高速永磁电机转子综合设计方法及动力学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速电机由于体积小、功率密度大和效率高,成为电机领域的研究热点之一。永磁电机以其结构简单,力能密度高和无励磁损耗效率高等优点,最适合于高速电机。高速高频电机与普通电机相比设计难度较大,为了减少离心力及产生需要的输出功率,转子一般为细长型,同时转子还应具有足够的刚度,特别是对于采用磁悬浮轴承的高速电机转子,为了减小跨越弯曲模态临界转速时磁悬浮控制的难度,对于转子刚度的要求更高。对于永磁电机来说,转子强度问题更为突出,因为永磁体不能承受高速旋转产生的拉应力而必须对其采取保护措施。因此转子强度的准确计算和动力学分析是高速永磁电机设计的关键技术。
     本文研究内容是国家自然科学基金重点资助项目“微型燃气轮机—高速发电机分布式发电与能量转换系统研究”(编号50437010)的部分研究内容,重点针对转子强度、动力学分析及转子结构综合设计进行了深入研究,并对高速电机及其机组进行实验研究。主要包括以下内容:
     (1)对高速永磁转子进行基于电磁、强度及动力学特性分析的综合设计。首先根据高速旋转下转子表面线速度初选转子外径,进行强度计算,根据转子材料的强度要求确定转子外径允许变化范围;其次根据电机的输出功率要求,选取永磁体结构和转子的轴向尺寸,进行电磁特性分析;然后进行转子的动力学分析,根据刚度及动力学要求确定转子长度;最后,在综合满足强度、刚度和电磁性能基础上,对转子结构进行多场综合设计。
     (2)利用有限元非线性接触方法建立护套和永磁体轴对称模型,计算永磁体和护套在各种工况下应力及其接触压力,确定合适的过盈量。分析几种典型高速永磁电机转子结构在不同工况下的应力分布情况,选择满足强度要求适合于高速电机的转子结构。
     (3)为了准确计算转子临界转速,建立同时考虑剪切变形和转动惯量影响的磁力轴承转子有限元模型。确定各向异性有限元模型中的材料属性,利用磁悬浮转子系统自身悬浮特性进行激振实验,确定有限元模型中磁力轴承支承刚度。分析磁力轴承刚度、转子结构参数对转子临界转速及振动模态的影响,研究通过改变磁力轴承刚度及结构参数避免共振使转子具有良好动态特性的设计方法。
     (4)建立柔性联轴器耦合的多跨转子系统有限元模型。用弹簧单元模拟弹性联轴器的轴向、径向及扭转刚度,计算轴系振动模态及固有频率,分析联轴器结构及刚度对轴系临界转速的影响及避免共振的方法。
     (5)振动是高速电机稳定运行的瓶颈,通过振动分析研究减小和抑制振动的方法。通过有限元及Newmark积分法计算转子在不平衡力作用下的非线性不平衡响应,分析高速电机运行中振动产生的频率成分,并对仿真结果进行实验验证。
     (6)对高速电机进行实验研究。在空载及负载条件下,测试电动机及发动机电磁特性及单转子、机组轴系的振动位移、振动频谱、轴心轨迹、机座振动加速度等。
The high speed machine, due to its small volume, high efficiency and great power density, is one of the great concerns in electrical engineering. The PM machine is appropriate for high speed operation due to its simple structure and high power density. It is quite difficult to design such a high speed and high frequency machine than designing a common machine. From the point of view to reduce the centrifugal force and produce the required output power, the rotor should be slender. The rotor should have enough rigidity to avoid spaning the critical speed of bending mode for magnetic-bearing rotor. The rotor strength is more prominent for high-speed PM machine, beacause the PM is not able to withstand large centrifugal forces and must be encapsulated in some high-strength material. Therefore, strength and dynamic character analysis of rotor are key techniques for high-speed PM machine.
     The research work of this thesis is a part of the project“The distributed high speed generator drove by micro-turbines and its energy conversion system”, which is supported by the National Natural Science Foundation of China (No. 50437010). The study of the thesis is concentrated to strength, dynamic characteristic analysis and combined design for high-speed rotor system. The main contents are listed as follows:
     (1) Rotor design of high-speed PM machine is investigated based on combined mechanical with electromagnetic and dynamic properties analysis. First, rotor external diameter can be considered according to the surface velocity. The variation range of rotor diameter is determined according to mechanical constraints based on stress analysis. Then, in accordance with output power, rotor structure and axial length are selected by electro-magnetic analysis. The rotor length is determined together with rigidity and dynamics requests. The end, the optimized design of the rotor structure is carried on based on strength, rigidity and the electromagnetism requests.
     (2) The nonlinear contact FEA model of rotor is established to calculate the stress for different operation conditions and determinate suitable interference fit between PM and enclosure. The satisfied strength structure of rotor is choosed by stress analysis.
     (3) In order to calculate the rotor critical speeds accurately, the FEA model of magnetic-bearing rotor is established, which influences of detrusion and rotational inertia are considered simultaneously. The anisotropic material properties in FEA model are definited. According to the suspension character of magnetic-bearing system, the magnetic-bearings stiffness in FEA model is obtained by exciting experiment. Influences of stiffness and structural parameters to critical speeds and vibration modes of rotor are analysed. The design method of rotor changing magnetic-bearing stiffness and design parameter to avoid resonance is investigated.
     (4) The FEA model of multi-span rotor system coupled by flexible couplings is established. The spring element simulates the axial, radial and torsional stiffness of elastic coupling. The influences of stiffness and structure parameters of the coupling on the critical speeds of rotor system are analyzed. The method to avoid resonance of rotor system through changing the structure parameter and supporting stiffness of parts is investigated.
     (5) Vibration is the bottleneck of stable operation for high-speed machine. The methods of reducing and suppression vibration are researched by vibration analysis. The combined FEA and Newmark method is used to calculate the non-linear unbalance response due to the unbalanced force. The simulation results of different vibration frequencies are verified by tests.
     (6) In the no-load and load conditions, the electrical and magnetic properties of motor and generator, vibration displacement, vibration spectrum, orbit of rotor and shafting, vibration acceleration of frame and so on are measured.
引文
[1] He Z H, Chen P. Looking on gas turbine generation with new sight, Developing Gas Turbine Generation with New Opinion. Gas Turbine Generation Technology, 2001, 1.
    [2] Zahawi B A T Al, B P James, Starr F. High speed turbo alternator for domestic combined heat and power unit. IEEE Trans. On EDM, 1997, I: 215-218.
    [3]孟光.转子动力学研究的回顾与展望.振动工程学报, 2002, 15(1): 1- 9.
    [4]曹树谦.高维复杂转子系统非线性动力学的若干现代问题研究: (博士论文).天津:天津大学,2003.
    [5] Pang Y, Zhu Z Q, Howe D. Optimal split ratio for permanent magnet brushless machines. ICEMS, Beijing, 2003:128- 131.
    [6] Schatzer C, binderA.Design optimization of a high speed permanent magnet machine with the VEKOPT algorithm.IEEE-IAS, Roma,2000.
    [7]王凤翔.高速电机的设计特点及相关技术研究.沈阳工业大学学报, 2006, 28 (3): 258-264.
    [8] C. Zwyssig, J.W. Kolar. Design of a 100 W, 500000 rpm Permanent-Magnet Generator for Mesoscale Gas Turbines. IEEE-IAS, 2005: 253-260.
    [9] Wang Fengxiang, Zong Ming, Zheng Wenpeng et al. Design features of high speed PM machines. ICEMS, Beijing, 2003, I:66-70.
    [10] Chudi P,Malmquist A.Development of a small gas Turbine-driven high-speed permanent magnet generator.The Royal Institute of Technology, Sweden:1989.
    [11] Ola Aglén. A High-Speed Generator for Microturbines. The International Conference on Electrical Engineering and Technology (ICEET01), Dares Salaam,2001.
    [12] Offringa L J, Blokland A J.High-speed permanent magnet generator with power electronic converter for gas turbine power plants. The Institute of Marine Engineers (IMarE Conference, London, 1998.
    [13]王继强,王凤翔,鲍文博,关恩录.高速永磁电机转子设计与强度分析.中国电机工程学报, 2005, 25(15): 140-145.
    [14] Andreas Binder,Tobias Schneider. Fixation of buried and surface mounted magnets in high-speed permanent magnet synchronous motors. IAS, 2005: 2843-2848.
    [15] Aglen O, Andersson A. Thermal analysis of a high speed generator. Industry Applications Society Thirty Eight Annual Meeting, Salt Lake City, 2003: 547一554.
    [16] Aglen O. Loss calculation and thermal analysis of a high speed generator. IEEE, Electric Machines and Drives Conference, Madison, 2003: 1117-1123.
    [17]刘明尧,胡业发,周祖德.磁力轴承转子系统非线性支承特性的研究.中国机械工程, 2005, 16(15):1377-1379.
    [18]陈予恕,孟泉.非线性转子—轴承系统的分岔.振动工程学报, 1996, 9(3):266-275.
    [19] Cao Shuqian, Chen Yushu. Bifurcation of unbalanced flexible rotor with nonlinear oil film forces and internal damping. Proc. of the 5th ICVE, Nanjing, 2002: 387-392.
    [20]徐龙祥.磁轴承的关键技术及其应用.应用力学学报,1996.
    [21] Vincent Tamisier, Stephane Font, Francois Carrere. A new anti-vibration algorithm for active magnetic bearings application. IEEE International Conference on control Applications, Glasgow, Scotland, U.K., 2002: 168-173.
    [22] Filatov A V, Maslen E H, Gillies G T. A Method of Noncontact Suspension of Rotating Bodies Using Electromagnetic Forces. Journal of Applied Physics, 2002, 91(4): 2355-2371.
    [23]钟一谔,何衍宗,王正等.转子动力学.北京:清华大学出版社, 1987.
    [24]闻邦椿,顾家柳,夏松波等编.高等转子动力学——理论、技术与应用.北京:机械工业出版社, 2000.
    [25]虞烈,刘恒.轴承-转子动力学.西安:西安交大出版社, 2001.
    [26]王正. Riccati传递矩阵法的奇点及其消除方法.振动与冲击, 1987, (2): 74-78.
    [27]于慎波.永磁同步电动机噪声与振动特性的研究: (博士学位论文).沈阳:沈阳工业大学, 2006.
    [28]肖黎,张咏梅.大型水轮发电机组横向振动的有限元分析.长江科学院院报, 2006, 23(5): 37-40.
    [29] YU Guang-wei, ZHU Qin,XU Li-sheng.Dynamic Analysis of a Centrifugal Compressor by Finite Element Method. Journal of Shanghai University, 2000, 4: 126-129.
    [30]郑赟韬,田爱梅,王晓军.基于QZ算法的涡轮泵转子临界转速有限元计算.推进技术, 2004,(2).
    [31] Adiletta G, Guido A R, Rossi C. Nonlinear Dynamics of a rigid unbalanced rotor in journal bearings. Part I: Theoretical analysis, Nonlinear Dynamics, 1997, 14: 57-87.
    [32] Adiletta G, Guido A R, Rossi C. Nonlinear Dynamics of a rigid unbalanced rotor in journal bearings. Part II: Experimental analysis, Nonlinear Dynamics, 1997, 14: 157-189.
    [33] David P Fleming, Jerzy T Sawicki, J V Poplawski. Unbalance Response Prediction for Accelerating Rotors with Load-Dependent Nonlinear Bearing Stiffness. NASA/TM, 2005:1-8.
    [34] Y B Lee, T H Kim, C H Kim. Unbalance Response of a Super-Critical Rotor Supported by Foil Bearings-CoMParison with Test Results. Tribology Transactions, 2004, 47: 54-60.
    [35] K L Cavalca, P L Cavalcante, E P Okabe. An investigation on the influence of the supporting structure on the dynamics of the rotor system. Mechanical Systems and Signal Processing, 2005, 19:157-174.
    [36] Y A Amer, U H Hegazy. Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness. Chaos, Solitons and Fractals, 2007, 34:1328-1345.
    [37] Sheng Chung Hsieh, Juhn Horng Chen, An-Chen Lee. A modified transfer matrix method for the coupling lateral and torsional vibrations of symmetric rotor-bearing systems. Journal of Sound and Vibration, 2006, 289:294-333.
    [38] An Chen Lee, Byung Ok Kim, Yeong chun Kim. A finite element transient response analysis method of a rotor-bearing system to base shock excitations using the state-space Newmark scheme and coMParisons with experiments. Journal of Sound and Vibration, 2006, 297: 595-615.
    [39]孟光,薜中擎.带挤压油膜阻尼器的柔性转子非线性相应的Duffing特性分析.航空动力学报,1989,4(2):173–178.
    [40]陈予恕.非线性动力学中的现代分析方法.北京:科学出版社, 2000.
    [41]黄文虎.非线性转子动力学研究综述.振动工程学报, 2000, 13(4): 497-509.
    [42] Jing JianPing, Meng Guang, SunYi. On the non-linear dynamic behavior of a rotor-bearing system. Journal of Sound and Vibration, 2004, 274:1031-1044.
    [43]曲凤波,孙玉田,曲大庄.水轮发电机的不平衡磁拉力.大电机技术, 1997, 4 : 1-3.
    [44]姜培林,虞烈.电机不平衡磁拉力及其刚度的计算.大电机技术, 1998, 4: 32-34.
    [45] Belmalls K, Geysen W, Jordan H, et al. Unbalanced magnetic pull in three phase two pole induction motors with eccentric rotors. IEE Conference, 1982.
    [46]邱家俊.电机的机械耦联与磁固耦合非线性振动研究.中国电机工程学报, 2002,22(5):109-115.
    [47]姚大坤,邹经湘,黄文虎.水轮发电机转子偏心引起的非线性电磁振动.应用力学学报, 2006, 23(3): 334-337.
    [48] Y Wang, G Sun, L Huang. Magnetic field-induced nonlinear vibration of an unbalanced rotor. ASME Design Engineering Division, 2003, 2: 925–930.
    [49]胡业发,周祖德,江征风著.磁力轴承的基础理论与应用.北京:机械工业出版社, 2006.
    [50]胡业发.基于结构动态特性的磁悬浮主轴系统研究:〔博士学位论文〕.武汉:武汉理工大学,2001.
    [51]吴春华.磁力轴承支承的转子动态特性研究:〔博士学位论文〕.武汉:武汉理工大学,2005.
    [52] Kyung H H, Jung P H, GYU H T, et al. Orbital analysis of rotor due to electromagnetic force for switched reluctance motor. IEEE Transactions On Magnetic, 2000, 36(4):1407~1400.
    [53] T J Kim, S M Hwang, N G Park. Analysis of vibration for permanent magnet brushless machines motors considering mechanical and magnetic coupling effects. IEEE Transactions On Magnetic, 2000, 36(4):1346-1350.
    [54] Jason D Ede, Z Q Zhu, David Howe. Rotor resonances of high-speed permanent magnet brushless machines. IEEE Transactions On Industry Applications, 2000, 38(6):1542-1548.
    [55] K N Srinivas, R Arumugam. Static and dynamic vibration Analyses of switched reluctance motors including bearings, housing, rotor dynamics and applied loads. IEEE Transactions On Magnetic, 2004, 40(4):1911~1919.
    [56] K N Srinivas, R Arumugam. Analysis and characterization of switched reluctance motors: partⅡ—flow, thermal, and vibration analysis. IEEE Transactions On Magnetic, 2005, 41(4):1321~1332.
    [57] K H Ha, J P Hong. Dynamic Rotor Eccentricity Analysis by Coupling Electromagnetic and Structural Time Stepping FEM. IEEE Transactions On Magnetics, 2001, 37(5): 3452-3455.
    [58] Yong Bok Lee, Dong Jin Park, Chang Ho Kim. Rotordynamic characteristics of a micro turbo generator supported by air foil bearings. J. Micromech. Microeng, 2007:297–303.
    [59] T P Holopainen, A Tenhunen, A Arkkio. Electromechanical interaction in rotor dynamics of cage induction motors. Journal of Sound and Vibration, 2005, 284(21): 733–755.
    [60] K H Ha, J P Hong, G T Kim, et al. Orbital analysis of rotor due to electromagnetic force for switched reluctance motor. IEEE Transactions on Magnetic, 2000, 36 (4): 1407–1411.
    [61] K H Ha, J P Hong. Dynamic rotor eccentricity analysis by coupling electromagnetic and structural time stepping fem. IEEE Transactions on Magnetic, 2001, 37 (5) : 3452–3455.
    [62] Antti Laihoa, Timo P, Holopainen. Distributed model for electromechanical interaction in rotordynamics of cage rotor electrical machines. Journal of Sound and Vibration, 2007, 302: 683–698.
    [63]胡家炘.中型高速电机柔性轴转子的动力特性研究.沈阳工业大学学报, 1995, 17(1):5-9.
    [64]李殿起.永磁电动机转子非线性动力特性.机械强度, 2004, 26( 2):127- 131.
    [65]王继强,王凤翔,宗鸣.高速电机磁力轴承-转子系统临界转速的计算.中国电机工程学报, 2007, 27 (27):94-98.
    [66]马建敏,杨万东.柔性联轴器非线性阻尼对扭转减振的影响.振动与冲击, 2006, 2 5(3):11-17.
    [67]马建敏,韩平畴.柔性联轴器刚度非线性对扭转振动的影响.振动与冲击, 2005, 2 4(4):6-13.
    [68] K M AL-Hussain, I Redmond. Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment. Journal of Sound and Vibration, 2002, 249(3): 483-498.
    [69] K M AL-Hussain. Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment. Journal of Sound and Vibration, 2003, 266:217-234.
    [70] S Prabhakakar, A S Sekhar, A R Mohanty. Crack versus coupling misalignment in a transient rotor system. Journal of Sound and vibration, 2002, 256(4): 773-786.
    [71] P Arumugam, S Swarnamani, B S Prabhu. Effects of coupling misalignment on the vibration characteristics of a two stage turbine rotor. Design Engineering Technical Conferences 84, ASME 1995: 1049-1054.
    [72] Y S Lee, C W Lee. Modeling and vibration analysis of misaligned rotor-ball bearing. Journal of Sound and Vibration, 1999, 224 (1):17-32.
    [73]陈世坤.电机设计.北京:机械工业出版社, 2000.
    [74]刘建明.电磁轴承结构设计与转子动力学分析:(硕士学位论文).合肥:合肥工业大学,2007.
    [75] O.Aglén. Back-to-back tests of a high-speed generator. Proc. of IEMDC2003: 1084-1090.
    [76]邵广军,赵清,安忠良.永磁电机转子强度接触有限元分析.微电机,2008, 41(1):15-17.
    [77]王助成,邵敏.有限单元法基本原理与数值方法.北京:清华大学出版社, 1988.
    [78]陆明万,张雄,葛东云编著.工程弹性力学与有限元法.北京:清华大学出版社, 2005.
    [79]王继强.高速永磁电机的机械和电磁特性研究: (博士学位论文).沈阳:沈阳工业大学,2007.
    [80] Hao Zhou, Fengxiang Wang. CoMParative Study on High speed Induction Machine with Different Rotor Structures. The tenth International Conference on Electrical Machines and Systems, 2007.
    [81] Tianyu Wang, Fengxiang Wang, Cheng Fang, et al. Rotor Design of High Speed PM Machines Based on Combined Mechanical with Electromagnetic Analysis. MT21, 2009
    [82] Stephen W Taylor, Stephen C B Yau. Boundary control of a rotating Timoshenko beam. Mathematical Soc, 2003, 1: 144-184.
    [83] Sen Yung Lee, Shueei Muh Lin, Yu Sheng Lin. Instability and vibration of a rotating Timoshenko beam with precone. International Journal of Mechanical Sciences, 2009, 51(2):114-121.
    [84]宜海军. EORD支承转子动力学特性分析及其在超高速旋转机械中的应用研究: (博士学位论文).杭州:浙江大学, 2004.
    [85] Kaneko T. An experimental study of Timoshenko's shear coefficient for flexurally vibrating beams. Journal of Physics D: Applied Physics, 1978, 11: 1979-1988.
    [86] P Jafarali, Mohammed Ameen, Somenath Mukherjee, et al. Variational correctness and Timoshenko beam finite element elastodynamics. Journal of Sound and Vibration, 2007, 299: 196-211.
    [87] M A Rahman, Akira Chiba, Tadashi Fukao.Super High Speed Electrical Machines– Summary. Power Engineering Society General Meeting, 2004. IEEE. 2004,2:1272 - 1275 .
    [88] Long S A, Zhu Z Q, Howe D. Vibration behavior stators of stators of switched reluctance motor. IEEE Proc. on Electrical Power Application, 2001, 148(3): 257-264.
    [89]祝长生,郑坚强.基于ANSYS的电磁轴承特性分析系统.轴承, 2004, 7:1-3.
    [90]刘亚忠,刘彬.电磁轴承力学特性的有限元分析.轴承, 2003, 9:26-28.
    [91]黄国权主编.有限元基础及ANSYS应用.北京:机械工业出版社, 2004.
    [92]杨静,虞烈.电磁轴承过临界转速的非线性极点配置.轴承, 2002, 11:1-4.
    [93]谢振宇,徐龙祥,李迎等.控制参数对磁悬浮轴承转子系统动态特性的影响.航空动力学报,2004, 19(2): 174-178.
    [94] Zhang Juntang. Young’s modulus for laminated machine structures with particular reference to switched reluctance motor vibrations. IEEE Trans. on Industry Application, 2004, 40(3): 748-755.
    [95] Long S A, Zhu Z Q, Howe D. Vibration behavior stators of stators of switched reluctance motor. IEEE Proc. on Electrical Power Application, 2001, 148(3): 257-264.
    [96]张锦.叶轮机振动分析理论及数值方法.北京:国防工业出版社, 2001.
    [97]张少实,庄茁.复合材料与粘弹性力学.北京:机械工业出版社, 2005.
    [98]谢振宇,徐龙祥,李迎等.磁悬浮轴承转子系统动态特性的实验研究.航空动力学报, 2004, 19(1):30-37.
    [99]阮忠唐.联轴器、离合器设计与选用指南.北京:化学工业出版社, 2006. 128-129.
    [100]申屠留芳,汤洪涛,王成轩.叠片联轴器的振动特性及其影响因素分析.发电设备, 1999, 5: 15- 19.
    [101]刘建武.直升机动力传动轴和膜片联轴器的模态特性分析.机械工程与自动化, 2008, 150(5): 21-25.
    [102]陈永校,诸自强,应善成编著.电机噪声的分析和控制.杭州:浙江大学出版社, 1987.
    [103] D Guo, F Chu, D Chen. The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor. Journal of Sound and Vibration, 2002, 254 (2):297–312.
    [104]东北大学,北京科技大学.运动学和动力学.北京:高等教育出版社, 2008.
    [105]张剀,戴兴建,张小章.强非线性条件下的磁轴承高速电动机.机械工程学报, 2007, 43(8): 202-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700