PAN/DMSO纺丝溶液的流变性能与挤出成型过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维(CF)是一种具有高强度,高模量,耐高温,耐腐蚀等一系列优异性能的新型材料。作为先进复合材料的增强纤维,其已被广泛地应用在各个领域。聚丙烯腈(PAN)纤维作为较早实现工业化的合成纤维之一,聚丙烯腈原丝能制得高性能的碳纤维,其生产工艺较其它方法简单,产品的力学性能良好,因而已成为生产碳纤维的主要原丝。聚丙烯腈原丝的结构和性能直接影响到最终的碳纤维的质量。
     本文在PAN/DMSO纺丝溶液中添加高分子量PAN,并通过干湿法纺丝制备了聚丙烯腈原丝。对纺丝溶液的稳态和动态流动行为以及纤维的力学性能、结晶性能等方面进行了研究。获得了添加高分子量PAN对纺丝溶液的流变性能、可纺性和原丝性能的初步研究结果,主要开展了以下几个方面的研究工作:
     采用溶液聚合的方法,在低转化率条件下,以第一单体浓度(AN)、第二单体浓度(IA)、聚合温度三个参数为考察对象,探索制备高分子量聚丙烯腈聚合物的工艺,为高分子量聚丙烯腈增强普通分子量聚丙烯腈纺丝原丝性能提供基础研究。获得最高转化率的反应条件是:AN单体浓度为45%、第二单体IA浓度为0、聚合反应温度为70℃;获得最大粘均分子量的反应条件是单体浓度为40%、第二单体IA浓度为0、聚合反应温度为50℃。
     通过锥板流变仪对纺丝体系的稳态和动态流变行为进行了研究,结果表明:纺丝溶液为切力变稀流体,在较高剪切速率下,溶液出现明显的剪切变稀现象;在较低的剪切速率下,随温度的升高,溶液粘度逐渐变低。通过添加高分子量PAN,溶液粘度增大,有利于α/η适当降低,从而改善可纺性和提高纺丝稳定性;而储能模量G'略微增加,不会影响可纺性,但应控制添加量在一合适的范围。空气层高度的增加,Vim呈直线下降,要发展高喷头拉伸,应采用合适小的空气层高度。
     采用干湿法纺丝制备了聚丙烯腈原丝,对纤维的形貌、结构和性能进行了详细的研究,结果表明:喷丝孔长径比(L/D)和喷头拉伸比的增大,挤出胀大效应逐渐变弱。干湿法纺丝工艺下得到的初生纤维截面均为肾形。较大的空气层高度有利于PAN大分子在拉伸力的作用下取向,但也不宜过高,空气层高度为3cm时为最优条件。喷丝孔长径比增大,纤维的断裂强度有明显的增大。总拉伸倍数高于10倍时,拉伸倍率提高,纤维强度下降,而在5-8倍之间,伸倍数提高强度有较大的提高。拉伸体系在8-10倍之间存在一最适宜拉伸倍数。喷丝孔长径比增加,原丝结晶度略微增加。二次沸水拉伸倍数增大,纤维的结晶度及晶粒在纤维轴向方向的尺寸有了较大的提高。
Carbon fiber is a kind of new-style material with a series of excellent performances, such as high tenacity, high modulus, heat-resistance, corrosion resistance and so on. As a kind of reinforcing fiber of advanced material, it is widely used in all fields. Polyacrylonitrile(PAN) fiber is one of the industrial synthetic fibers. Among the precurors available for producing carbon fibers, PAN fiber is the most commonly used and promising precursors. Now, it is popularly accepted that the quality of high-performance carbon fibers depends mainly on the structure and quality of the precursor fibers.
     In this thesis, high molecular weight was added into PAN/DMSO solution, and the PAN precurors were obtained by means of dry-jet wet-spinning technology. The static and dynamic rheological behaviors of PAN/DMSO solutions and the mechanical properties and crystallinity of PAN precurors have been investigated respectively by using a cone-plate rheometer. The thesis mainly deals with the properties of precurors, the rheological behavior and Spinnability of spinning solutions with the addition of high molecular weight PAN.
     By polymerizing solution, the preparation of polymers of high molecular weight polyacrylonitrile process has been explored at low conversion by means of investigating the three parameters, the first monomer (AN) concentration, the second monomer (IA)concentration, polymerization temperature. It is the basis of high molecular weigh reinforcing ordinary molecular weigh of polyacrylonitrile spinning solution. To obtain the highest conversion rate, AN concentration was 45%; the IA concentrations was 0; the polymerization reaction temperature was 70℃. Maximum viscosity average molecular weight can be obtained when AN concentration was 40%, the IA concentrations was 0; the polymerization reaction temperature was 50℃.
     The Static and Dynamic Rheological Behaviors of PAN/DMSO solutions have been investigated respectively by using a cone-plate rheometer. The results showed that, the spinning solutions exhibited a shear thinning non-Newtonian fluid. The spinning solutions showed shear thinning at high shear rates. The viscosities of the solutions decreased with the rising of the temperature at low shear rate. The viscosities of the solutions increased by adding high molecular weight PAN; and it appropriately reducedα/ηeffectively, thus improving the spinnability and enhanced the spinning stability. The slight increase of storage modulus G' would not affect the spinnability, but should be controlled in a suitable scope.
     The PAN precurors were obtained by means of dry-jet wet-spinning technology. The fiber morphology, structure and properties were studied in detail. The results showed that, with the increase of the ratio of length to diameter (L/D) of spinneret hole and the draw down ratio, export swell effect became weaker. The cross section of spun fibers obtained through dry and wet spinning process is kidney-shaped. The greater height of air gap contributed to the orientation of PAN molecule polymer under the action of drawing, and the proper height is 3mm. With the increase of the ratio of length to diameter (L/D) of spinneret hole, the fiber breaking strength increased significantly.10 times more than the total draw ratio, the draw ratio increased and fiber strength decreased. When 5-8 times, the strength greatly improved. There exists a most appropriate tension between 8 to 10 times. While L/D increases, precursor crystallinity increases slightly. With the increase of second boiling water draw ratio, the fiber crystallinity and grain size in the fiber axial direction have been greatly improved.
引文
[1]刘国昌,徐淑琼.聚丙烯腈基碳纤维及其应用[J].机械制造与自动化:2004.33(4):41-43.
    [2]E. FITZER. PAN-BASED CARBON FIBERS-PRESENT STATE AND TREND OF THE TECHNOLOGY[J]. Carbon:1989.27:621-645.
    [3]吉川秀和,深泽正嗣,高桥捷.东邦人造丝.用于制备高强度聚丙烯腈基碳纤维的原丝[P].日本,特开平11-152618.1999.06.08.
    [4]高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺[J].合成纤维工业:2002.25(4):35-38.
    [5]张旺玺,王艳芝.聚丙烯腈基碳纤维综述[J].合成技术及应用:1998.14(12):20-22.
    [6]陈方泉.PAN/DMSO溶液的流变学性质及干湿法PAN原丝工艺的研究(硕士学位论文)[D].上海:东华大学.2004.
    [7]方纪才.21世纪最具诱惑力的新材料-碳纤维[J].润滑油与燃料:2005.3.
    [8]黎小平,张小平,王红伟.碳纤维的发展及其应用现状[J].高科技纤维与应用:2005.30(5).
    [9]朱伟平.聚丙烯腈基碳纤维国内发展概况[J].合成纤维:2006.3:49.
    [10]张家杰.国内外碳纤维生产现状及其发展趋势[J].化工技术与经济:2005.23(4).
    [11]罗益锋.世界PAN基炭纤维发展透析及对我国的研发建议[J].材料导报:2000.14(11):11-13.
    [12]汪晓峰,倪如青,刘强等.高性能聚丙烯腈基原丝的制备[J].合成纤维:2000.29(4):23-27.
    [13]贺福,杨永岗.突破碳纤维产业化的“瓶颈”原丝已是当务之急[J].炭素技术:2002.12(2):1-4.
    [14]杨国华.碳素材料(下册)[M].北京:北京物资出版社.1999:1-139.
    [15]于淑娟,姜立军,沙中瑛等.碳纤维用聚丙烯腈原丝制备技术的研究进展[J],高科技纤维与应用:2003.28(6):15-18.
    [16]王曙中,王庆瑞,刘兆峰.高科技纤维概论[M].上海:中国纺织大学出版社.1999:414-415.
    [17]贺福.高性能碳纤维原丝与干喷湿纺[J].高科技纤维与应用:2004.29(4):6-12.
    [18]彭公秋,杨永岗,温月芳等.聚丙烯腈纤维原丝及凝固成型的研究进展[J].合成纤维:2008.2:1-5.
    [19]Y. H.BANG, S. LEE, H. H. CHO. Effect of Methyl Acrylate Composition on the Microstructure Changes of High Molecular Weight Polyacrylonitrile for Heat Treatment[J]. J Appl. Polym. Sci.:1998.68:2205.
    [20]Shinghua Chang. Thermal Analysis of Acrylonitrile Copolymers Containing Methyl Acrylate[J]. J Appl. Polym. Sci.:1994.54:405-407.
    [21]张寿春.碳纤维用丙烯腈-衣康酸铵共聚树脂的制备及其性能研究[D].中国科学院研究生院博士论文.2004:14.
    [22]WILKINSON KENNETH. Process for the preparation of carbon fibers[P]. 美国, 5804108.1998-09-08.
    [23]古谷禧典.丙烯腈系纤维的制法[P]:日本,JP 87-265810[P].1987.
    [24]古谷禧典.丙烯腈共聚熔融纺丝法[P]:日本,JP 87-268812[P].1987.
    [25]水口丰和.丙烯腈系聚合物的熔融纺丝方法[P]:日本,JP89-266213[P].1989.
    [26]Keshav V D. Formulation of PAN for solution spinning[J]. Synthetic Fibers: 1994. (10):37-40.
    [27]贺福.聚丙烯腈基碳纤维[M].上海:东华大学出版社.2005.4.
    [28]胜巳伊夫,田中胜,松久要治.日本东丽公司.聚丙烯腈基碳纤维用原丝的制造方法[P]:日本,特开平11-12854.1999.01.19.
    [29]木林真,伊势昌史,石田富弘.日本东丽公司.碳纤维以及其制造方法[P]:日本,特开平11-152626.1999.06.08.
    [30]松久要治.日本东丽公司.聚丙烯腈基碳纤维制造方法[P]:日本,特开平3-180514.1991.08.06.
    [31]陈方泉,高健,陈惠芳等.二次拉伸对干湿法PAN原丝结构性能的影响[J].合成纤维工业:2003.26(6):4-7.
    [32]木林真,远藤真,小野惠三.日本东丽公司.碳纤维用聚丙烯腈原丝以及碳纤维的制造方法[P]:日本,特开平8-27619.1996.01.30.
    [33]汪晓峰,倪如青,刘强等.高性能聚丙烯腈基原丝的制备[J].合成纤维:2000.29(4):23-27.
    [34]木林真,伊势昌史,石田富弘.日本东丽公司.碳纤维以及碳纤维用前驱体的制造方法[P]:日本,特开平12-160436.2000.06.13.
    [35]三井茂雄.日本东丽公司.碳纤维用前驱体原丝的制造方法[P]:日本,特开昭58-214520.1983.12.13.
    [36]邵洪芳,方静,林树波等.影响碳纤维用聚丙烯腈原丝水洗效果因素的探讨 [J].高科技纤维与应用:2005.30(5):31-33.
    [37]刘世昌,陈惠芳,潘鼎.碳纤维用PAN原丝超声波水洗新技术[J].宇航材料工艺:2006.增刊1:46-47.
    [38]Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers[J]. Macromol Chem Phys:1991. C31(1):1-9.
    [39]贺福.高性能碳纤维原丝与油剂[J].高科技纤维与应用:2004.29(5):1-5.
    [40]罗益锋.国外PAN原丝及碳纤维专利分析报告(1)[J]:2006.31(6):1-4.
    [41]彼列彼尔金著.纤维的结构与性能[M].北京:科学出版社.1990:10-25.
    [42]木林真,伊势昌史,松久要治.日本东丽公司.碳纤维用前驱体以及碳纤维的制造方法[P]:日本,特开平11-117128.1999.04.27.
    [43]木林真,伊势昌史,石田富弘.日本东丽公司.碳纤维用前驱体以及碳纤维的制造方法[P]:日本,特开平11-323737.1999.11.26.
    [44]初鹿野彰,林省治,今井义隆等.三菱粘胶丝公司.聚丙烯腈基纤维及其制造方法[P]:日本,特开平5-339813.1993.12.21.
    [45]初鹿野彰,山本隆,笠坊行生.三菱粘胶丝公司.炭素纤维前躯体及其制造方法[P]:日本,特开平4-257313.1992.09.11.
    [46]通口富壮.日本东丽公司.聚丙烯腈原丝束[P]:日本,特开昭58-214518.1983.12.13.
    [47]山中秀一,黑田明辉,鸟羽直.日本东丽公司.碳纤维用前驱体纤维束以及碳纤维的制造方法[P]:日本,特开平13-181925.2001.07.03.
    [48]山中秀一,黑田明辉,鸟羽直.日本东丽公司.炭素纤维用前驱体制造方法[P]:日本,特开平13-182107.2001.11.19.
    [49]张国萍,毛萍君,张林等.用于碳纤维原丝的聚丙烯腈纺丝溶液的性质研究[J].青岛大学学报:1999.14(3):26-30.
    [50]朱岿立,毛萍君,杨明远.PAN基碳纤维原丝用纺丝溶液的流变性质[J].合成技术及应用:2002.117(14):4-7.
    [51]董纪霞,罗鸿烈,王庆瑞等.合成纤维生产工艺学(上册)第2版[M].北京:纺织工业出版社.1996:546.
    [52]唐乃杰,陈惠芳,潘鼎.H2O对PAN/DMSO纺丝溶液流变学性质的影响[J].宇航材料工艺:2006.增刊1:84-87.
    [53]姚穆.关于大豆蛋白纤维开发应用的思考和建议[J].棉纺织技术:2001.2(99):517-518.
    [54]高阔,沈新元.大豆蛋白/聚丙烯腈纤维的研制[J].合成纤维:2005.7:8-11.
    [55]李爱英,常杰云,王凯全等.超支化聚合物在共混改性中的应用[J].塑料科技:2005.5:54-58.
    [56]熊忠,陈骁,韩高亮等.纳米CaCO3填充新型聚烯烃弹性体POE的力学、流变性能研究[J].弹性体:2005.15(2):14-18.
    [57]L Jiang, Y C Lam, J Zhang. Rheological properties and interfacialslip of a mutilayer structure under dynamic shear[J]. J Poly Sci. Part B:Polym Phys:2005.43: 2683-2693.
    [58]W Brostow, T Sterzynski, S Triouleyre. Rheological properties and morphology of binary blends of a longitudinal polymer liquid crystal with engineering polymers [J]. Polymer:1996.37(9):1561-1574.
    [59]Marsh K N, Boxall J A, Lichtenthaler R. Room temperature ionic liquids and their mixtures-A review[J]. Fluid Phase Equilibria:2004.219:93-98.
    [60]Welton T. Room-temperature ionic liquids solvents for synthesis and catalysis[J]. Chem. Rev.:1999.9(9):2071-2083.
    [61]郑伟,程博闻,臧洪俊等.聚丙烯腈/溴代-1-丁基-3-甲基咪唑溶液的流变行为[J].高分子材料科学与工程:2009.25(3):68-74.
    [62]Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high young's modulus observed for individual carbon nanotubes[J]. Nature (London):1996.381:678-679.
    [63]Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science:1997.277:1971-1975.
    [64]Yu M, Lourie O, Dyer M J. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science:2000.287:637-640.
    [65]Poncharal P, Wang Z L, Ugarte D. Electrostatic deflections and elect romechanical resonances of carbon nanotubes[J]. Science:1999.283:1513-1516.
    [66]De Heer W A, Bonard J M, Faut h K. et al. Electron field emitters based on carbon nanotube films[J]. Advance Materials:1997.9:87-89.
    [67]Heer W A, Bacsa W S, Chatelain A. et al. Aligned carbon nanotube films: Production and optical and electronics properties[J]. Science:1995.268:845-847.
    [68]顾书英,吴琪琳.碳纳米管应用研究的现状和未来[J].同济大学学报:2002.30:213-217.
    [69]Ajayan P, Stephan O, Colliex C. et al. Aligned carbon nanotube array formed by cutting a polymer resin-nanotube composite[J]. Science:1994.265:1212-1214.
    [70]Jia Z, Wang Z, Xu C. et al. Study on poly(methly met hacrylate)/carbon nanotube composites[J]. Mater Sci Eng:1999. A 271:395-400.
    [71]Pot schke P, Fornes T D, Paul D R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites[J]. Polymer:2002.43:3247-3255.
    [72]Grunlan J C, Mehrabi A R, Bannon M V. et al. Composite wit h exceptionally low percolation threshold[J]. Advance Materials:2004.16:150-153.
    [73]Ko F, Gogot si Y, Ali A. et al. Elect rospinning of continious carbon nanotube-filled nanofiber yarns[J]. Advance Materials:2003.15:1161-1165.
    [74]Liu T, Sreekumar T V, Kumar S. et al. SWNT/PAN composite film-based supercapacitor[J]. Carbon:2003.41:2440-2442.
    [75]洪炳墩,王彪,王华平等.碳纳米管/聚丙烯腈原液的制备及可纺性[J].功能高分子学报:2005.4:617-622.
    [76]张引枝,贺福,王茂章等.碳黑添加剂对PAN原丝性能的影响[J].碳素技术:1997.5:5-8.
    [77]张旺玺,王艳芝.活性碳对聚丙烯腈共混溶液流变性的影响[J].广东化纤:1999.1:17-51.
    [78]Liu T, Sreekumar T V, Kumar S. et al. SWNT/PAN composite filmbased supercapacitors[J]. Carbon:2003.41:2440-2442.
    [79]Guo H, Sreekumar T V, Liu T. et al. Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films[J]. Polymer:2005.46: 3001-3005.
    [80]Chae H G, Sreekumar T V, Uchida T. et al. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber[J]. Polymer: 2005.46:925-935.
    [81]Chae H G, Minus M L, Kumar S. et al. Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile[J]. Polymer:2006.47:3494-3504.
    [82]Chae H G, Minus M L, Rasheed A. et al. Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers[J]. Polymer: 2007.48:3781-3789.
    [83]吴雪平,盛丽华,张先龙等.碳添加剂对聚丙烯腈溶液流变性影响的研究[J].合成纤维:2008.12:29-34.
    [84]董纪霞,罗鸿烈,王庆瑞等.合成纤维生产工艺学(下册)第2版[M].北京:纺织工业出版社.1996:546.
    [85]Shao H L, L iu R G, Hu X C. AUTEX Research Journal:2003.3(1):16-22.
    [86]A.谢皮斯基著,华东纺织工学院化纤教研组译校.纤维成形基本原理[M].上海科学技术出版社.1983.11.
    [87]吴雪平,张先龙,盛丽华等.碳纤维前驱体聚丙烯腈溶液的可纺性研究[J].高科技纤维与应用:2007.32(6):21-29.
    [88]木林真,松久要治,山根祥司.日本东丽公司.碳纤维用原丝制法[P]:日本,特开平5-295616.1993.11.09.
    [89]Bao jiu Qian, Weiping Lin, jianming He. El Al. the role of macromolecular entan glements in the gel spinning process and properties of high performance polyacr ylonitrile fibers[J]. Jounral of Polymer Engineering:1995.15(3-4):327-335.
    [90]王茂章,贺福.碳纤维的制造、性质及应用[M].北京:科学出版社.1984:26-28.
    [91]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1997:57-59.
    [92]王启芬,王成国.聚丙烯腈原丝的结构表征[J].纤维复合材料:2006.3(1):29-32.
    [93]彼列彼尔金著.纤维的结构与性能[M].北京:科学出版社.1990:74-79.
    [94]韩曙鹏,徐梁华,曹维宇等.PAN致密化过程对纤维晶态结构分影响[J].合成纤维工业:2004.27(6),17-19.
    [95]唐春红,张旺玺,曹维宇等.不同牵伸倍数的PAN原丝结构性能的研究[J].塑料工业:2004.23(3):54-57.
    [96]Bajaj P, Sreekumar T V, Sen K. Thermal behaviour ofacrylonitrile copolymers having methacrylic and itaconicacid comonomers[J]. Polymer:2001.42(4):1707-1718.
    [97]Zhang Wang Xi, Liu Jie, Wu Gang. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon:2003.41(14): 2805-2812.
    [98]Warner S B. Oxidative stabilization of acrylic fibers:Part 3 Morphology of polyacrylonitrile[J]. J Mater Sci:1979.14:1893.
    [99]Gupta A K. Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile[J]. J Polym Sci:Polym Phys Ed:1983.21:2243-2262.
    [100]Bashir Z. A critical review of the stabilization of polyacrylonitrile[J]. Carbon: 1991.29(8):1081-1090.
    [101]Liu X D, Ruland W. X-ray studies on the structure of polyacrylonitrile fibers[J]. Macromolecules:1993.26:3030-3036.
    [102]Hitoshi Yamazaki, Shuji Kajita, Kenji Kamide. Solutiongrown single crystal of polyacryl-onitrile polymerized by γ-ray irradiation on urea-acrylontrile canal complex: preparation and preliminary structure analysis[J]. Polym J:1987.19(8):995-998.
    [103]Xiao ping Hu, You lo Heish. Structure of acrylic fibers prior to cyclization[J]. Polymer:1997.38(6):1491-1493.
    [104]A K GUPTA, R P SINGHAL. Effect of Copolymerization and Heat Treatment on the Structure and X-Ray Diffraction of Polyacrylonitrile[J]. Journal of Polymer Science:Polymer Physics Edition:1983.21:2243-2262.
    [105]张旺玺,孙春峰,王成国.用DSC研究选择聚丙烯腈原丝的共聚单体[J].高科技纤维与应用:2003.28(2):44-47.
    [106]S B WARNER, D R UHLMANN. Oxidative stabilization of acrylic fibres[J]. JOURAL OF MATERIALS SCIENCE:1979.14:1893-1900.
    [107]王延相,王成国,刘建军等.氨化改性对IA-AN聚合及PAN原丝热性能的影响[J].合成技术及应用:2003.18(1):4-7.
    [108]Wang X Z, J ie L, Gang W. Evolution of structure and properties of PAN p recursors during their conversion to carbon fibers[J]. Carbon:2003.41(14): 2805-2812
    [109]王占平.丙烯腈-丙烯酸甲酯-衣康酸在氯化锌溶液中的聚合反应[J].合成纤维工业:1997.20(2):16-18.
    [110]潘祖仁.高分子化学[M].北京:化学工业出版社.1997.
    [111]高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社.2001.
    [112]Bajaj P, Sen K, Bahrami H. Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide[J]. Journal of Applied Polymer Science:1996.59: 1539-1550.
    [113]王昆华,罗传秋.聚合物近代仪器分析[M].北京:清华大学出版社.2002:68-72.
    [114]Liang C Y, Pearson F G. Marchessault R H. Tertiary CH and CD vibrational frequencies in polyacrylonitrile and deuterio polyacrylonitrile[J]. Spectrochimica Acta: 1961.17:568-571.
    [115]赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学技术出版社.2003:31.
    [116]G.R.Bohn, J.R.Schaefgen. Laterally ordered polymers:Polyacrylonitrile and poly(vinyl trifluoroacetate)[J]. Journal of Applied Polymer Science:1961.55(162): 531-549.
    [117]K.J.Mukesh, A.S.Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part1 [J]. Journal of Material Science:1987.22(1):278-300.
    [118]K.J.Mukesh, M.Balasubrameninan. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part2[J]. Journal of Material Science:1987.22(1):301-302.
    [119]T.H.Ko, C.C.Yang, W.T.Chang. The effect of stabilization on the properties of PAN-based carbon films[J]. Carbon:1993.31(4):583-590.
    [120]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社.1990.174-184,261-292.
    [121]张幼维,赵炯心,张斌.硫氰酸钠法腈纶纺丝溶液流变性能的研究[J].合成纤维工业:2000.23(3):15-19.
    [122]程罡.PAN基碳纤维的制造及应用[J].安徽化工:2003.29(2):25-27.
    [123]贺福.碳纤维及其应用技术[M].北京:化学工业出版社.2004:3-4.
    [124]张幼维,赵炯心,张斌.添加填料的腈纶纺丝溶液流变性能的研究[J].合成纤维工业:2000.23(6):11-14.
    [125]曾小梅,张莹,赵炯心.聚丙烯腈-二甲基亚砜溶液挤出胀大的研究[J].合成技术及应用:2004.19(3):9-12.
    [126]季保华.聚丙烯腈初生纤维成形机理研究[D].山东大学博士论文.2007:32-33
    [127]朱岿立.干喷湿纺聚丙烯腈纤维拉伸工艺研究[J].合成纤维工业:2003.26(2):9-12.
    [128]A.K.GuPta, R.P.Singhal. Effect of copolymerization and heat treatment on the structure and X-Ray diffraction of Polyacrylonitirle[J], Journal of Polymer science: Polymer Physics Edition:1983.21:2243-2262.
    [129]上海纺织工学院.腈纶生产工艺及其原理[M].上海:上海人民出版社.1976:3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700