混合溶剂沉淀聚合制备高分子量聚丙烯腈及其理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为碳纤维生产最主要的一种前驱体,聚丙烯腈(PAN)的分子量及其分布很大程度上影响纺丝液的性质,对最终碳纤维的质量也起到决定性的作用。因此,为了生产出优质高强的聚丙烯腈基碳纤维前驱体,采用高分子量聚丙烯腈进行纺丝是非常行之有效的途径。在制备高分子量的聚丙烯腈众多方法中,混合溶剂沉淀聚合具有其独特的优势,不仅可以制备出高分子量聚丙烯腈,而且合成时间短,方便实验室操作。本文选择水(H2O)和二甲基亚砜(DMSO)作混合溶剂,合成出了均聚PAN,并从混合溶剂沉淀聚合的微观聚集过程出发,结合宏观上聚合过程中聚合物沉淀量的增加,运用泰勒展开式,建立了沉淀聚合过程中初生态粒子聚集过程模型,进而推导出沉淀过程中PAN的粘均分子量与H2O/DMSO的比例成线性增加的关系,即Mη=K3+K4[H2O/DMSO],并通过实验验证了该理论方程的正确性。
     随后,本文讨论了水和二甲基甲酰胺(DMF)作混合介质时,H2O/DMF的比例对PAN粘均分子量的影响,进一步证明了沉淀过程中PAN的粘均分子量与H2O/DMSO的比例成线性关系这一结论。研究混合溶剂沉淀聚合过程中,混合介质H2O/DMSO的比例对转化率影响,结果表明:聚丙烯腈的转化率随着H2O/DMSO的比例的增加,呈现一种先上升,达到一个极大值随后下降的趋势。
     由于聚丙烯腈均聚物结构规整性高,内聚能密度大,不利于预氧化,就有必要选择第二单体,进行共聚合。本文选择丙烯酸甲酯(MA)和衣康酸(IA)作为第二单体。
     沉淀聚合制备的PAN分子量很高,高分子量PAN制备纺丝液,粘度高,湿纺时易产生挤出胀大效应,不利于制备优质PAN原丝。本文发现用DMSO和H20作混合溶剂时,适量加入C2H5OH, C4H9OH,可以有效的控制PAN的分子量,为工业上制备高性能PAN纺丝液提供了良好的先决条件。随着H20含量的减少,C2H5OH. C4H9OH含量的增加,溶剂极性变小,PAN分子量呈减小的趋势。
     不同分子量和粒径分布对纺丝液的流变性能有很大的影响,本文运用第四统计力学定量研究不同聚合温度对分子量的影响发现,温度对大分子量PAN影响不大,对小分子量PAN影响显著;研究混合溶剂对粒径分布的影响发现,混合溶剂比为5:5时粒径分布最均匀。这为制备具有优异流变性能的PAN纺丝液提供了依据。
As an important precursor to producing carbon fiber, the molecular weight of polyacrylonitrile (PAN) is the key to enhance not only the properties of the spinning solution but also the quality of the final carbon fiber. It is an effective way to use high molecular weight polymer to enhance the strength of PAN precursor fibers. It is convenient to prepare high molecule weight of PAN with mixed solvent in the precipitation polymerization more than other methods. It is not only for little time to prepare but also convenient for normal experiment. The precipitation polymerization of acrylonitrile (AN) was carried out in a mixture solution of dimethyl sulfoxide (DMSO) and water at 50~65℃usingα,α'-azobisisobutyronitrile (AIBN) as an initiator. The model was proposed from the sub-micro process of precipitation polymerization. An equation was then deduced by using the concept of total ways of the primary precipitate aggregates F[P]. The final equation of the precipitation polymerization: Mη=K3+K4[H2O/DMSO] Where, Mη:represented molecule weight, H2O/DMSO:the ratio of water in the mixed solvent. The equation was based on the relation between F(P) and precipitation amount and Taylor series expansion of F(P). The theoretical equation derived from the mechanisms was well coincided with the experimental results showing the linear relationship between the viscosity average molecular weight and the ratio of H2O/DMSO.
     In this paper, it was discussed that the influence of H2O and N,N-Dimethylformamide (DMF) to the viscosity molecule weight. The viscosity average molecular weight of H2O/DMSO solvent was larger than that of H2O/DMF solvent. The H2O/DMSO solvent system was better than H2O/DMF system in precipitation polymerization due to the far decreased chain transfer effect of DMSO. The relationship between react temperature and the viscosity molecule weight was also discussed. Due to the increasing of the temperature, the capability of precipitation became worse and the termination of free radical chains became easy, finally, the viscosity molecule weight decreased at 50~65℃.
     The effect of conversion ratio to the ratio of H2O/DMSO was investigated in the precipitation polymerization. The results obtained showed that at first the conversion ratio increased with the ratio of H2O/DMSO, and then reached a maximum value, finally decreased.
     In order to obtain high molecule weight and high-performanced PAN, we took the methyl acrylate (MA) and itaconic acid (IA) as the second monomer to reinforce the properties of homo PAN. It can be found the molecule weight by copolymerization was higher than the homopolymerization.
     During the copolymerization process of PAN, the molecular weight of PAN can be effectively adjusted by changing the ratio of mixed solvent. When the mixed solvent consisted with DMSO, H2O and C2H5OH or C4H9OH, the molecular weight of PAN decreased with the increasing of the content of C2H5OH or C4H9OH.
     According to sub-cluster statistical theory, we studied the reaction temperature affected high molecular weight PAN less than low molecular weight. The diameter of particles was the smallest and well-distributed when DMSO/H2O (C2H5OH or C4H9OH)=50/50.
引文
[1]李仍元,过梅丽.碳纤维[M].北京:化学工业出版社,1989.1-2
    [2]西鹏,高晶,李文刚.高技术纤维[M].北京:化学工业出版社,2004.165-181
    [3]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1995.1-13
    [4]张旺玺,王艳芝.聚丙烯腈基碳纤维综述[J].合成技术及应用,1998,14(2):20-22
    [5]Zhang W X, Liu J, Wu G Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon,2003,41,2805-2812
    [6]罗益锋.新世纪初世界碳纤维透视[J].高科技纤维与应用,2000,25(1):1-7
    [7]JADWIGA BUCHENSKA. Modified polyacrylonitrile(PAN) fibers[J]. Journal Applied Polymer Science,1997,65:1955-1966
    [8]Stephen Dalton, Frank Heatley. Thermal stabilization of polyactylonitrile fibers[J]. Polymer,1999,40:5531-5543
    [9]陈晓.高性能聚丙烯腈基碳纤维微观结构和形态结构研究[D].上海:东华大学,2010
    [10]Yan-Xiang Wang, Cheng-Guo Wang, Mei-Jie Yu. Effects of Different Coagulation Conditions on Polyacrylonitrile Fibers Wet Spun in a System of Dimethylsulphoxide and Water[J]. Appl Polym Sci.2007,104:3723-3729
    [11]Zhang Wangxi, Liu Jie, Wu Gang, Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon.2003,14:2805-2812
    [12]Kobets L.P., Deev I.S. Carbon fibers:structure and mechanical properties [J]. Composites Science and Technology,1997,57:571
    [13]D.D.Edie. The effect of processing on the structure and properties of carbon fibers[J]. Carbon,1998,36(4):345
    [14]Eur Pal Aoole. Poreess for preparing polyacrylontrile articles having high tensile strength and modulus[P], EP 144983.1984-03-28
    [15]房宽峻,戴瑾瑾,等.黏胶基碳纤维微结构的研究[M].纺织学报,1994,15(12):540-543
    [16]谭连江,陈宇晗,潘鼎.x射线小角散射对黏胶基碳纤维微孔分形的研究--第十四届全国复合材料学术会议论文集[C].2006,1205-1209
    [17]顾伟,潘鼎.黏胶基炭纤维[J].新型炭材料,1996,11(3):9-12
    [18]毛德君.沥青基碳纤维的生产及应用[J].炼油与化工,2002,13(4):3-4
    [19]程罡.PAN基碳纤维的制造及应用[J].安徽化工,2003,122(2):25-27
    [20]王太炎.碳纤维工业发展态势与我国沥青基碳纤维现状[J].燃料与化工,1999,30(6):259-266
    [21]张旺玺.聚丙烯腈基碳纤维[M].上海:东华大学出版社,2005.5-6
    [22]罗益峰.聚丙烯腈基碳纤维前景喜人[N].科技日报.2000.10.26(7)
    [23]孙凯英,周霞,宋威.聚丙烯腈基碳纤维市场分析与预测[J].高科技纤维与应用,2003,28(6):19-23
    [24]贺福.高性能碳纤维原丝与干喷湿纺[J].高科技纤维与应用,2004,29(4):6-12
    [25]陈蓉蓉,王莘蔚.聚丙烯腈基(PAN)碳纤维的性能、应用及相关标准[J].中国纤检,2006,6:75-79
    [26]王成功.聚丙烯腈基碳纤维前驱体的合成制备与性能表征[D].山东:青岛大学,2008
    [27]M.A Montes-Moran, R.J.Young. Raman spectroscopy study of high modulus carbon fibers:effect of plasma treatment on the interfacial properties of single fiber epoxy composites[J].Carbon,2002,40:857-875
    [28]Fitzer E. The future of carbon-cabon fiber composite[J].Carbon,1987,5:163-190
    [29]Chand S. Review of carbon-cabon fiber composite[J]. J. Mater. Sci.,2000,35:1303-1313
    [30]Fitzer E,Kunkele F. Today carbon fibres a new energy saving and environment friendly all round material high-temperature[J]. High Pressure,1990,22:239-266
    [31]夏春霞,闫亚明,等.聚丙烯腈基碳纤维技术经济分析[J],2001,15(7):50-52
    [32]冯春.碳纤维用高分子量聚丙烯腈前驱体的研究[D].哈尔滨:哈尔滨工业大学,2009
    [33]张旺玺,李木森,王成国,等.高平均分子量聚丙烯腈的制备、性能和应用[J].高分子通报,2002,5:49-53
    [34]T. Mukundan. Aphoto Crosslinkable Melt Processible Acrylonitrile Terpolymer as Acetate Carbon Fiber Precursor. Polymer.2006,47(4):4163-4171
    [35]刘建军.聚丙烯腈改性及其对原丝组织结构的影响[D].山东:山东大学,2007
    [36]Jin-Shy Tsai, Chung-Hua Lin. The effect of the side chain of acrylate commoner on the orientation, pore-size, and properities of polyacrylnitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science,1991,42:3039-3044
    [37]葛曷一.聚丙烯腈原丝与碳纤维结构相关性研究[D].山东:山东大学,2007
    [38]王小华.碳纤维用聚丙烯腈的制备[D].上海:东华大学,2010
    [39]陈娟.聚丙烯腈湿法纺丝凝固过程的研究[D].山东:山东大学,2006
    [40]P. PANGARAJAN, J, YANG, V. BHANU, D. GODSHALL, J. MCGRATH, G. WILKES, D. BAIRD. Effect of comonomers on melt processability of polyacrylonitrile[J]. Journal of Applied Polymer Science,2002,85:69-82
    [41]Bajaj P, Paliwal D K, Gupta A K. Acrylonitrile-acrylic acids copolymers:Synthesis and characterization. Journal of Applied Polymer Science,1993,49:823-833
    [42]Dan Shan, Guoxing Cheng, Daobin Zhu, Huaiguo Xue, Serge Cosnier, Shounian Ding. Dierct electrochemistry of hemoglobin in poly(acrylonitrile-co-acrylic acid) and its cataliysis to H2O2[J]. Sensors and Actuators B:Chemical,137:259-265
    [43]Kenneth Wilkinson. Process for the preparation of an acrylonitrile copolymer and product prepared thereform[P]. America Patent, US5364581.1994-11-15
    [44]BANG YH, LEE S CHO H H. Effect of Methyl Acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment[J]. Journal of Applied Polymer Science,1998,68:2205-2213
    [45]Okada K, Kato H, KuboH, Preparation of Silicon Carbide Fiber from Activated Carbon Fiber and Gaseous Silicon Monoxide[J]. Ceram. Eng. Sci. Proc,1995,16(4):45
    [46]季保华.聚丙烯腈初生纤维成形机理研究[D].山东:山东大学,2007
    [47]赵亚奇.水相沉淀聚合工艺制备碳纤维用高分子量聚丙烯腈[D].山东:山东大学,2010
    [48]张旺玺,王艳芝,王成国,朱波,等.聚丙烯腈基碳纤维的制备工艺过程和纤维结构研究[J].化工科技,2001,9(5):12-15
    [49]D. Sawai, A. Yamane and H. Takahashi. Development of high ductility and tensile properties by a two-stage draw of poly(acrylonitrile):Effect of molecular weight[J]. Journal of Polymer Science,1998,36(4):629-640
    [50]张林,杨明远,毛萍君.悬浮聚合反应制备高相对分子质量PAN[J].合成纤维工业,1998,36:629-640
    [51]吴承训,何建明,施飞舟.丙烯腈的悬浮聚合[J].高分子学报,1991,(1):121-123
    [52]P.J. Sanchez-Scto,M.A.Aviles. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pryolysis[J]. Journal of Analytical and Applied Pyrolysisi,2001,58-59:155-172
    [53]Shaari Moghandam, S. Hajir Bahrami. Copolymerization of Acrylonitrile-acrylic Acid in DMF-water Mixture[J]. Biotechnol. Bioeng.,1998,59:693-704
    [54]张旺玺.丙烯腈与丙烯酸混合介质悬浮聚合工艺研究[J].合成纤维,2000,29(3):628.
    [55]Nakano Y, Kunio H. Synthesis of Ultra-high molecular weight polyacrylonitrile with highly isotactic content(mm>0.60) using dialkymagnesiun/polyhydric alcohol system as catalyst[J]. Polymer International,1995,36:87-99
    [56]张斌.硫氰酸钠体系超高分子量聚丙烯腈溶胀和溶解过程的研究[D].上海:东华大学,2001
    [57]Zhang C, Gilbert R D, Fornes R E. Preparation of ultra-hihg molecular weight PAN and its terpolymers[J]. Journal of Applied Polymer Science,1995,58:2067-2075
    [58]H.C. Dong, W. Tang and K. Matyjaszewski. Well-defined High-molecular-weight Polyacrylonitrile via Activators Regenerated by Electron Transfer ATRP[J]. Macro-morlecular.2007,40(4):2974-2980
    [59]Nishllara, Otake-shi, Hiroshima. Poreess for produeing an acyrlic Fiber having high fiber characteristics[P], EP 255109.1987-07-28
    [60]上田富士男,田中宏佳.超高分子量聚丙烯睛的合成[P].日本专利,JP 62-182317.1988-07-27
    [61]岸田一夫,长谷川章.单分散性超高分子量聚丙烯睛的合成[P].日本专利,JP特平1-53281,1989-09-28
    [62]西原良浩,宝迫芳彦.高分子量聚丙烯睛的合成工艺[P].日本专利,JP特开平3-210309,1991-02-28
    [63]小桥利行,高木唱洋.高分子量聚丙烯睛聚合物的合成[P].日本专利,JP 59-191704,1984-10-30
    [64]张引枝,李志敬,混合溶剂法合成高分子量聚丙烯睛树脂[J],合成纤维,1992,22(6):22-26
    [65]赵祥臻.自然条件下寿命超高1千天的含氟有机自由基[J].辐射研究与辐工艺学报,1984,12(4):58
    [66]厉雷,吴承训,张斌,陈彦模.超高分子量聚丙烯腈的制备及其合成动力学研究[J].合成纤维,1997,3:75-78
    [67]万锕俊.阴离子模板法合成高等规立构聚丙烯腈纤维及大分子缠结的研究[D].中国纺织大学,1997
    [68]张帆,许志献,金日光.负离子引发丙烯腈沉淀聚合动力学研究[J].高分子学报,2008,11,1102-1107
    [69]金日光.第四统计力学[M].韩国:韩国宣文梅地亚(株)出版社,1994
    [70]程斌,马育红,李艳亮.对甲基苯乙烯阳离子聚合研究[J].高分子材料科学与工程,2002,18(6):78-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700