as a guide to selection of polymers suitable for PTC materials. Polymer Engineering and Science 1973,13 (6),462-468.
    5. Mironi-Harpaz Ⅰ., Narkis M., Thermoelectric behavior (PTC) of carbon black-containing TPX/UHMWPE and TPX/XL-UHMWPE blends. Journal of Polymer Science Part B-Polymer Physics 2001,39 (12),1415-1428.
    6. Narkis M., Vaxman A., Resistivity behavior of filled electrically conductive conductive crosslinked polyethylene. Journal of Applied Polymer Science 1984,29 (5),1639-1652.
    7. Sandu I., Brasoveanu M., Morjan I., Voicu I., Dumitrache F., Teodor C. F., Gavrila-Florescu L., Synthesis of optical transparent and electrical conductive polymer/nanocarbon composite films by infiltration method. Thin Solid Films 2011, 519(12),4128-4131.
    8. Yacubowicz J., Narkis M., Benguigui L., Electrical and dielectric-properties of segregated carbon-black polyethylene carbon-black polyethylene systems. Polymer Engineering and Science 1990,30 (8),459-468.
    9. Al-Saleh M. H., Sundararaj U., A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009,47 (1),2-22.
    10. Coleman J. N., Khan U., Blau W. J., Gun'ko Y. K., Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006,44 (9), 1624-1652.
    11. Yang S. Y., Lozano K., Lomeli A., Foltz H. D., Jones R., Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Composites Part A-Applied Science and Manufacturing 2005,36 (5),691-697.
    12. Yang S. Y, Taha-Tijerina J., Serrato-Diaz V., Hernandez K., Lozano K., Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Composites Part B-Engineering 2007,38 (2),228-235.
    13. Yin J. B., Zhao X. P., Electrorheology of nanofiber suspensions. Nanoscale Research Letters 2011,6(11),1-17.
    14. Gorrasi G, Bredeau S., Di Candia C., Patimo G., De Pasquale S., Dubois P., Electroconductive Polyamide 6/MWNT nanocomposites:Effect of nanotube surface-coating by in situ catalyzed polymerization. Macromolecular Materials and Engineering 2011,296 (5),408-413.
    15. Frisch J., Vollmer A., Rabe J. P., Koch N., Ultrathin polythiophene films on an intrinsically conducting polymer electrode:Charge transfer induced valence states and interface dipoles. Organic Electronics 2011,12 (6),916-922.
    16. Kim B. R., Lee H. K., Park S. H., Kim H. K., Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films 2011,579(11),3492-3496.
    17. Li B., Zhang Y. C., Li Z. M., Li S. N., Zhang X. N., Easy fabrication and resistivity-temperature behavior of an anisotropically conductive carbon nanotube-polymer composite. Journal of Physical Chemistry B 2010,114 (2),689-696.
    18. Li Q., Siddaramaiah, Kim N. H., Yoo G. H., Lee J. H., Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B-Engineering 2009,40 (3),218-224.
    19. Shen L., Lou Z. D., Qian Y. J., Effects of thermal volume expansion on positive temperature coefficient effect for carbon black filled polymer composites. Journal of Polymer Science Part B-Polymer Physics 2007,45 (22),3078-3083.
    20. Wang X. L., Zhang G., Li J. X., Li Z. S., Liu Z. F., Liu X. Q., PTC/NTC behavior of PVDF composites filled with GF and CF. Chemical Research in Chinese Universities 2008,24 (5),648-652.
    21. Xi Y, Ishikawa H., Bin Y Z., Matsuo M., Positive temperature coefficient effect of LMWPE-UHMWPE blends filled with short carbon fibers. Carbon 2004,42(8-9), 1699-1706.
    22. Chen Y. L., Song Y. H., Zhou J. F., Zheng Q., Effect of uniaxial pressure on conduction behavior of carbon black filled poly(methyl vinyl siloxane) composites. Chinese Science Bulletin 2005,50(2),101-107.
    23. Rizvi R., Makaremi S., Botelho S., Biddiss E., Naguib H., Piezoresistance characterization of Poly(Dimethyl-siloxane)-multiwall carbon nanotube composites. ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS2010), USA,2010,137-144.
    24. Danesh E., Ghaffarian S. R., Molla-Abbasi P., Effect of porosity on response behavior of carbon black-PMMA conductive composite sensors toward organic vapors. AIP Conference Proceedings 2009; 1137,361-364.
    25. Mangu R., Rajaputra S., Singh V. P., MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 2011,22 (21).
    26. Meskinis S., Gudaitis R., Tamuleviciene A., Kopustinskas V., Slapikas K., Tamulevicius S., The Investigation of Piezoresistive, Optical and electrical properties of diamond like carbon films synthesized by ion beam deposition and PECVD. Materials Science-Medziagotyra 2010,16 (4),292-297.
    27. Xu W. W., Song Y. H., Zhou J. F., Zheng Q., Zhang M. Q., Piezoresistance behavior of polyvinyl chloride/carbon black conductive composites. Chemical Journal of Chinese Universities-Chinese 2005,26 (6),1170-1173.
    28. Broadbent S R, Hammersley J. M., Percolation processes. Ⅰ. Crystals and mazes. Proceedings of the Cambridge Philological Society 1957,53 (4),629-641.
    29. Frisch H. L., Hammersley J. M., Journal of Industrial and Applied Mathematics 1963, 11,894-918.
    30. Schante V. K. S., Kirkpatrick S., Advance in Physic 1971,20 (8),325-357.
    31. Kirkpatrick S., Percolation and conduction. Review Modern Physic 1973,45 (4), 574-588.
    32. Zallen R., The physics of amorphous solids. John Wiley & Sons, Inc.:New York,1983.
    33. Bunde A., Havlin S., Fractals and Disordered Systems 2nd rev. and enlarged. Springer-Verlag:Berlin,1996.
    34. Stauffer D., Aharony A., Introduction to percolation theory.2nd ed. Talor & Francis: London,1992.
    35. Janzen J., Critical conductive filler loading in antistatic composites. Journal of Applied Physics 1975,46 (2),966-969.
    36. Aharoni S. M., Electrical resistivity of a composite of conducting plasticles in an insulating matrix. Journal of Applied Physics 1972,43 (5),2463-2465.
    37. Gurland J., An estimate of contact and continuity of dispersions in opaque samples. Transactions of the Metallurgical Society ofAime 1966,236 (5),642-646.
    38. Halperin B. I., Feng S., Sen P. N., Differences between lattice and continuum percolation tansport exponents. Physical Review Letters 1985,54 (22),2391-2394.
    39. Balberg I., Tunneling and nonuniversal conductivity in composite-materials. Physical Review Letters 1987,59 (12),1305-1308.
    40. Miyasaka K., Watanabe K., Jojima E., Aida H., Sumita M., Ishikawa K., Electrical -conductivity of carbon polymer composites as a function of carbon content. Journal of Materials Science 1982,17(6),1610-1616.
    41. Sumita M., Abe H., Kayaki H., Miyasaka K., Effect of melt viscosity and surface tension of polymers on the percolation-threshold of conductive-particle-filled polymeric composites. Journal of Macromolecular Science-Physics 1986, B25 (1-2), 171-184.
    42. McCullough R. L., Generalized combinning rules for predicting transport-properties of composite-materials. Composites Science and Technology 1985,22 (1),3-21.
    43. Fowkes F. M., Attractive forces at interfaces. Industrial and Engineering Chemistry 1964,56 (12),40-52.
    44. Slupkowski T., Electrical-conductivity of polyester polymer containning carbon-black. Physica Status Solidi a-Applied Research 1985,90 (2),737-741.
    45. Sheng P., Sichel E. K., Gittleman J. I., Fluctuation-induced tunneling conduction in carbon-polyvinychloride composites. Physical Review Letters 1978,40 (18), 1197-1200.
    46. Polley M. H., Carbon blacks for highly conductive rubber. Rubber Chemistry and Technology 1957,30,170-179.
    47. Abeles B., Sheng P., Coutts M. D., Arie Y, Structural and electrical properties of granular metal-films. Advances in Physics 1975,24 (3),407-461.
    48. Rajagopal C., Satyam M., Studies on electrical conductivity of insulator-conductor composites. Journal of Applied Physics 1978,49 (11),5536-5542.
    49. Miyauchi S., Togashi E., The conduction mechanism of polymer-filled particles. Journal of Applied Polymer Science 1985,30 (7),2743-2751.
    50. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric field effect in atomically thin carbon films. Science 2004,306(5696),666-669.
    51. Brumfiel G., Graphene gets ready for the big time. Nature 2009,458 (7237),390-391.
    52. Lee B. O., Woo W. J., Kim M. S., EMI shielding effectiveness of carbon nanofiber filled poly(vinyl alcohol) coating materials. Macromolecular Materials and Engineering 2001,286 (2),114-118.
    53. Hammel E., Tang X., Trampert M., Schmitt T., Mauthner K., Eder A., Carbon nanofibers for composite applications, carbon 2004,42,1153-1158.
    54. Coquay P., Peigney A., De Grave E., Flahaut E., Vandenberghe R. E., Laurent C., Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single-and double-walled carbon nanotubes (CNTs).1. The CNT-Fe/Co-MgO system. Journal of Physical Chemistry B 2005,109 (38),17813-17824.
    55. Kuzuya C., In-Hwang W., Hirako S., Hishikawa Y., Motojima S., Preparation, morphology, and growth mechanism of carbon nanocoils. Chemical Vapor Deposition 2002,8 (2),57-62.
    56. Yang S., Chen X., Katsuno T., Motojima S., Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process. Materials Research Bulletin 2007,42 (3),465-473.
    57. Mordkovich V. Z., Carbon nanofibers:A new ultrahigh-strength material for chemical technology. Theoretical Foundations of Chemical Engineering 2003,37 (5),429-438.
    58. Mukhopadhyay K., Porwal D., La1 D., Ram K., Mathur G. N., Synthesis of coiled/straight carbon nanofibers by catalytic chemical vapor deposition. Carbon 2004, 42 (15),3254-3256.
    59. Davis W. R., Slawson R. J., Rigby G. R., An unusual form of carbon. Nature 1953,171 (4356),756-756.
    60. Chung D. D. L., Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials. Carbon 2001,39 (8),1119-1125.
    61. Tibbetts G. G., Lake M. L., Strong K. L., Rice B. P., A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology 2001, 67(7-8),1709-1718.
    62. Uchida T., Anderson D. P., Minus M. L., Kumar S., Morphology and modulus of vapor grown carbon nano fibers. Journal of Materials Science 2006,41 (18),5851-5856.
    63. Shim B. S., Starkovich J., Kotov N., Multilayer composites from vapor-grown carbon nano-fibers. Composites Science and Technology 2006,66(9),1174-1181.
    64. Endo M., Kim Y. A., Hayashi T., Nishimura K., Matusita T., Miyashita K., Vapor-grown carbon fibers (VGCFs)-basic properties and their battery applications, carbon 2001,39 (9),1287-1297.
    65. Huang J. C., Carbon black filled conducting polymers and polymer blends. Advances in Polymer Technology 2002,21 (4),299-313.
    66. Kandasubramanian B., Gilbert M., An electroconductive filler for shielding plastics. Macromolecular Symposia 2005,227,185-195.
    67. Huang J. C., Wu C. L., Processability, mechanical properties, and electrical conductivities of carbon black-filled ethylene-vinyl acetate copolymers. Advances in Polymer Technology 2000,19 (2),132-139.
    68. Ren J., Wang L., Zhang C., Study on Electrical Conductivity of VGCF Filled PVDF/PMMA Composite. China Plastics Industry 2007,35 (5),50-52.
    69. Lozano K., Bonilla-Rios J., Barrera E. V., A study on nanofiber-reinforced thermoplastic composites (II):Investigation of the mixing rheology and conduction properties. Journal of Applied Polymer Science 2001,80 (8),1162-1172.
    70. Andrews R., Jacques D., Minot M., Rantell T., Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromolecular Materials and Engineering 2002,287 (6),395-403.
    71. Tsubokawa N., Preparation and properties of polymer-grafted carbon nanotubes and nanofibers. Polymer Journal 2005,37(9),637-655.
    72. Raravikar N. R., Schadler L. S., Vijayaraghavan A., Zhao Y. P., Wei B. Q., Ajayan P. M., Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films. Chemistry of Materials 2005,17(5),974-983.
    73. Safadi B., Andrews R., Grulke E. A., Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. Journal of Applied Polymer Science 2002, 84 (14),2660-2669.
    74. Watts P. C. P., Hsu W. K., Chen G. Z., Fray D. J., Kroto H. W., Walton D. R. M., A low resistance boron-doped carbon nanotube-polystyrene composite. Journal of Materials Chemistry 2001,11 (10),2482-2488.
    75. Choi Y. K., Sugimoto K., Song S. M., Gotoh Y, Ohkoshi Y, Endo M., Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon 2005,43 (10),2199-2208.
    76. Choi Y K., Sugimoto K., Song S. M., Endo M., Production and characterization of polycarbonate composite sheets reinforced with vapor grown carbon fiber. Composites Part A-Applied Science and Manufacturing 2006,37 (11),1944-1951.
    77. Maser W. K., Benito A. M., Callejas M. A., Seeger T., Martinez M. T., Schreiber J., Muszynski J., Chauvet O., Osvath Z., Koos A. A., Biro L. P., Synthesis and characterization of new polyaniline/nanotube composites. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2003,23 (1-2),87-91.
    78. Tang B. Z., Xu H. Y., Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 1999,32 (8), 2569-2576.
    79. Schadler L. S., Giannaris S. C., Ajayan P. M., Load transfer in carbon nanotube epoxy composites. Applied Physics Letters 1998,73 (26),3842-3844.
    80. Bryning M. B., Milkie D. E., Islam M. F., Kikkawa J. M., Yodh A. G., Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Applied Physics Letters 2005,87 (16),161909.
    81. Higgins B. A., Brittain W. J., Polycarbonate carbon nanofiber composites. European Polymer Journal 2005,41 (5),889-893.
    82.吴其晔,巫静安,高分子材料流变学.高等教育出版社:北京,2002;1-14.
    83.于同隐,高聚物的粘弹性.上海科学技术出版社:上海,1986.
    84.周持兴,聚合物流变实验与应用.上海交通大学出版社:上海,2003.
    85. Solomon M. J., Almusallam A. S., Seefeldt K. F., Somwangthanaroj A., Varadan P., Rheology of polypropylene/clay hybrid materials. Macromolecules 2001,34 (6), 1864-1872.
    86. Wang Y., Wu K. C., Wang J. Z., Effect of maleated propylene on. rheology of polypropylene nanocomposites. Journal of Central South University of Technology 2007,14,160-164.
    87. Huo Y. L., Groeninckx G., Moldenaers P., Rheology and morphology of polystyrene/polypropylene blends with in situ compatibilization. Rheologica Acta 2007, 46 (4),507-520.
    88. Kordjazi Z., Ebrahimi N. G., Rheological Behavior of Noncompatibilized and compatibilized PP/PET blends with SEBS-g-MA. Journal of Applied Polymer Science 2010,116(1),441-448.
    89. Macaubas P. H. P., Demarquette N. R., Dealy J. M., Nonlinear viscoelasticity of PP/PS/SEBS blends. Rheologica Acta 2005,44 (3),295-312.
    90. Robledo N., Vega J. F., Nieto J., Martinez-Salazar J., Role of the interface in the melt-rheology properties of linear low-density polyethylene/low-density polyethylene blends:effect of the molecular architecture of the dispersed phase. Journal of Applied Polymer Science 2011,119 (6),3217-3226.
    91. Zhang X. W., Pan Y, Zheng Q., Yi X. S., Polystyrene/Sn-Pb alloy blends. II. Effect of alloy particle surface treatment on dynamic rheological behavior. Journal of Applied Polymer Science 2002,86 (12),3173-3179.
    92. Zheng Q., Cao Y X., Du M., Preparing temperature-dependent dynamic rheological properties of polypropylene filled with ultra-fine powdered rubber. Journal of Materials Science 2004,39 (5),1813-1814.
    93.杜淼,王利群,杨碧波,宋栩冰,郑强,聚甲基丙烯酸甲酯/聚(苯乙烯-丙烯腈)共混物体系相分离的特征动态流变响应,高等学校化学学报2002,23(5),961-964.
    94. Ferry J. D., Viscoelastic Properties of Polymer Wiley:New York,1980.
    95. King J. A., Morrison F. A., Keith J. M., Miller M. G., Smith R. C., Cruz M., Neuhalfen A. M., Barton R. L., Electrical conductivity and rheology of carbon-filled liquid crystal polymer composites. Journal of Applied Polymer Science 2006,101 (4),2680-2688.
    96. Lakdawala K., Salovey R., Rheology of polymers containning carbon-black. Polymer Engineering and Science 1987,27 (14),1035-1042.
    97. Wu G., Song Y. H., Zheng Q., Du M., Zhang P. J., Dynamic rheological properties for HDPE/CB composite melts. Journal of Applied Polymer Science 2003,88 (9), 2160-2167.
    98. Friedrich C., Scheuchenpflug W., Neuhausler S., Rosch J., Morphological properties of PS melts filled with grafted and ungrafted glass beads. Journal of Applied Polymer Science 1995,57 (4),499-508.
    99. Wang W. J., Shangguan Y. G., Zhao L., Yu J., He L., Tan H., Zheng Q., The linear viscoelastic behaviors of nylon1212 blends toughened with elastomer. Journal of Applied Polymer Science 2008,108 (3),1744-1754.
    100. Cassagnau P., Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008,49 (9),2183-2197.
    101. Zhou M., Song Y. H., Sun J., He L., Tan H., Zheng Q., Effect of selane coupling agents on dynamic rheological properties for unvulcanized SSBR/silica compounds. Acta Polvmerica Sinica 2007,2,153-157.
    102. Wang M., Wang W. Z., Liu T. X., Zhang W. D., Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Composites Science and Technology 2008, 68 (12),2498-2502.
    103. Potschke P., Fornes T. D., Paul D. R., Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 2002,43 (11),3247-3255.
    104. Via M. D., Morrison F. A., King J. A., Caspary J. A., Mills O. P., Bogucki G. R., Comparison of Rheological Properties of Carbon Nanotube/Polycarbonate and Carbon Black/Polycarbonate Composites. Journal of Applied Polymer Science 2011,121 (2), 1040-1051.
    105. Sumfleth J., Buschhorn S. T., Schulte K., Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. Journal of Materials Science 2011,46 (3),659-669.
    106. Kota A. K., Cipriano B. H., Duesterberg M. K., Gershon A. L., Powell D., Raghavan S. R., Bruck H. A., Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 2007,40 (20),7400-7406.
    107. Zhang Q. H., Fang F., Zhao X., Li Y. Z., Zhu M. F., Chen D. J., Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. Journal of Physical Chemistry B 2008,112 (40), 12606-12611.
    108. Mitchell C. A., Bahr J. L., Arepalli S., Tour J. M., Krishnamoorti R., Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 2002,35 (23), 8825-8830.
    109. Mitchell C. A., Krishnamoorti R., Dispersion of single-walled carbon nanotubes in poly(epsilon-caprolactone). Macromolecules 2007,40 (5),1538-1545.
    110. Wu G., Zheng Q., Estimation of the agglomeration structure for conductive particles and fiber-filled high-density polyethylene through dynamic rheological measurements. Journal of Polymer Science Part B-Polymer Physics 2004,42 (7),1199-1205.
    111. Zhang Q. H.,Lippits D. R.,Rastogi S., Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene. Macromolecules 2006,39 (2),658-666.
    112. Wang Y, Yu M. J., Effect of volume loading and surface treament on the thixotropic behavior of polypropylene filled with calcium carbonate. Polymer Composites 2000,21 (1),1-12.
    113. Das A., Stockelhuber K. W., Jurk R., Saphiannikova M., Fritzsche J., Lorenz H., Kluppel M., Heinrich G., Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends. Polymer 2008,49(24),5276-5283.
    114. Ceccia S., Ferri D., Tabuani D., Maffettone P. L., Rheology of carbon nanofiber-reinforced polypropylene. Rheologica Acta 2008,47 (4),425-433.
    115.刘志华,高分子/炭黑复合材料流变行为-导电功能的相关性及应用.浙江大学博士学位论文:杭州,2007.
    116. Du F. M., Scogna R. C., Zhou W., Brand S., Fischer J. E., Winey K. I., Nanotube networks in polymer nanocomposites:Rheology and electrical conductivity. Macromolecules 2004,37 (24),9048-9055.
    117. Hu G. J., Zhao C. G, Zhang S. M., Yang M. S., Wang Z. G., Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 2006,47 (1),480-488.
    118. Osman M. A., Atallah A., Effect of the particle size on the viscoelastic properties of filled polyethylene. Polymer 2006,47 (7),2357-2368.
    119. Kelarakis A., Yoon K., Somani R. H., Chen X. M., Hsiao B. S., Chu B., Rheological study of carbon nanofiber induced physical gelation in polyolefin nanocomposite melt. Polymer 2005,46 (25),11591-11599.
    120. Aranguren M. I., Mora E., Degroot J. V., Macosko C. W., Efeect of reinforcing fillers on the rheology of polymer melts. Journal of Rheology 1992,36 (6),1165-1182.
    121. Sternstein S. S., Zhu A. J., Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 2002,35 (19), 7262-7273.
    122. Allegra G., Raos G., Vacatello M., Theories and simulations of polymer-based nanocomposites:From chain statistics to reinforcement. Progress in Polymer Science 2008,33(7),683-731.
    123. Yurekli K., Krishnamoorti R., Tse M. F., McElrath K. O., Tsou A. H., Wang H. C., Structure and dynamics of carbon black-filled elastomers. Journal of Polymer Science Part B-Polymer Physics 2001,39 (2),256-275.
    124. Li L., Masuda T., Effect of dispersion of particles on viscoelasticity of CaCO3-filled polypropylene melts. Polymer Engineering and Science 1990,30 (14),841-847.
    125. Mansoutre S., Colombet P., Van Damme H., Water retention and granular rheological behavior of fresh C3S paste as a function of concentration. Cement and Concrete Research 1999,29 (9),1441-1453.
    126. Faitel'son L. A., Yakobson E. E., Rheology of filled polymers. Steady-state shear flow and periodic deformation.1. Relaxation time spectra, viscosity. Mechanics of Composite Materials 1977,13,898-906.
    127. Gleissle W., Hochstein B., Validity of the Cox-Merz rule for concentrated suspensions. Journal of Rheology 2003,47 (4),897-910.
    128. Mongruel A., Cartault M., Nonlinear rheology of styrene-butadiene rubber filled with carbon-black or silica particles. Journal of Rheology 2006,50 (2),115-135.
    129. Xu X. M., Tao X. L., Gao C. H., Zheng Q., Studies on the steady and dynamic rheological properties of poly(dimethyl-siloxane) filled with calcium carbonate based on superposition of its relative functions. Journal of Applied Polymer Science 2008, 707(3),1590-1597.
    130. Trappe V., Weitz D. A., Scaling of the viscoelasticity of weakly attractive particles. Physical Review Letters 2000,85 (2),449-452.
    131. Filippone G., Romeo G, Russo P., Acierno D., Elasticity and dynamics of particle gels in non-Newtonian melts. AIP conference proceedings 2008; 1042,29-31.
    132. Romeo G., Filippone G., Fernandez-Nieves A., Russo P., Acierno D., Elasticity and dynamics of particle gels in non-Newtonian melts. Rheologica Acta 2008,47 (9), 989-997.
    133. Jager K. M., Eggen S. S., Scaling of the viscoelasticity of highly filled carbon black polyethylene composites above the melting point. Polymer 2004,45 (22),7681-7692.
    134. Hobbie E. K., Fry D. J., Nonequilibrium phase diagram of sticky nanotube suspensions. Physical Review Letters 2006,97 (3),036101.
    135. Marcovich N. E., Reboredo M. M., Kenny J., Aranguren M. I., Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheologica Acta 2004,43 (3),293-303.
    136. Song Y. H., Zheng Q., Cao Q., On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. Journal of Rheology 2009,53(6),1379-1388.
    137.Song Y., Zheng Q., Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer 2010,51,3262-3268.
    138. Heinrich G., Kluppel M., Vilgis T. A., Reinforcement of elastomers. Current Opinion in Solid State and Materials Science 2002, 6,195-203.
    139. Osman M. A., Atallah A., Schweizer T., Ottinger H. C., Particle-particle and particle-matrix interactions in calcite filled high-density polyethylene-steady shear. Journal of Rheology 2004,48 (5),1167-1184.
    140. Botti A., Pyckhout-Hintzen W., Richter D., Urban V., Straube E., A microscopic look at the reinforcement of silica-filled rubbers. Journal of Chemical Physics 2006,124 (17).
    141. Westermann S., Kreitschmann M., Pyckhout-Hintzen W., Richter D., Straube E., Farago B., Goerigk G., Matrix chain deformation in reinforced networks:a SANS approach. Macromolecules 1999,32 (18),5793-5802.
    142. Westermann S., Kreitschmann M., PyckhoutHintzen W., Richter D., Straube E., Strain amplification effects in polymer networks. Physica B-Condensed Matter 1997,234, 306-307.
    143. Friedlander S. K., Jang H. D., Ryu K. H., Elastic behavior of nanoparticle chain aggregates. Applied Physics Letters 1998,72 (2),173-175.
    144. Friedlander S. K., Ogawa K., Ullmann M., Elastic behavior of nanoparticle chain aggregates:A hypothesis for polymer-filler behavior. Journal of Polymer Science Part B-Polymer Physics 2000,38 (20),2658-2665.
    145. Suh Y. J., Ullmann M., Friedlander S. K., Park K. Y, Elastic behavior of nanoparticle chain aggregates (NCA):Effects of substrate on NCA stretching and first observations by a high-speed camera. Journal of Physical Chemistry B 2001,105 (47),11796-11799.
    146. Potanin A. A., Derooij R., Vandenende D., Mellema J., Microrheological modeling of weakly aggregated dispersions. Journal of Chemical Physics 1995,102 (14), 5845-5853.
    147. Shim S. E., Isayev A. I., Rheology and structure of precipitated silica and poly(dimethyl siloxane) system. Rheologica Acta 2004,43 (2),127-136.
    148. Wu D. F., Wu L., Zhang M., Rheology of multi-walled carbon nanotube/poly(butylene terephthalate) composites. Journal of Polymer Science Part B-Polymer Physics 2007, 45 (16),2239-2251.
    149. Durmus A., Kasgoz A., Macosko C. W., Linear low density polyethylene (LLDPE)/clay nanocomposites. Part Ⅰ:Structural characterization and quantifying clay dispersion by melt rheology. Polymer 2007,48 (15),4492-4502.
    150. Song Y. H., Zheng Q. A., Application of two phase model to linear viscoelasticity of reinforced rubbers. Polymer 2011,52 (3),593-596.
    151.Harwood J. A. C., Payne A. R., Stress softenning in natural rubber vulcanizates.3. carbon black-filled vulcanizates. Journal of Applide Polymer Science 1966,10 (2), 315-324.
    152. Payne A. R., The dynamic properties of carbon black-loaded natural rubber vulcanizates. Journal of Applide Polymer Science 1962,6 (19),57-63.
    153. Payne A. R., A note on the conductivity and modulus of carbon black-loaded rubbers. J Appl Polym Sci 1965,9 (3),1073-1199.
    154. Zhu Z., Thompson T., Wang S. Q., Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadience. Macromolecules 2005,38, 8816-8824.
    155. Witten T. A., Rubinstein M., Colby R. H., Reinforcement of rubber by fractal aggregates. J. Phys.Ⅱ1993,3 (3),367-383.
    156. Malchev P. G., The strain dependence of the dynamic moduli of short fiber reinforced thermoplastic blends. Journal of Rheology 2007,57 (2),235-260.
    157. Huber G., Vilgis T. A., On the mechanism of hydrodynamic reinforcement in elastic composites. Macromolecules 2002,35,9204-9210.
    158. Medalia A. I., Effect of carbon-black on dynamic properties of rubbers of rubber vulcanizates. Rubber Chemistry and Technology 1978,57 (3),437-523.
    159. Wang M. J., Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chemistry and Technology 1998,71 (3),520-589.
    160. Yatsuyanagi F., Suzuki N., Ito M., Kaidou H., Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 2001,42 (23), 9523-9529.
    161. Liu Z. H., Song Y. H., Zhou J. F., Zheng Q., Simultaneous measurement of rheological and conductive properties of carbon black filled ethylene-tetrafluorothylene copolymer. Jounal of Materials Science 2007,42 (20),8757-8759.
    162. Maier P. G., Goritz D., Molecular interpretation of the Payne effect. Kautschuk Gummi Kunststoffe 1996,49 (1),18-21.
    163. Freund B., Niedermeier W., Molecular interpretation of the Payne-effect and influence of fillers. Kautschuk Gummi Kunststoffe 1998,51 (6),444-449.
    164. Cassagnau P., Melis F., Non-linear viscoelastic behavior and modulus recovery in silica filled polymers. Polymer 2003,44,6607-6615.
    165. Stauffer D., Aharony A., Introduction to percolation theory. Talor & Francis:London, 1992, Chapters 2 and 5.
    166. Kirkpatr.S., Percolation and conduction. Reviews of Modern Physics 1973,45 (4), 574-588.
    167. Vionnet-Menot S., Grimaldi C., Maeder T., Strassler S., Ryser P., Tunneling-percolation origin of nonuniversality:Theory and experiments. Physical Review B 2005,71 (6).
    168. Song Y. H., Zheng Q., Influence of annealing on conduction of high-density polyethylene/carbon black composite. Journal of Applied Polymer Science 2007,105 (2),710-717.
    169. Cipriano B. H., Kota A. K., Gershon A. L., Laskowski C. J., Kashiwagi T., Bruck H. A., Raghavan S. R., Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 2008,49 (22),4846-4851.
    170. Cao Q., Song Y. H., Tan Y. Q., Zheng Q., Thermal-induced percolation in high-density polyethylene/carbon black composites. Polymer 2009,50 (26),6350-6356.
    171. Abbasi S., Carreau P. J., Derdouri A., Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites:Rheology, conductivity and mechanical properties. Polymer 2010,51 (4),922-935.
    172. Dullaert K., Mewis J., Thixotropy:Build-up and breakdown curves during flow. Journal of Rheology 2005,49 (6),1213-1230.
    173.Kelarakis A., Yoon K., Sics I., Somani R. H., Chen X. M., Hsiao B. S., Chu B., Shear-induced orientation and structure development in isotactic polypropylene melt containing modified carbon nanofibers. Journal of Macromolecular Science Part B-Physics 2006,45 (2),247-261.
    174. Ma H. M., Zeng J. J., Realff M. L., Kumar S., Schiraldi D. A., Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Composites Science and Technology 2003,63 (11),1617-1628.
    175. Zeng J. J., Saltysiak B., Johnson W. S., Schiraldi D. A., Kumar S., Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Composites Part B-Engineering 2004,35 (2),173-178.
    176. Feller J. F., Conductive polymer composites:Influence of extrusion conditions on positive temperature coefficient effect of poly(butylene terephthalate)/poly(olefin) -carbon black blends. Journal of Applied Polymer Science 2004,91 (4),2151-2157.
    177. Feller J. F., Langevin D., Marais S., Influence of processing conditions on sensitivity of conductive polymer composites to organic solvent vapours. Synthetic Metals 2004,144 (1),81-88.
    178. Feller J. F.,Petitjean E., Conductive polymer composites (CPC):Influence of processing conditions, shear rate and temperature on electrical properties of poly(butylene terephthalate)/poly(amidel2-b-tetramethyleneglycol)-Carbon black blends. Macromolecular Symposia 2003,203,309-315.
    1. Wu G, Song Y. H., Zheng Q., Du M., Zhang P. J., Dynamic rheological properties for HDPE/CB composite melts. Journal of Applied Polymer Science 2003,88 (9), 2160-2167.
    2. Das A., Stockelhuber K.W., Jurk R., Saphiannikova M., Fritzsche J., Lorenz H., Kluppel M., Heinrich G., Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends. Polymer 2008,49 (24),5276-5283.
    3. Durmus A., Kasgoz A., Macosko C. W., Linear low density polyethylene (LLDPE)/clay nanocomposites. Part Ⅰ:Structural characterization and quantifying clay dispersion by melt rheology. Polymer 2007,48 (15),4492-4502.
    4. Mitchell C. A., Bahr J. L., Arepalli S., Tour J. M., Krishnamoorti R., Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 2002,35 (23), 8825-8830.
    5. Mitchell C.A., Krishnamoorti R., Dispersion of single-walled carbon nanotubes in poly(epsilon-caprolactone). Macromolecules 2007,40 (5),1538-1545.
    6. Wang M., Wang W. Z., Liu T. X., Zhang W. D., Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Composites Science and Technology 2008, 68 (12),2498-2502.
    7. Wang Y., Yu M. J., Effect of volume loading and surface treament on the thixotropic behavior of polypropylene filled with calcium carbonate. Polymer Composites 2000,21 (1),1-12.
    8. Wu G, Zheng Q., Estimation of the agglomeration structure for conductive particles and fiber-filled high-density polyethylene through dynamic rheological measurements. Journal of Polymer Science Part B-Polymer Physics 2004,42 (7),1199-1205.
    9. Zhang Q. H., Fang F., Zhao X., Li Y. Z., Zhu M. F., Chen D. J., Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. Journal of Physical Chemistry B 2008,112 (40), 12606-12611.
    10. Zhang Q. H., Lippits D. R., Rastogi S., Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene. Macromolecules 2006,39 (2),658-666.
    11. Song Y. H., Zheng Q., Cao Q., On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. Journal of Rheology 2009,53(6),1379-1388.
    12. Song Y. H., Zheng Q. A., Application of two phase model to linear viscoelasticity of reinforced rubbers. Polymer 2011,52 (3),593-596.
    13. Lu C., Liu C. Y., Li Z. Z., Jiang T., Liu J. C., Peng S. G, Zhang Y. Q., Electrical properties of conductive polymwe composites prepared by an innovational method. Chinese Journal of Polymer Science 2010,28 (6),869-876.
    14. Tu H. M., Ye L., Preparation and characterization of thermally conductive polystyrene/carbon Nanotubes Composites. Journal of Applied Polymer Science 2010, 116 (4),2336-2342.
    15. Wu D. F., Wu L., Zhou W. D., Sun Y. R., Zhang M., Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. Journal of Polymer Science Part B-Polymer Physics 2010,48 (4),479-489.
    16. Knauert S.T., Douglas J.F., Starr F.W., The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. Journal of Polymer Science Part B-Polymer Physics 2007,45 (14),1882-1897.
    17. Osman M. A., Atallah A., Effect of the particle size on the viscoelastic properties of filled polyethylene. Polymer 2006,47 (7),2357-2368.
    18. Ceccia S., Ferri D., Tabuani D., Maffettone P. L., Rheology of carbon nanofiber-reinforced polypropylene. Rheologica Acta 2008,47 (4),425-433.
    19. Hristov V., Vlachopoulos J., Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polymer Composites 2008,29 (8), 831-839.
    20. Westermann S., Kreitschmann M., PyckhoutHintzen W., Richter D., Straube E., Strain amplification effects in polymer networks. Physica B-Condensed Matter 1997,234, 306-307.
    21. Botti A., Pyckhout-Hintzen W., Richter D., Urban V., Straube E., A microscopic look at the reinforcement of silica-filled rubbers. Journal of Chemical Physics 2006,124 (17).
    22. Ahmed S., Jones F. R., A review of particulate reinforcement theories for polymer composites. Journal of Materials Science 1990,25 (12),4933-4942.
    23. Osman M. A., Atallah A., Schweizer T., Ottinger H. C., Particle-particle and particle-matrix interactions in calcite filled high-density polyethylene-steady shear. Journal of Rheology 2004,48 (5),1167-1184.
    24. Sun Y. J., Ullmann M., Friedlander S. K., Park K. Y, Elastic behavior of nanoparticle chain aggregates (NCA):Effects of substrate on NCA stretching and first observations by a high-speed camera. Journal of Physical Chemistry B 2001,105 (47),11796-11799.
    25. Wolthers W., vandenEnde D., Breedveld V., Duits M. H. G., Potanin A. A., Wientjes R. H. W., Mellema J., Linear viscoelastic behavior of aggregated colloidal dispersions. Physical Review. E 1997,56 (5),5726-5733.
    26. Mullins L., Tobin N. R., Stress softening in rubber vulcanizates.Ⅰ Use of a strain amplification factor to describe elastic behavior of filler-reinforced vulcanized rubber. Journal of Applied Polymer Science 1965,9 (9),2993-&.
    1. Liu Z. H., Song Y. H., Zhou J. F., Zheng Q., Simultaneous measurement of rheological and conductive properties of carbon black filled ethylene-tetrafluorothylene copolymer. Journal Materials Science 2007,42 (20),8757-8759.
    2. Zhu Z., Thompson T., Wang S. Q., Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadience. Macromolecules 2005,38, 8816-8824.
    3. Witten T. A., Rubinstein M., Colby R. H., Reinforcement of rubber by fractal aggregates. Journal De Physique Ii 1993,3 (3),367-383.
    4. Sternstein S. S., Zhu A. J., Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 2002,35 (19), 7262-7273.
    5. Payne A. R., The dynamic properties of carbon black-loaded natural rubber vulcanizates. Journal of Applied Polymer Science 1962,6 (19),57-63.
    6. Huber G, Vilgis T. A., On the Mechanism of Hydrodynamic Reinforcement in elastic. composites. Macromolecules 2002,35,9204-9210.
    7. Leboeuf M., Ghamri N., Brule B., Coupez T., Vergnes B., Influence of mixing conditions on rheological behavior and electrical conductivity of polyamides filled with carbon black. Rheologica Acta 2008,47,201-212.
    8. Sun J., Song Y. H., Zheng Q., Tan H., Yu J., Li H., Nonlinear Rheological Behavior of Silica Filled Solution-Polymerized Styrene Butadiene Rubber. Journal of Polymer Science part B-Polymer Physics 2007,45,2594-2602.
    9. Sternstein S. S., Ramorino G., Jiang B., Zhu A. J., Reinforcement and nonlinear viscoelasticity of polymer melts containing mixtures of nanofillers. Rubber Chemistry and Technology 2005,78 (2),258-270.
    10. Cassagnau P., Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008,49 (9),2183-2196.
    11. Cassagnau P., Melis F., Non-linear viscoelastic behavior and modulus recovery in silica filled polymers. Polymer 2003,44,6607-6615.
    12. Yurekli K., Krishnamoorti R., Tse M. F., McElrath K. O., Tsou A. H., Wang H. C., Structure and dynamics of carbon black-filled elastomers. Journal of Polymer Science Part B-Polymer Physics 2001,39 (2),256-275.
    13. Lozano K., Yang S. Y, Zeng Q., Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. Journal of Applied Polymer Science 2004,93(1),155-162.
    14. Raos G., Moreno M., Elli S., Computational experiments on filled rubber viscoelasticity: What is the role of particle-particle interactions? Macromolecules 2006,39 (19), 6744-6751.
    15. Lv R. H., Xu W. F., Na B., Chen B. B., Insight into the role of filler network in the viscoelasticity of a carbon black filled thermoplastic elastomer:A strain dependent electrical conductivity study. Journal of Macromolecular Science Part B.2008,47, 774-782.
    16. Song Y. H., Zheng Q., Cao Q., On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. Journal of Rheology 2009,55(6),1379-1388.
    17. Song Y. H., Zheng Q. Application of two phase model to linear viscoelasticity of reinforced rubbers. Polymer 2011,52 (3),593-596.
    18. Mullins L., Tobin N. R., Stress softening in rubber vulcanizates. Part Ⅰ. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. Journal of Applied Polymer Science 1965,9,2993-3009.
    19. Zapas L. J., Viscoelastic behavior under large deformations. Journal of Research of the National Bureau of Standards Section A-Physics and Chemistry 1966, A 70 (6), 525-532.
    20. Osaki k., Kurata M., Experimental appraisal of the Doi-Edwards theory for polymer rheology based on the data for polystyrene solutions. Macromolecules 1980,13 (3), 671-676.
    21. Ferri D., Greco F., Nonlinear stress relaxation of molten polymers:Experimental verification of a new theoretical approach. Macromolecules 2006,39 (17),5931-5938.
    22. Watanabe H., Yao M. L., Osaki K., Shikata T., Niwa H., Morishima Y., Nonlinear rheology of concentrated spherical silica suspensions:3. Concentration dependence. Rheologica Acta 1999,38 (1),2-13.
    1. Kirkpatr.S, Percolation and conduction. Reviews of Modern Physics 1973,45 (4), 574-588.
    2. Stauffer D., Aharony A., Introduction to Percolation Theory. Talor & Francis:London, 1992; Chapters 2 and 5.
    3. Vionnet-Menot S., Grimaldi C., Maeder T., Strassler S., Ryser P., Tunneling-percolation origin of nonuniversality:Theory and experiments. Physical Review B 2005,71 (6).
    4. Cassagnau P., Melis F., Non-linear viscoelastic behavior and modulus recovery in silica filled polymers. Polymer 2003,44,6607-6615.
    5. Chazeau L., Brown J. D., Yanyo L. C., Sternsten S. S., Modulus recovery kinetics and other insights into the payne effect for filled elastomers. Polymer. Composites 2000,21 (2),202-222.
    6. Chen Y. L., Song Y. H., Zhou J. F., Zheng Q., Effect of uniaxial pressure on conduction behavior of carbon black filled poly(methyl vinyl siloxane) composites. Chinese Science Bulletin 2005,50 (2),101-107.
    7. Cipriano B. H., Kota A. K., Gershon A. L., Laskowski C. J., Kashiwagi T., Bruck H. A., Raghavan S. R., Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 2008,49 (22),4846-4851.
    8. Flandin L., Chang A., Nazarenko S., Hiltner A., Baer E., Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers. Journal of Applied Polymer Science 2000,76(6),894-905.
    9. Flandin L., Hiltner A., Baer E., Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer. Polymer 2001,42 (2), 827-838.
    10. Li B., Zhang Y. C., Li Z. M., Li S. N., Zhang X. N., Easy fabrication and resistivity-temperature behavior of an anisotropically conductive carbon nanotube-polymer composite. Journal of Physical Chemistry B 2010,114 (2),689-696.
    11. Li Q., Siddaramaiah, Kim N. H., Yoo G. H., Lee J. H., Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B-Engineering 2009,40 (3),218-224.
    12. Shen L., Lou Z. D., Qian Y. J., Effects of thermal volume expansion on positive temperature coefficient effect for carbon black filled polymer composites. Journal of Polymer Science Part B-Polymer Physics 2007,45 (22),3078-3083.
    13. Wu G. Z., Asai S., Zhang C, Miura T., Sumita M., A delay of percolation time in carbon-black-filled conductive polymer composites. Journal of Applied Physics 2000, 88 (3),1480-1487.
    14.张斌,符若文,章明秋,董先明,赵斌.气相生长炭纤维/聚苯乙烯复合材料导电气敏性能的研究.功能材料2004,35,1088-1090.
    15. Alig I., Skipa T., Lellinger D., Potschke P., Destruction and formation of a carbon nanotube network in polymer melts:Rheology and conductivity spectroscopy. Polymer 2008,49(16),3524-3532.
    16. Obrzut J., Douglas J. F., Kharchenko S. B., Migler K. B., Shear-induced conductor-insulator transition in melt-mixed polypropylene-carbon nanotube dispersions. Physical Review B 2007,76 (19).
    17. Chen Q., Fan Y. R., Zheng Q., A novel approach to rheological characterization for the gelation in polymer crystallization. Chinese Journal of Polymer Science 2005,23 (4), 423-434.
    18.陈青,范毓润,李文春,郑强,HDPE等温结晶中液-固转变的流变特性.高等学校化学学报2006,27,365-368.
    19. Liu Z. H., Song Y. H., Shangguan Y. G, Zheng Q., Simultaneous measurement of normal force and electrical resistance during isothermal crystallization for carbon black filled high-density polyethylene. Journal of Materials Science 2008,43 (14), 4828-4833.
    20.刘志华,宋义虎,郑强,曹青,等规聚丙烯/炭黑等温结晶过程中流变与导电行为的关联与同步测试.高分子学报2009,3,238-243.
    21. Lozano K., Barrera E. V, Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. Journal of Applied Polymer Science 2001, 79(1),125-133.
    22. Xie X. L, Aloys K., Zhou X. P., Zeng F. D., Ultrahigh molecular mass polyethylene/carbon nanotube composites-Crystallization and melting properties. Journal of Thermal Analysis and Calorimetry 2003,74 (1),317-323.
    23. Xu J. Z., Chen C., Wang Y., Tang H., Li Z. M., Hsiao B. S., Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 2011,44 (8),2808-2818.
    24. Chavez-Medellin R., Prado L., Schulte K., Polyamide-12/functionalized carbon nanofiber composites:Evaluation of thermal and mechanical properties. Macromolecular Materials and Engineering 2010,295 (4),397-405.
    25. Sandler J., Broza G., Nolte M., Schulte K., Lam Y. M., Shaffer M. S. P., Crystallization of carbon nanotube and nanofiber polypropylene composites. Journal of Macromolecular Science-Physics 2003, B42 (3-4),479-488.
    1. Mitchell C. A., Bahr J. L., Arepalli S., Tour J. M., Krishnamoorti R., Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 2002,35 (23), 8825-8830.
    2. Mitchell C. A., Krishnamoorti R., Dispersion of single-walled carbon nanotubes in poly(epsilon-caprolactone). Macromolecules 2007,40 (5),1538-1545.
    3. Zhang Q. H., Fang F., Zhao X., Li Y. Z., Zhu M. F., Chen D. J., Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. Journal of Physical Chemistry B 2008,112 (40), 12606-12611.
    4. Lozano K., Bonilla-Rios J., Barrera E. V., A study on nanofiber-reinforced thermoplastic composites (Ⅱ):Investigation of the mixing rheology and conduction properties. Journal of Applied Polymer Science 2001,80 (8),1162-1172.
    5. Wang Y. R., Xu J. H., Bechtel S. E., Koelling K. W., Melt shear rheology of carbon nanofiber/polystyrene composites. Rheologica Acta 2006,45 (6),919-941.
    6. Das N. C., Chaki T. K., Khastgir D., Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 2002,40 (6),807-816.
    7. Lin B., Sundararaj U., Potschke P., Melt mixing of polycarbonate with multi-walled carbon nanotubes in miniature mixers. Macromolecular Materials and Engineering 2006,291 (3),227-238.
    8. Xu Y. J., Higgins B., Brittain W. J., Bottom-up synthesis of PS-CNF nanocomposites. Polymer 2005,46 (3),799-810.
    9. Jimenez G. A., Jana S. C., Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites Part A-Applied Science and Manufacturing 2007,38 (3),983-993.
    10. Pegel S., Potschke P., Petzold G., Alig I., Dudkin S. M., Lellinger D., Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 2008,49 (4),974-984.
    11. Feller J. F., Conductive polymer composites:Influence of extrusion conditions on positive temperature coefficient effect of poly(butylene terephthalate)/poly(olefin)-carb on black blends. Journal of Applied Polymer Science 2004,91 (4),2151-2157.
    12. Feller J. F., Langevin D., Marais S., Influence of processing conditions on sensitivity of conductive polymer composites to organic solvent vapours. Synthetic Metals 2004,144 (1),81-88.
    13. Breuer O., Sundararaj U., Big returns from small fibers:A review of polymer/carbon nanotube composites. Polymer Composites 2004,25 (6),630-645.
    14. Cox R. G., Zia I. Y. Z., Mason S. G., Particle motions in sheared suspensions.25. Streamlines around cylinders and spheres. Journal of Colloid and Interface Science 1968,27(1),7-18.
    15. Kota A. K., Cipriano B. H., Duesterberg M. K., Gershon A. L., Powell D., Raghavan S. R., Bruck H. A., Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 2007,40 (20),7400-7406.
    16. Webling B., Elektrisch leitahige kunststoffe. Kunststoffe 1986,76,930-936.
    17. Leboeuf M., Ghamri N., Brule B., Coupez T., Vergnes B., Influence of mixing conditions on rheological behavior and electrical conductivity of polyamides filled with carbon black. Rheologica Acta 2008,47 (2),201-212.
    18. Lee S. H., Jeon Y. P., Effects of mixing on electrical properties of carbon nanofiber and polymer composites. Journal of Applied Polymer Science 2009,113 (5),2980-2987.
    19. McClory C., Potschke P., McNally T., Influence of screw speed on electrical and rheological percolation of melt-mixed high-impact polystyrene/MWCNT nanocomposites. Macromolecular Materials and Engineering 2011,296 (1),59-69.
    20. Song Y. H., Zheng Q., Cao Q., On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. Journal of Rheology 2009,53 (6),1379-1388.
    21. Song Y. H., Zheng Q., Application of two phase model to linear viscoelasticity of reinforced rubbers. Polymer 2011,52 (3),593-596.
    22. Al-Saleh M. H., Sundararaj U., Processing-microstructure-property relationship in conductive polymer nanocomposites. Polymer 2010,51 (12),2740-2747.
    1. Hobbie E. K., Wang H., Kim H., Lin-Gibson S., Grulke E. A., Orientation of carbon nanotubes in a sheared polymer melt. Physics of Fluids 2003,15 (5),1196-1202.
    2. Obrzut J., Douglas J. F., Kharchenko S. B., Migler K. B., Shear-induced conductor-insulator transition in melt-mixed polypropylene-carbon nanotube dispersions. Physical Review B 2007,76 (19).
    3. Kharchenko S. B., Douglas J. F., Obrzut J., Grulke E. A., Migler K. B., Flow-induced properties of nanotube-filled polymer materials. Nature Materials 2004,3 (8),564-568.
    4. Davis V. A., Ericson L. M., Parra-Vasquez A. N. G, Fan H., Wang Y. H., Prieto V., Longoria J. A., Ramesh S., Saini R. K., Kittrell C., Billups W. E., Adams W. W., Hauge R. H., Smalley R. E., Pasquali M., Phase behavior and rheology of SWNTs in superacids. Macromolecules 2004,37 (1),154-160.
    5. Lin-Gibson S., Pathak J. A., Grulke E. A., Wang H., Hobbie E. K., Elastic flow instability in nanotube suspensions. Physical Review Letters 2004,92 (23).
    6. Xu D. H., Wang Z. G., Douglas J. F., Influence of carbon nanotube aspect ratio on normal stress differences in isotactic polypropylene nanocomposite melts. Macromolecules 2008,41 (3),815-825.
    7. Ceccia S., Ferri D., Tabuani D., Maffettone P. L., Rheology of carbon nanofiber-reinforced polypropylene. Rheologica Acta 2008,47 (4),425-433.
    8. Wang Y. R., Xu J. H., Bechtel S. E., Koelling K. W., Melt shear rheology of carbon nanofiber/polystyrene composites. Rheologica Acta 2006,45 (6),919-941.
    9. Poslinski A. J., Ryan M. E., Gupta R. K., Seshadri S. G, Frechette F. J., Rheological behavior of filled polymeric systems.1. Yield stress and shear-thinning effects. Journal of Rheology 1988,32 (7),703-735.
    10. Liang J. Z., The melt elastic behavior of polypropylene/glass bead composites in capillary flow. Polymer Testing 2002,21 (8),927-931.
    11. Jamieson A. M., Gu D. F., Chen F. L., Smith S., Viscoelastic behavior of nematic monodomains containing liquid crystal polymers. Program Polymer Science 1996,21: 981-1033.
    12. Dangtungee R., Yun J., Supaphol P., Melt rheology and extrudate swell of calcium carbonate nanoparticle-filled isotactic polypropylene. Polymer Testing 2005,24 (1), 2-11.
    13. Maiti S. N., Singh G., Ibrahim M. N., Rheological properties of calcium silicate-filled isotactic polypropylene. Journal of Applied Polymer Science 2003,87 (9),1511-1518.
    14. Liang J. Z., Li R. K. Y, Tang C. Y., Cheung S. W., Die-swell behavior of glass bead-filled low-density polyethylene composite melts at high extrusion rates. Journal of Applied Polymer Science 2000,76 (3),419-424.
    15. Yang W., Liu Z. Y, Shan G. F., Li Z. M., Xie B. H., Yang M. B., Study on the melt flow behavior of glass bead filled polypropylene. Polymer Testing 2005,24 (4),490-497.
    16. Joseph K., Kuriakose B., Premalatha C. K., Thomas S., Pavithran C., Melt theological behavior of short sisal fiber-reinforced polyethylene composites. Plastics Rubber and Composites Processing and Applications 1994,21 (4),237-245.
    17. Nair K. C. M., Kumar R. P., Thomas S., Schit S. C., Ramamurthy K., Rheological behavior of short sisal fiber-reinforced polystyrene composites. Composites Part A-Applied Science and Manufacturing 2000,31 (11),1231-1240.
    18. Liang J. Z., Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts. Polymer Testing 2008,27 (8),936-940.
    19. Chiu Wen-Yen,Tzung-Cheng H., The viscoelastic properties of PP/glass fiber composites in molten state. Journal of Applied Polymer Science 1986,32 (4), 4663-4678.
    20.匡俊杰,杨其,雷远霞,蒋智强,碳酸钙填充聚丙烯熔体弹性研究.现代塑料加工应用2006,18,1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700