反向旋转双转子系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反向旋转的双转子系统已被相当一部分航空发动机采用,以利于减小高、低压转子陀螺力矩的影响,降低机匣负荷,提高飞机机动性能。为了满足先进航空发动机研制的需要,进行反向旋转双转子系统动力学特性的研究十分必要。本文研究了两种不同中介支承联接方式的双转子结构,即中介轴承内圈与低压转子联接、外圈与高压转子联接,和中介轴承外圈与低压转子联接、内圈与高压转子联接。针对这两种反向旋转双转子结构的动力特性,本文开展了以下工作:
     (1)建立了双转子系统动力学分析模型,发展了直接传递矩阵法,研究了双转子系统临界转速特性,分析了支承刚度、转速比和陀螺力矩对其临界转速的影响规律以及转子系统应变能的分布,比较了两种反向旋转双转子系统临界转速特性的异同点,并通过试验验证了支承刚度对双转子系统临界转速的影响规律。研究表明陀螺力矩是同向旋转与反向旋转双转子临界转速特性存在差异的主要原因。
     (2)应用直接传递矩阵法,分析了轮盘的形心轨迹和质心位置变化规律,研究了反向旋转双转子系统的稳态不平衡响应,并通过试验进行了验证。研究结果表明:反向旋转双转子系统依次通过以某转子为主激励的临界转速时,主激励转子盘会依次发生质心转向。
     (3)考虑中介轴承的变刚度振动,分析了不同旋转方向下中介轴承刚度的非线性变化规律。在分析中介轴承各构件运动特点和所受载荷的基础上,建立了中介轴承动力特性分析模型,研究了不同的工作方式对中介轴承滚子自转转速、保持架转速以及滚子载荷的影响,对比了它们的工作性能。研究结果表明:反向旋转的中介轴承受载滚子数目较多,打滑率较低,可延长其疲劳寿命;但滚子自转转速较高,会缩短滚子的疲劳寿命,所以两种旋转方向的中介轴承各有利弊,应据具体情况具体分析。
     (4)考虑中介轴承刚度的非线性变化,推导了反向旋转双转子系统振动响应的非线性动力学方程,研究了转子转速、不平衡量和中介轴承径向间隙对系统响应特性的影响规律。研究结果表明:通过适当地选取转速与不平衡量,可以降低转子-轴承系统的非线性振动;减少中介轴承的径向间隙,有利于系统的非周期运动转变为周期运动,提高系统运动的平稳性。
     综上所述,本文较系统地研究了反向旋转双转子系统临界转速特性、稳态不平衡响应特性、中介轴承动力特性以及非线性振动响应等问题。研究结果对于提高航空发动机转子系统的动力学性能,指导双转子系统的设计和使用具有重要的理论意义和工程应用价值。
The counter-rotating dual-rotor system is applied in some aero-engines, and it can decrease the influence of the gyroscopic moments created by the high pressure rotor and the low pressure rotor, reduce the torque of cases, and improve the flexibility of airplanes. So the research on the dynamical characteristics of the dual-rotor system is essential in order to meet the development of the high-performance aero-engines. Two kinds of dual-rotor systems, which have different inter-shaft connecting structures, are studied. In one of the dual-rotor systems, the low pressure rotor is mounted on the inter-shaft bearing’s inner ring and the high pressure rotor is mounted on the inter-shaft bearing’s outer ring. In the other, the low pressure rotor is mounted on the inter-shaft bearing’s outer ring and the high pressure rotor is mounted on the inter-shaft bearing’s inner ring. The main contents of this paper are as follows.
     (1) The direct transfer matrix method is developed, and the dynamical model of the dual-rotor system is set up. Using the model, the critical speed characteristics are studied, and the distributions of the system’s strain energy and the influences of the supporter’s stiffness, the speed ratio and the gyroscopic moments to the critical speeds are analyzed. Then the critical speed characteristics of two kinds of dual-rotor systems are compared. Furthermore, the experiments results on the influences of the supporter’s rigidity to the critical speeds are given, and the laws from the calculation results are the same as those from the experiment results. It is found that, the gyroscopic moments is the primary reason of the difference between the critical speed characteristics of the dual-rotor systems which have different rotating directions.
     (2) The steady-state response of dual-rotor systems is studied by the direct transfer matrix method. The orbit and location of the centroids of dual-rotor disks are analyzed, and the calculational conclusions are validated by the experiments. It is found that, when the dual-rotor system passes the critical speed, the disk centroid location excited by itself will turn about 180 degrees, but another rotor won’t.
     (3) Considering the effect of the varying compliance vibration of the inter-shaft bearing, the non-linear changing rule of the inter-shaft bearing stiffness is analyzed when the bearing co-rotates and counter-rotates. Based on the analyses of motion and load relations, the analytic model of the inter-shaft bearing’s dynamical characteristics is set up. The roller spinning speed, the cage speed and the load of rollers are analyzed, and the performances of theinter-shaft bearings are compared, when the bearing operating in different working conditions. The conclusion indicates that, the counter-rotating inter-shaft bearing has more loaded rollers, lower slip ratio, but it has higher roller spinning speeds, so each of the inter-shaft bearings for two rotating directions possesses the respective advantage.
     (4) Considering the non-linear stiffness of inter-shaft bearings, the dynamical equation for the non-linear vibration analysis of the counter-rotating dual-rotor systems is given. The influences of the rotor speeds, the amount of unbalance, and the radial clearance of inter-shaft bearings to the system response characteristics are studied. It is found that, the non-linear vibration can be reduced by selecting the parameters, including the rotor speed and the amount of unbalance. The non-periodic vibration can be avoided by decreasing the radial clearance of inter-shaft bearings.
     In conclusion, the critical speed characteristics, the steady-state response, the dynamical characteristics of inter-shaft bearings and the non-linear vibration response of the counter-rotating dual-rotor systems are studied in this paper. The results can provide the theoretical direction for the design and the operation of dual-rotor system, and it is helpful to gain higher dynamical characteristics of the dual-rotor sytems of aero-engines, so the contribution possesses an important theoretical significance and application value in engineering.
引文
[1]罗贵火.反向旋转双转子振动特性分析与试验研究. [博士学位论文],南京,南京航空航天大学, 1999.8.
    [2]冯国权,岳承熙,张连祥.对转式双转子发动机机动特性分析.航空发动机, 1993(5):43~48.
    [3] Hooker S. History of the Pegasus vectored thrust engine. Journal of Aircraft, 1981,18(5): 322~326.
    [4] Integrated high performance turbine engine technology program (IHPTET). Gas Turbine Forecast, 2000,(3).
    [5]方昌德.航空发动机的发展前景.航空发动机, 2004, 30(1): 1~5.
    [6] Glasgow, D A. Stability analysis of rotor-bearing systems using component mode synthesis. Transactions of the ASME, 1980, 102: 352~359.
    [7] Gunter, E J. Unbalance response of a two spool gas turbine engine with squeeze film bearings. ASME, 81-GT-219.
    [8] Gunter, E J. Design of nonlinear squeeze-film dampers for aircraft engines. Journal of Lubrication Technology, 99(1): 57~64.
    [9] Kazao, Y, Gunter, E.J. Dynamics of multi-spool gas turbines using the matrix transfer method– Applications. International Journal of turbo and Jet Engines, (6): 143~152.
    [10] Kazao, Y, Gunter, E.J. Dynamics of multi-spool gas turbines using the matrix transfer method– Theory. International Journal of turbo and Jet Engines, (6): 153~161.
    [11] Hibner, D H, Dynamic response of viscous-damped multi-shaft jet engines. Journal of Aircraft, 1975, 12(4): 305~312.
    [12] Hibner, D H, Kirk R G., Buono D F. Analysis and experimental investigation of the stability of intershaft squeeze film dampers, part I: Demonstration of instability. Journal of Mechanical Design, 1977, 99: 47~52.
    [13] Hibner, D H, Bansal P N, Buono D F. Analysis and experimental investigation of the stability of intershaft squeeze film dampers, part II: Control of instability. Journal of Mechanical Design, 1978, 100: 558~562.
    [14] Gupta, K. Unbalance response of a dual rotor system: theory and experiment. Journal of Vibration and Acoustics, 1993, 115: 427~435.
    [15] Gupta, K. Stability analysis of dual rotor system by extended transfer matrix method. ASME, 89-GT-194.
    [16] Lalanne M, Ferraris G. Rotordynamics Prediction in Engineering. England: Wiley, 1989.
    [17] Ferraris G. Prediction of the dynamic behavior of non-symmetric coaxial co- or counter-rotating rotors. Journal of sound and vibration, 1996, 195(4):649~666.
    [18] Delbez, A, Charlot,G., Ferraris, G., et al. Dynamic behavior of a counter-rotating multirotor air turbine starter. ASME, 93-GT-59.
    [19] Bansal P N, Kirk R G. Stability and damped critical speeds of rotor bearing systems. Journal of Engineering for Industry, 1975, 1325~1332.
    [20] Childs D W. A model transient rotordynamic model for dual-rotor jet engine systems. Journal of Engineering for Industry, 1974, 98(3): 876~882.
    [21] El-shafei A. Stability analysis of intershaft squeeze film dampers. Journal of Sound and Vibration, 1991, 148(3): 395~408.
    [22] Gupta K D. Dynamic response of a dual rotor system by extended transfer matrix method. International Conference on Vibrations in Rotating Machinery, 1988: 599~605.
    [23] Ozgur C. A study of contrarotating turbines based on design efficiency. Journal of Basic Engineering, 1971: 395~404.
    [24] Schobeiri T, et al. Nonlinear dynamic simulation of single- and multi-spool core engines. AIAA 93-2580.
    [25]晏砺堂,王德友.航空双转子发动机动静件碰摩振动特征研究.航空动力学报, 1998, 13(2): 173~176.
    [26]刘献栋,李其汉,王德友.具有转静件碰摩故障双转子系统的动力学模型及其小波变换特征.航空动力学报, 2000,15(2): 187~190
    [27]魏德明,任平珍,杨申基.多转子支承系统航空发动机临界转速及不平衡响应计算.燃气涡轮试验与研究, 1996(4): 34~37.
    [28]赵明,魏德明,任平珍,李继庆,桂业英.模态综合法计算双转子临界转速研究.燃气涡轮试验与研究, 2003(3): 38~49.
    [29]任平珍,柴卫东,胡璧刚,魏德明.航空发动机转子热弯曲稳态响应计算方法研究.燃气涡轮试验与研究, 1996(3): 27~32.
    [30]魏海涛,范晓明.机动飞行中双转子系统的振动响应分析.中国航空学会第十届航空发动机结构强度与振动会议,安徽歙县,中国航空学会, 2000: 315~324.
    [31]阮金彪,孙亦定,刘树春,刘荣强,张飞虎.带挤压油膜阻尼器柔性双转子系统的动力特性分析.机械工程师, 1995(3): 42~43.
    [32]李笃权,赵明,任平珍.双转子临界转速的简易分析方法及应用.沈阳航空工业学院学报. 2003, 20(2):11~13.
    [33] Hsiao-Wei, D Chiang, et al. Turbomachinery dual rotor-earing system analysis. ASME GT-2002-30315.
    [34]杨健,周保堂.微速差双转子系统振动信号分离法研究.中国机械工程, 2002, 13(8): 710~713.
    [35]张志新.微速差双转子系统整机动平衡技术进展.流体机械, 2003, 31(1): 24~28.
    [36]黄太平.多转子系统振动的子系统分析方法-阻抗耦合法与分振型综合法.振动工程学报, 1988, 1(3): 31~40.
    [37]黄太平.转子动力学中传递矩阵阻抗耦合法.航空动力学报, 1988, 3(4): 315~318.
    [38] Huang Taiping. The transfer matrix impedance coupling method for the eigensolutions of multi-spool rotor systems. Transactions of the ASME, 1988, 110: 468~472.
    [39] Huang Taiping. The transfer matrix component mode synthesis for the eigensolutions of rotor systems. Journal of Nanjing Aeronautical Institute, 1988, 5(1): 143~155.
    [40]钟一锷,何衍宗,王正,等.转子动力学.北京:清华大学出版社, 1986.
    [41]顾家柳,丁奎元,刘启洲,等.转子动力学.北京:国防工业出版社, 1984.
    [42] El-Sayed H R. Stiffness of deep-groove ball bearings. Wear, 1980, 63(1): 89~94.
    [43] Hernot X, Sartor M, Guillot J. Calculation of the stiffness matrix of angular contact ball bearings by using the analytical approach. Journal of Mechanical Design, Transactions of the ASME, 2000, 122(1): 83~90.
    [44] Bugra H Ertas, John M Vance. The effect of static and dynamic misalignment on ball bearng radial stiffness. AIAA-2002-4160, 2002.
    [45] Walford T L H, Stone B J. Some damping and stiffness characteristics of angular contact bearings under oscillation radial load. Institution of Mechanical Engineers, Conference Publications, 1980: 157~162.
    [46]袁茹,王三民,任平珍.发动机转子-滚动轴承系统的振动性能研究.机械科学与技术, 1999, 18(5): 761~763.
    [47] Mevel B, LGuyader J. Routes to chaos in ball bearings. Journal of Sound and Vibration, 1993, 162(3): 471~487.
    [48] Takashi F, Emil H, Takahiro K, et al. On the radial vibration of ball bearings. Bulletin of JSME, 1985, 239(28): 899~903.
    [49]赵凌燕.滚动轴承-转子系统的非线性动力学研究. [硕士学位论文],西安,西北工业大学, 2003.
    [50] Harris T A. Rolling Bearing Analysis, 3rd Edition . New York: John Wiley & Sons, Inc. 1991.
    [51]万长森.滚动轴承的分析方法.北京:机械工业出版社, 1985.
    [52] Hargreaves R.A., Higginson G.R. Some effects of lubricant starvation in cylindrical roller bearings. Transactions of the ASME, 1976, 3: 66~72.
    [53] Ford R.A.J., Food C.A. The effects of elastohydrodynamic traction behavior on cage slip in roller bearings. Transactions of the ASME, 1974, 7: 370~375.
    [54] Boness R.J. The effect of oil supply on cage and roller motion in a lubricated roller bearing. Journal of Lubrication Technology, 1970, 7: 39~53.
    [55] Kannel J W, Walowit J A. Simplified analysis for tractions between rolling-sliding elastohydrodynamic contacts. Journal of Lubrication Technology, Transactions of the ASME 1971, 93(1): 39~46.
    [56] Nypan L.J. Separator contact forces and speed ratios in roller bearings. Lubrication Engineering, 1980, 36: 657~666.
    [57] Jones A B, Harris T A. Analysis of a rolling element idler gear bearing having a deformable outer race structure. Journal of Basic Engineering, Transactions of the ASME, 1963, 85(2): 273~278.
    [58] Ioannides E, Harris T A. New fatigue life model for rolling bearings. Journal of Tribology, Transactions of the ASME, 1985, 107(3): 367~378.
    [59] Jones A B. Ball motion and sliding friction in ball bearing. Journal of Basic Engineering, Transactions of the ASME, 1959, 81(2): 1~12.
    [60] Hirano F. Motion of a ball in angular contact ball bearing. ASLE Transanctions, 1965, 8(4): 425~434.
    [61] Neng Tung Liao, Jen Fin Lin. A new method for the analysis of deformation and load in a ball bearing with variable contact angle. Journal of Mechanical Design, Transactions of the ASME, 2001, 123(2): 304~312.
    [62] Aktürk N, Uneeb M, Gohar. The effects of number of balls and preload on vibrations associated with ball bearings. Journal of Tribology, 1997, 119(4): 747~752.
    [63] Tamura Hideyuki, Tsuda Yoshihiro. On the spring charactstics of a ball bearing (Extreme characteristics with many balls). Bulletin of the JSME, 1980, 23(180): 961~969.
    [64] Fukata Satoru, Gad Emil Halim, Kondou Takahiro, et al. On the radial vibration of ball bearings. Bulletin of JSME, 1985, 28(239): 899~904.
    [65] Lim TC, Singh R. Vibration transmission through rolling element bearings - Part I:Bearing stiffness formulation. Journal of Sound and Vibration, 1990, 139(2): 179~199.
    [66] Lim TC, Singh R. Vibration transmission through rolling element bearings-Part II: System studies. Journal of Sound and Vibration, 1990, 139(2): 201~225.
    [67] Harris T A. Ball motion in thrust-loaded, angular contact bearing with coulomb friction. Journal of Lubrication Technology, Transactions of the ASME, 1971, 93(1): 32~38.
    [68] Gupta P K(美) .球轴承的沟曲率变化与振动.国外轴承技术,1992,(2):56~59.
    [69]杜迎辉,丘明,蒋兴奇,等.高速精密角接触球轴承刚度计算.轴承,2001,(11):5~8.
    [70]陈光.航空发动机轴承的滑蹭损伤与防止措施.燃气涡轮试验与研究,2004,17(3):58~62.
    [71]陈国定,李建华,徐建东,等.高速滚动轴承弹性流体动力润滑分析.航空学报,1994,15(12):1475~1477.
    [72] Poplawski J.V. Slip and cage forces in a high-speed roller bearing. Journal of Lubrication Technology, 1972, 4: 143~152.
    [73] Rumbarger J.H. Rumbarger J H. Gas turbine engine mainshaft roller bearing-system analysis. Journal of Lubrication Technology, 1973: 401~416.
    [74] Harris T A. An analytical method to predict skidding in high speed roller bearings. ASLE Transactions, 1966, 9(3): 229~241.
    [75] Kannel J W, et al. Simplified Analysis for Tractions Between Rolling-Sliding Elastohydrodynamic Contacts. Journal of Lubrication Technology, 1971: 39~46.
    [76] Dowson D., Markho P.H., Jones D.A. The lubrication of lightly loaded cylinders in combined rolling, sliding, and normal motion Part I: Theory. Journal of Lubrication Technology, 1976, 10:509~516.
    [77] Dowson D., Markho P.H. The lubrication of lightly loaded cylinders in combined rolling, sliding, and normal motion Part II: Experimental. Journal of Lubrication Technology, 1976, 10:517~523.
    [78] Chang L. Analysis of high-speed cylindrical roller bearings using a full elastohydrodynamic lubrication model, Part 1: Formulation. Tribology Transactions, 1990, 33(2): 274~284.
    [79] Chang L. Analysis of high-speed cylindrical roller bearings using a full elastohydrodynamic lubrication model, Part 2: Results. Tribology Transactions, 1990, 33(2): 285~291.
    [80] Tassone B.A. Roller bearing slip and skidding damage. Journal of aircraft, 1975, 12(4): 281~287.
    [81] Hideo KAIDO, Yoshiki DOI. Cage slip and its effect on damages in high speed roller bearings. Proceedings of the JSLE International Tribology Conference, Tokyo, Japan, 1985, July 8-10: 591~596.
    [82] Boness R J. Minimum load requirements for the prevention for skidding in high speed thrust loaded ball bearings. Journal of Lubrication Technology, Transactions of the ASME, 1981, 103(1): 35~39.
    [83] Neng Tung Liao, Jen Fin Lin. Ball bearing skidding under radial and axial loads. Mechanism and Machine Theory, 2002, 37(1): 91~113.
    [84]徐秉业,刘信声.应用弹塑性力学.北京,清华大学出版社, 1995.
    [85]林国昌,徐从儒,林基恕.滚子轴承准静态计算分析.航空动力学报, 1992, 7(1): 17-21.
    [86] Jang G H, Jeong S W. Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. Journal of Tribology, 2002, 124(1): 82~90.
    [87] Ehrich F F. Some observations of chaotic vibration phenomena in high-speed rotor dynamics. Journal of Vibration and Acoustics, Transactions of the ASME, 1991, 113(1): 50~57.
    [88] Ono K, Okada Y. Analysis of ball bearing vibrations caused by outer race waviness. Journal of Vibration and Acoustics, Transactions of the ASME, 1998, 120(4): 901~908.
    [89] Gunhee Jang, Seong Weon Jeong. Vibration analysis of a rotating system due to the effect of ball bearing waviness. Journal of Sound and Vibration, 2004, 269(3): 709~726.
    [90] Harsha S P, Sandeep K, Prakash R. Non-linear dynamic behaviors of rolling element bearings due to surface waviness. Journal of Sound and Vibration, 2004, 272(3): 557~580.
    [91] Harsha S P, Kankar P K. Stability analysis of a rotor bearing system due to surface waviness and number of balls. International Journal of Mechanical Sciences, 2004, 46(7): 1057~1081.
    [92] Shabaneh, Nabeel, Zu J W. Nonlinear dynamic analysis of a rotor shaft system with viscoelastically supported bearings. Journal of Vibration and Acoustics, Transactions of the ASME, 2003, 125(3): 290~298.
    [93]岳国金,晏砺堂,李其汉.转子碰摩的振动特性分析.航空学报, 1990, 11(10): 499~502.
    [94] Tiwari M, Gupta K, Prakash O. Dynamic response of an unbalanced rotor supported on ball bearings. Journal of Sound and Vibration, 2000, 238(5): 757~779.
    [95] Toshio, Yamamoto. On critical speeds of a shaft supported by a ball bearing. Journal of Applied Mechanics, 1959, 26(2): 199~204.
    [96] Shabaneh, Nabeel, Zu J W. Nonlinear dynamic analysis of a rotor shaft system with viscoelastically supported bearings. Journal of Vibration and Acoustics, Transactions of the ASME, 2003, 125(3): 290~298.
    [97] Yamamoto, Toshio, Ishida, et al. On the vibrations of a shaft with nonlinear spring characteristics. Memoirs of the Faculty of Engineering, 1978, 30(1): 59~109.
    [98] Tiwari M, Gupta K, Prakash O. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. Journal of Sound and Vibration, 2000, 238(5): 723~756.
    [99] Lee Y S, Lee C W. Modeling and vibration analysis of misaligned rotor ball bearing systems. Journal of Sound and Vibration, 1999, 224(1): 17~32.
    [100] Harsha S P. Non-linear dynamic response of a balanced rotor supported on rolling element bearings. Mechanical Systems and Signal Processing, 2005, 19(3): 557~578.
    [101] Bhattacharyya K, Dutt J K. Unbalance response and stability analysis of horizontal rotor systems mounted on nonlinear rolling element bearings with viscoelastic supports. Journal of Vibration and Acoustics, Transactions of the ASME, 1997, 119(4): 539~544.
    [102] Shin Y C. Bearing nonlinearity and stability analysis in high speed machining. Journal of Engineering for Industry, Transactions of the ASME, 1992, 114(1): 23~30.
    [103] Choi B L, Park J M. An improved rotor model with equivalent dynamic effects of the support structure. Journal of Sound and Vibration, 2001, 244(4): 569~581.
    [104] Kim Y B, Noah S T. Quasi-periodic response and stability analysis for a nonlinear Jeffcott rotor. Journal of Sound and Vibration, 1996, 190(2): 239~253.
    [105] El-Marhomy Abd Alla, Abdel-Sattar Nasar Eldin. Stability analysis of rotor-bearing systems via Routh-Hurwitz criterion. Applied Energy, 2004, 77(3): 287~308.
    [106] Huang B W, Kung H K. Variations of instability in a rotating spindle system with various bearings. International Journal of Mechanical Sciences, 2003, 45(1): 57~72.
    [107] Khader N. Stability analysis for the dynamic design of rotors. Journal of Sound and Vibration, 1997, 207(3): 287~299.
    [108] Ganesan R. Effects of bearing and shaft asymmetries on the instability of rotors operating at near-critical speeds. Mechanism and Machine Theory, 2000, 35(5): 737~752.
    [109] Nelson H D, McVaugh J M. The dynamics of rotor-bearing systems using finite elements. Journal of Engineering for Industry, Transactions of the ASME, 1976, 98(2): 593~600.
    [110] Rao B Sudhakara, Sekhar A S, Majumdar B C. Analysis of rotors considering distributed bearing stiffness and damping. Computers and Structures, 1996, 61(5): 951~955.
    [111] Sunnersj? C S. Varying compliance vibrations of rolling bearings [J]. Journal of Sound and Vibration, 1978, 58(3): 363~373.
    [112] Mevel B, LGuyader J. Routes to chaos in ball bearings. Journal of Sound and Vibration, 1993, 162(3): 471~487.
    [113] Harsha S P, Sandeep K, Prakash R. Non-linear dynamic behaviors of rolling element bearings due to surface waviness. Journal of Sound and Vibration, 2004, 272(3): 557~580.
    [114]刘鸿文.材料力学.北京,高等教育出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700