新型喷丝头对PAN基碳纤维用原丝纺丝工艺及纤维性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维(Carbon Fiber简称CF)是指含碳量大于90%的纤维材料,它是一种具有高强度,高模量,耐高温,耐腐蚀等一系列优异性能的新型材料。作为先进复合材料的增强纤维,其已被广泛地应用在各个领域。碳纤维可以用粘胶、PAN以及沥青等有机纤维在高温下碳化而成,随着科技的快速发展,PAN基碳纤维已成为了当前碳纤维工业中的主流。目前,国内外学者一致认为PAN原丝的质量是高性能PAN基碳纤维的关键所在。要获取高性能的PAN基碳纤维,其原丝必须具备高强、高纯、高致密性和均匀的纤维结构等性能。
     首先,本文主要研究了新型的喷丝头用材料及其在PAN纺丝工艺中的应用。以尽力避免孔口胀大现象为目的,我们综合考虑了喷丝头用材质的基本要求及各种材料的生产加工工艺,并通过接触角实验分析了不同材质与PAN/DMSO纺丝溶液间的表面张力,开发新型的喷丝头用材料。实验确定了一种新型的喷丝头用材料—Si_3N_4陶瓷材料,其与PAN/DMSO溶液间的表面张力相对较大,且具有“先切割后烧结”的制造工艺,可加工成具有令人满意的长径比(L/D)的喷丝头,能有效地减小纺丝过程中出现的出口膨胀效应,避免纺丝溶液沿喷丝头表面漫流的现象。同时,在固定的工艺条件下,我们分别使用具有相同几何条件的新型的Si_3N_4陶瓷喷丝头和传统的1Cr18Ni9Ti不锈钢喷丝头来纺制PAN原丝。通过对比纺制出的PAN初生纤维的截面形状及直径大小、PAN原丝的可纺性、结晶度、晶区取向度以及强度等结构性能,得出了可以采用新型的陶瓷喷丝头来代替传统的金属喷丝头应用于纤维生产工业中的结论。
     其次,本文又着重研究了不同长径比(L/D)的新型喷丝头对PAN原丝性能的影响。实验分别采用湿法、干湿法以及凝胶法进行纺丝,从多方面地分析了长径比(L/D)对PAN纺丝过程中产生的挤出胀大现象的影响,以及其对PAN原丝的膨润度、可纺性、结晶度、晶区取向度及强度等性能的影响。结果表明,随着L/D的增大,可有效地减小出口膨胀效应,避免PAN/DMSO纺丝溶液沿喷丝板漫流的现象,提高纺丝的稳定性;同时,PAN原丝的性能也随之提高,且当L/D达到某一值时,影响将逐渐消失。
     最后,本文又研究了纺制PAN基碳纤维原丝常用的PAN/DMSO体系湿法及干喷湿法的可纺性,其用直观函数V_(1m)—出凝固浴的第一辊最大卷绕速度来表征。在影响聚合物可纺性的因素中,我们研究了凝固浴条件、空气层高度、非溶剂(NSA)含量、纺丝温度和纺丝原液浓度等几种重要的因素对于干喷湿法纺丝可纺性的影响,并与湿法纺丝作了比较。研究结果表明,对于干湿法纺丝来说,凝固浴条件对可纺性(V_(1m))几乎没有什么明显的影响,影响其可纺性的因素主要是:纺丝原液的温度和浓度、喷丝口孔径的大小及空气层的高度等。
Carbon fibers,the fibrous materials with more than 90%of carbon content,are new-style materials which have high tenacity,high modulus, heat-resistance,corrosion resistance,and a series of excellent performances.As a kind of reinforcing fiber of advanced materials,it is used widely in all kinds of fields.Carbon fibers can be made by carbonization in high temperature from organic fibers of rayon,PAN and pitch.With the rapid development of technology,PAN-based carbon fibers play the main role in the carbon fiber industry.Currently, researchers home and aboard show no differences that the quality of PAN precursor fiber is critical for high-quality PAN-based carbon fiber.To yield the high-quality PAN-based carbon fiber,the PAN precursor fiber must have some performances of high tenacity,high purity,high compactness and the uniform structure,etc.
     Firstly,the new type of spinneret materials and the application of this new-style spinneret in the spinning process of PAN-based carbon fiber precursor were mainly investigated in this paper.For the purpose of avoiding die swell as well meeting the basic requirements of spinneret materials and the manufacture techniques of these materials,we made the contact angle experiments to test the surface tension between different materials and PAN/DMSO spinning solution and finally developed the new type of materials for the spinneret in the experiments.It was found that the surface tension between the Si_3N_4 ceramic material and PAN/DMSO spinning solution was relatively larger.In addition,the Si_3N_4 ceramic materials have an advanced“incising comes before sintering”manufacture technique,so it can be made for the spinneret with satisfied ratio of length to diameter(L/D),which can decrease the die swell effect in the spinning process effectively and avoid the spreading phenomenon of spinning solution on the spinneret surface.Therefore,the Si_3N_4 ceramic materials are chosen for the new-style spinneret material.Then in the fixed conditions,we used the Si_3N_4 ceramic spinneret and the traditional 1Cr18Ni9Ti stainless steel spinneret for spinning.Through comparing the cross-section shape and diameter of PAN as-spun fiber,the swellability,the crystallinity,the preferred orientation,and the tenacity of PAN precursor fiber,we get the conclusion that the new-style ceramic spinneret can replace the traditional metal spinneret in the industry of fibers.
     Secondly,the effects of ratio of length to diameter(L/D) of new-style spinneret on properties of PAN precursor fiber were investigated in this article.Using wet spinning、dry-jet wet spinning and gel spinning in experiments,we analyzed the effects of ratio of length to diameter(L/D) on die swell phenomenon in the spinning process,and on the swellability,the crystallinity,the preferred orientation and the mechanics performance of PAN precursor fiber comprehensively.The results show that with the increase of ratio of length to diameter(L/D), die swell effect in the spinning process decreases and the spreading phenomenon of spinning solution on the spinneret surface can be avoided effectively.So the stability of spinning and the performance of PAN precursor fiber can be improved.But when the L/D value reaches a certain one,the effects will diminish gradually.
     Lastly,the spinnability(V_(1m)) of PAN spinning solution using DMSO as the solvent was investigated for wet spinning and dry-jet wet spinning of PAN precursor fiber in this paper.It is expressed by the intuitionistic parameter V_(1m)-the maximal rotational speed of the first winding roller after the coagulating bath.Among many variables responsible for spinnability,the coagulating conditions,the air gap length,the nonsolvent(NSA) content in spinning solution,the spinning temperature and the spinning solution concentration have been viewed as the key factors.We investigated these factors in the dry-jet wet spinning of PAN precursor fiber,and compared them to the wet spinning.For the dry-jet wet spinning,the results show that the coagulation bath conditions exert little influence on spinnability(V_(1m)).It depends on many spinning variables,including the spinning temperature and the spinning solution concentration,the spinneret hole size and shape,the air gap length,etc.
引文
1.贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1995:1-22.
    2.郁铭芳.聚丙烯腈基碳纤维原丝的工艺研究[J].金山油化纤,2001,4:1-4.
    3.王占武,纪箴.聚丙烯腈原丝性能研究[J].炭素技术,1999,3:14-18.
    4.张家杰.国内外碳纤维成产现状及发展趋势[J].化工技术经济,2005,23(4):12-27.
    5.赵稼祥.2002年世界碳纤维前景[J].高技术纤维与应用,2002,27(6):6.
    6.Zhao,J-X.Global outlook for PAN based carbon fibers[J].Carbon Techniques,2003,125:33.
    7.罗益锋,世界 PAN 基炭纤维发展透析及对我国的研发建议[J].材料导报,2000,14(11):11-13.
    8.Wang,P.H.Aspects on Prestretching of PAN Precurso:Shrinkage and Thermal Behavior[J].Journal of Applied Polymer Science,1998,67(7),1185.
    9.Liu,X.D.and Ruland W.X-Ray Studies on the Structures of Polyacrylonitrile Fibers[J].Macromolecules,1993 June7,26(12):3030.
    10.张旺玺,王艳芝.聚丙烯腈碳纤维综述[J].合成技术与应用,2000,14(2):20.
    11.宋育梅,王刚.二甲基亚砜法碳纤维用聚丙烯腈原丝的技术进展[J].化工科技,2001,9(3):60-63.
    12.张国萍,毛萍君,张林等.用于碳纤维原丝的聚丙烯腈纺丝溶液的性质研究[J].青岛大学学报,1999,14(3).
    13.历雷,吴承训.超高相对分子质量聚丙烯腈的制备及其合成动力学研究[J].合成纤维工业,1998,10(2):5-11.
    14.沈春银,毛萍君,张林等.高相对分子质量聚丙烯腈纤维的干湿法成形工艺及纤维性能研究[J].合成纤维,2000,29(4):13-15.
    15.徐梁华,吴红枚.高浓度 PAN/DMSO 原液粘度特性及纺丝工艺性的研究[J].北京,化工大学学报,1999,26(3).
    16.张旺玺,李木森,王成国等.高平均分子量聚丙烯腈的制备、性能和应用[J].高分子通报,2002,(5):49-53.
    16.汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈基原丝的制备[J].合成纤维,2000,29(4):23-27.
    17.贺福,杨永岗.突破碳纤维产业化的“瓶颈”原丝已是当务之急[J].炭素技术,2002,12(2):1-4.
    18.杨国华.碳素材料(下册)[M].北京:中国物资出版社,1999,11-39.
    19.Wood H.,Sourirajian S.The effect of additives,solvent type,and polymer concentration on macromolecule dimensions[J].Appl.Poly.Sci.,1991,43(1):213-217.
    20.Krik H.,Sourirajan S..Phase Separations for cellulose Acetate-acetone solutions[J].Appl.Poly.Sci.,1973,17:3717-3726.
    21.Zhang H.,LauW.W.Y.,Sourirajan S..Factors influencing the production of Polyethersulfone microfiltrations membrane by immersion phase inversion process[J].Sep Sci Technol.,1995,30(1):33-52.
    22.董纪震,赵耀明,陈雪英等.合成纤维生产工艺学(下册)(第二版)[M],1994:296-302,370-372.
    23.徐梁华,吴红枚.PAN/DMSO 干湿法纺丝凝固工艺的研究[J].高分子材料科学与工程,2000,16(6):163-166.
    24.P.S.Reversible Polymeric Gels and Related Systems,American Chemical Society,Washington,D.C.1987.
    25.L.Benguigui,Fracture of Polymer Gels,Physical A:Statistical Mechanics and its Applications.Polymer,1999,270:1-7.
    26.W.Burchard,S.B.Ross-Murphy.Physical Networks-Polymers and Gels.Elsevier Applied Science,1988.
    27.F.A.Escobedo,J.J.de Pablo,Molecular Simulation of Polymeric Networks and Gels:Phase Behavior and Swelling.Physics Reports,Polymer,1999,318(3):85-112.
    28.高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺[J].合成纤维工业,2002,25(4):35-38.
    29.张旺玺,王艳芝,刘建军,曹怀华,蔡华苏.碳纤维前驱体聚丙烯腈原丝[J].合成纤维,1999,28(1):31-34.
    30.Kibayashi Makoto,J11-823737.
    31.日本东丽公司.碳纤维用聚丙烯腈聚合体[P].JP,特开平5-295616.1993.
    32.日本东丽公司.东丽公司原丝专利[P].JP,特开平11-12856.
    33.日本东丽公司.东丽公司原丝专利[P].JP,特许公开平11-117128.
    34.董纪震,罗鸿烈,王庆瑞,曹振林.合成纤维生产工艺学(上册)[M].北京:纺织工业出版社.1993年10月第二版.93-166,370-373.
    35.陈秀仁,张怀有,田锡义.二甲基亚砜的性质和应用[J].辽宁化工,2000,29(1):31-35.
    36.董兴广,王成国,曹伟伟,陈娟.凝固浴条件对 PAN 纤维结构及性能的影响[J].高分子材料科学与工程,2007,23(2).
    37.P.Smith,P.J.Lemstra.Process for Making Polymer Filament Which Have a High Tensile Strength and a High Modulus.U.S.patent 4,344,908,1982.
    38.J.C.Chenn,I.R.Harrison.Modification of Polyacrylonitrile Carbon Fiber Precursor via Post-Spinning Plastilization and Stretching in Dimethyl Formamide(DMF)[J].Carbon,2002,40(1):25-45.
    39.Mitsubishi Rayon Co.Ltd.Acrylonitr-based precursor fiber for carbon fiber and method for production thereof.欧洲专利:EP1130140A1,2001
    40.Mukesh K.Jain,A.S.Abhiraman.Conversion of acrylonitrile-based precursor fiber to carbon fiber[J].Journal of Materials Science,1987,22:278-300.
    41.张旺玺.聚丙烯腈基碳纤维[M].东华大学出版社,2005,4-8.
    42.贺福.高性能碳纤维原丝与油剂[J].高科技纤维与应用,2004,29(5):1-3.
    43.沈新元,朱新远,王庆瑞.UHMW-PAN 中空纤维膜的研制及应用[J].膜科学与技术,2006,26(2):13-17.
    44.王廷相,王成国.拉伸对聚丙烯腈原丝结构和性能的影响[J].合成纤维,2004,31(5):6-8.
    45.潘鼎.聚丙烯腈(PAN)基碳纤维国内技术新进展[J].技术创新.2005,12.
    46.Toray Industries Inc.Acrylic Fibers for Producing Carbon Fibers[P].US.US4496631.1985-01-29.
    47.Toray Industries Inc.Process for Producing Carbon Fiber[P].US.US4669312.1990-07-31
    48.东丽公司.特许公开平 J11-36143.
    49.牛向东,阮朝霞.钽喷丝头电化学处理工艺研究[J].纺织器材,2003,30(5):283-285.
    50.王越,杨崇倡,王华平,徐雷麟,王学利,张敏.喷丝板的发展现状[J].纺织机械,2001(6):45-48.
    51.朱一音.提高湿法纺国产自制喷丝头的质量[J].上海纺织科技,2000,28(6):49-52.
    52.刘寓中.中国发明专利,专利申请号:CN 861 02269 A.
    53.金志浩.工程陶瓷材料[M].西安交通大学出版社,2000,1-2.
    1 董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(上册)[M].北京:纺织工业出社,1993.140.
    2 王越,杨崇倡,王华平,徐雷麟,王学利,张敏.喷丝板的发展现状[J].纺织机械,2001(6):45-48.
    3 张幼维,赵炯心,张斌等,硫氢酸钠法腈纶纺丝溶液流变性能的研究,合成纤维工业,2000,23,No3.
    4 张幼维,赵炯心,张斌等,添加填料的腈纶纺丝溶液流变性能的研究,合成纤维工业,2000,23,No6.
    5 曾小梅.DMSO 法 PAN 基碳纤维原丝凝固成形机理的研究[学位论文].上海:东华大学,2005.
    6 王永恒,石彩杰,崔再治.喷丝板的设计[J].聚酯工业,2006,19(3):27-30.
    7 张玉龙,马建平等.实用陶瓷材料手册[M].北京:化学工业出社,2006.7,337-364
    8 Ziabicki A.,Fundamentals of Fibre Formation[M],Wiley-Interscience Publication New York,1976.
    9 Pocius A V.Adhesion and adhesion technology:An introduction.New York:Marcel Dekker,2002:73-102.
    1.罗益锋,世界 PAN 基炭纤维发展透析及对我国的研发建议,材料导报,2000,14(11):11-13.
    2.Y.Zhang,C.Xiao,G.Jia,S.An.Study on Gel-Spinning Process of Ultra -High Molecular Weight Polyethylene.J.Appl.Polym.Sci,1999,74:670-675.
    3.董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(上册)[M].北京:纺织工业出社,1993.180-192.
    4.Ziabicki A.,Fundamentals of Fibre Formation[M],Wiley-Interscience Publication,New York,1976.
    5.Obayashi Makoto;Isa Masashi;Matsuhisa YOJ.Precursor for Carbon Fiber and Production of Carbon Fiber.[P].JP11117128,1999-04-27.
    6.唐春红,吴彤等.北京化工大学学报[J].2004,31(3):55-58.
    7.He Dongxin,Wang Chengguo,et al.[J].J Mater Sci Technol,2005,21(3):376-380.
    1.D.R.Paul,J.Appl.Polm.Sci,1968,12:2273-2298.
    2.Yoshiaki Ide,James.L.White,J.Appl.Polm.Sci,1976,20:2511-2531.
    3.董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(上册)[M].北京:纺织工业出版社,1993.180-192.
    4.金日光.高聚物流变学及其在加工中的应用[M].化学工业出版社,1986.
    5.M.A.Rahman,A.F.Ismail,A.Mustafa,Mat.Sci.Eng.A-Struct,2007,448,275-280.
    6.A.谢皮斯基著.华东纺织工学院化纤教研组译校,纤维成形基本原理[M].上海科学技术出版社,1983.14-77.
    7.Lord Rayleigh,Phil.Mag.,34,145(1892).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700