物理预处理—蛋白酶控制水解联合改性对大豆分离蛋白功能特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白由于产量高、营养丰富、价格便宜而受到了广泛的关注,但其功能特性较差,严重限制了其在食品中的应用。本论文研究了双螺杆挤压和超声波两种物理预处理手段对SPI酶解过程和酶解产物功能特性的影响,然后进一步研究改性产物的理化性质、界面性质和结构,着眼于形成大豆蛋白质改性的新方法,期望发现“加工方法—结构变化—功能特性”之间的关系,为功能性大豆蛋白系列产品的开发提供理论和方法的指导。
     研究了不同温度的挤压预处理对SPI酶解过程和酶解产物功能特性的影响。结果发现与SPI相比,ESPIH-120?160℃对Pan和Pap的酶解敏感性都增强了,其中ESPI-140℃的酶解敏感性最好。挤压预处理-蛋白酶水解联合改性可以显著改善SPI的PR,效果比单纯酶解改性好。ESPIH-140℃-Pan的PR在一定DH范围内(DH=8.0–10.0%)达到90%左右,且其NSI值在pH=3?11范围内具有较好的稳定性。ESPIH-140℃-Pap的最大PR值为80.6%,但NSI值在等电点(pH=4.5)附近明显下降。挤压预处理-蛋白酶水解联合改性不能改善SPI的热诱导凝胶性能。在本论文中,制备乳状液(20% v/v葵花籽油,pH=7.0)的乳化剂浓度为1.6%(w/v),在此条件下SPI形成的乳状液具有较大的平均粒径(d43≈30.9μm)。挤压预处理-Pan酶解联合改性能够显著改善SPI的乳化能力,效果比单纯Pan酶解改性好。其中ESPIH-140℃-Pan在DH=8.0?9.1%时制备的乳状液的平均粒径(d43=2.0μm)为所有样品中最小。而挤压预处理-Pap酶解联合改性不能改善SPI的乳化能力。
     ESPI-140℃对Pan的敏感性提高,酶解变得强烈而广泛,使酶解产物的水解度(DH)、氮溶指数(NSI)、分子量分布、表面疏水性(H0)和二级结构都发生了显著的变化。在本论文所采用的条件下,SPI和SPIH-Pan制备的乳状液在均质过程中发生了桥联絮凝,在21天的静置贮存期间内出现了乳析;而ESPIH-140℃-Pan-9.1%能够制备出粒径细小的乳状液,该乳状液在贮存期间具有良好的对抗乳析和液滴聚集的稳定性。与对照SPI和SPIH-Pan-1.0%相比,ESPIH-140℃-Pan-9.1%界面活性较低;但具有较高的Fad(s67.6%)和较小的Гsat(2.8 mg/m2)。SPIH-Pan乳状液和ESPIH-140℃-Pan乳状液的|ζ|-电势都大于25 mV,具有良好的静电排斥效果。蛋白溶解性显著提高和分子柔性的增大是ESPIH-140℃-Pan-9.1%乳化能力改善的主要原因。
     研究了不同功率的超声预处理对SPI酶解过程和酶解产物功能特性的影响。结果发现超声预处理能够使分散液中蛋白颗粒粒径减小。与SPI相比,USPI-200?600W对Pan和Pap的酶解敏感性都增强了,其中USPI-400W和USPI-600W的酶解敏感性较好。超声预处理-蛋白酶水解联合改性可以显著改善SPI的PR,效果比单纯酶解改性好。USPIH-400W-Pan-11.8%和USPIH-400W-Pap-2.9%的PR值分别为84.7%和86.1%,在中性和碱性条件下具有较高的NSI值;在酸性条件下,NSI值会显著下降。USPIH-400W-Pap-2.9%的等电点向酸性方向偏移,位于pH 3?4。超声预处理-蛋白酶水解联合改性对SPI热诱导凝胶性能的改善效果与单纯酶解改性效果相当。超声预处理-蛋白酶水解联合改性可以显著改善SPI的乳化能力,效果比单纯酶解改性好。USPIH-400W-Pap-1.3%制备的乳状液的平均粒径(d43=7.2μm)为所有USPIH乳状液中最小。
     SPIH-Pap制备的乳状液在均质过程中发生了桥联絮凝,在21天的静置贮存期间内出现了乳析。而USPIH-400W-Pap乳化能力和乳析稳定性明显改善。与SPI和SPIH-Pap-0.6%相比,USPIH-400W-Pap-1.3%能够在较低的浓度下(3.0% w/v)制备出粒径细小且稳定的乳状液(d43 = 1.8μm)。SPIH-Pap乳状液和USPIH-400W-Pap乳状液的|ζ|-电势都大于25 mV,具有良好的静电排斥效果。超声预处理(400W)后,α-7S和A-11S的酶解敏感性提高,大豆蛋白中不同亚基的酶解变的迅速而协调,使USPIH-400W-Pap在一定DH范围内既具有良好的溶解性,又具有较高的H0,说明生成了许多具有界面活性的可溶性蛋白或肽,因此具有良好的乳化性能。
The use of soy proteins has been of increased interest, primarily attributed to its steady supply, high nutritional and low cost. However, the poor functional properties have limited the application of soy protein isolates (SPI) in food industry. Effects of two physical pre-treatment, twin-screw extrusion and power ultrasound, on the enzymatic hydrolysis and hydrolysates functional properties of SPI have been investigated. Various physicochemical properties, surface properties and secondary structural of modified SPI have also been studied in relation to DH and functional properties. The aim of this paper was to explore new methods for functionality modification of soy proteins, and by study the relationship between“processing method structure characteristics ? good functionalities”, the underpinning mechanisms of improved functionalities for modified SPI can be clarified, which can give academic and practical guide for the processing of soy protein product.
     Effects of extrusion pre-treatment with different temperature (120℃, 140℃,160℃) on the enzymatic hydrolysis and functional properties of soy protein isolates (SPI) have been investigated. Results showed that comparing with SPI, the accessibility of the different extrusion pre-treated SPI (ESPI-120?160℃) was improved marked, with the ESPI-140℃showed the best performance. Combined modification of extrusion-enzymatic hydrolysis can markedly improve the protein recovery (PR) of SPI, which showed a much better effect than that of enzymatic hydrolysis alone. ESPIH-140℃-Pan (ESPI hydrolysate-140℃-Pan) had a PR of ca. 90% in the range of DH=8.0–10.0%, and exhibited a stable nitrogen solubility index (NSI) value among pH=3?11. The highest PR of ESPIH-140℃-Pap was 80.6%, but the NSI will decrease markedly around iso-electric point (pH=4.5). Combined modification of extrusion-enzymatic hydrolysis can not improve the heat-induced gelation properties of SPI. In this paper, the emulsifier concentration selected to make emulsions was set to be 1.6% (w/v), and the emulsion formed by SPI at this concentration had a large mean diameter (d43≈30.9μm). Extrusion-Pan hydrolysis can marked improved the emulsifying capability of SPI, with much better effect than that of enzymatic hydrolysis alone. Emulsions formed by ESPIH-140℃-Pan with DH=8.0?9.1% showed a smallest d43 (2.0μm) among all the sample emulsions. However, Extrusion-Pap hydrolysis can not improve the emulsifying capability of SPI.
     Extrusion pre-treatment caused a marked improvement in the accessibility of SPI to Pan-hydrolysis, resulting in changes in degree of hydrolysis (DH), protein solubility (PS), surface hydrophobicity (H0) and molecular weight distributions (MWD) for ESPIH-140℃-Pan. It was observed that emulsion systems formed by control SPI or SPIH-Pan were unstable over a quiescent storage period of 21days, due to bridging flocculation and creaming. However, ESPIH-140℃-Pan-9.1% was capable of producing a very fine emulsion (d43 = 2.01μm) which remained stable over a long term quiescent storage. As compared with control SPI and SPIH-Pan-1.0%, ESPIH-140℃-Pan-9.1% appeared to be less surface active, but had a much higher Fads (67.6%) and a significantly lowerГsat (2.8 mg/m2). The |ζ|-potential of all SPIH-Pan and ESPIH-140℃-Pan were larger than 25 mV, which showed substantial electrostatic repulsion. It was suggested that significantly increased protein solubility and molecular flexibility could be the main reasons for the greatly improved emulsifying capability of ESPIH-140℃-Pan-9.1%.
     Effects of ultrasound pre-treatment with different power (200W, 400W, 600W) on the enzymatic hydrolysis and functional properties of SPI have been investigated. Results showed that comparing with SPI, the accessibility of the different ultrasound pre-treated SPI (USPI-200?600W) was improved marked, with the USPI-400W showed the best performance. Combined modification of ultrasound-enzymatic hydrolysis can markedly improve the PR of SPI, which showed a better effect than that of enzymatic hydrolysis alone. USPIH-400W-Pan-11.8% and USPIH-400W-Pap-2.9% had PR of 84.7% and 86.1% respectively. Their NSI increased slightly in basic conditions but decreased markedly at acidic conditions. The iso-electric point of USPIH-400W-Pap-2.9% showed a shift to pH 3?4. Combined modification of Ultrasound-enzymatic hydrolysis exhibited a equivalent improvement on heat-induced gelation properties of SPI to that of enzymatic hydrolysis alone. Ultrasound-enzymatic hydrolysis can marked improved the emulsifying capability of SPI, with much better effect than that of enzymatic hydrolysis alone. Emulsions formed by USPIH-400W-Pap-1.3% showed a smallest d43 (7.2μm) among all the USPIH emulsions.
     Emulsion formed by SPIH-Pap became unstable over a quiescent storage of 21 days, due to bridging flocculation and creaming. In contrast, USPIH-400W-Pap exhibited much better emulsifying capability and creaming stability under similar conditions. And as compared with control SPI and SPIH-Pap-0.6%, USPIH-400W-Pap-1.3% was capable of forming stable emulsions with small droplet sizes (d43 = 1.8μm) and at a much lower protein concentration (3.0% w/v). The |ζ|-potential of all SPI-Pap and USPIH-400W-Pap were larger than 25 mV, which showed substantial electrostatic repulsion. After ultrasound pre-treatment, the accessibility ofα-7S and A-11S was improved, and the enzymatic hydrolysis of USPI-400W became fast and harmonious. In some DH range, not only USPIH-400W-Pap had good protein solubility, but also had high H0, which indicated that a lot of surface active proteins or peptides were created. As a result, emulsifying capability was improved.
引文
[1]扈文盛.常用食品数据手册[M].北京:中国食品出版社,1985.
    [2] Sathe S. K. Dry bean protein functionality [J]. Critical Reviews in Biotechnology, 2002, 22: 175–223
    [3]赵新淮,郑秋鹛,李友华.国外大豆蛋白的生产、特性和应用概况.东北农业大学学报,2003,34(3):344–351
    [4]李俊.国家粮食信息中心:2008年中国大豆产量1650万吨.中国禽业导刊,2008,14:48
    [5]左进化,董海洲,侯汉学.大豆蛋白生产与应用现状.粮食与油脂,2007,5:12–15.
    [6]姚穆,来侃,孙润军等.大豆和大豆蛋白质组成与结构的研究.棉纺织技术,2002,30(9):545–547
    [7] Peng I. C., Quass D. W., Dayton W. R. The physicochemical and functional properties of soybean 11S globulin-a review [J]. Cereal Chemistry, 1984, 61: 480–489
    [8]周兵,周瑞宝.大豆球蛋白的性质.西部粮油科技,1998,23(4):39–43
    [9] Kinsella J. E. Functional properties of soy proteins. Journal of the American Oil Chemists’Society, 1979, 56: 242–258.
    [10] Riblett, A. L., Herald, T. J., Schmidt, K. A., Tilley, K. A. Characterization of beta-conglycinin and glycinin soy protein fractions from four selected soybean genotypes. Journal of Agricultural and Food Chemistry, 2001, 49(10): 4983–4989.
    [11]赵威祺.大豆蛋白的构造和功能特性[J].粮食与食品工业,2003,2:24–28.
    [12]金长江. 7S和11S球蛋白分离方法研究[J].农机化研究,2005,7(4):97–98
    [13] Thanh V. H., Shibasaki K. Heterogeneity of betaconglycinin [J]. Biochimica et Biophysica Acta, 1976, 439: 326–338
    [14]黄友如,裘爱泳,华欲飞.大豆蛋白结构与功能的关系.中国油脂,2004,29(11):24–28
    [15] Wolf W. J. Physical and chemical properties of soy bean proteins. Journal of the American Oil Chemists’Society, 1997, 54(2): 112–117
    [16]石彦国.大豆制品工艺学[M].中国轻工业出版社,1993.
    [17]魏贞伟,王俊国,王世让等.食用脱脂大豆蛋白粉的生产及质量控制.粮油加工,2009,9:71–74.
    [18]崔东善.大豆脱脂蛋白粉、大豆组织蛋白脱腥的研究[J].中国油脂,2004,10:5–10
    [19]肯尼斯.大豆浓缩蛋白的生产及其在食品中的应用.大豆通报,1999,1:22–23.
    [20] Chajuss. Soy protein concentrate: processing, properties and prospect [J]. Inform, 2001, 12: 1176–1180
    [21]孙鹏.大豆改性技术研究.食品研究与开发,2005,26(5):115–117
    [22]王来元,曹树民,连安国等.酸法生产大豆浓缩蛋白的研究.中国油脂,1999,24(3):50–53
    [23]华欲飞,顾玉兴,黄友如.醇法大豆浓缩蛋白的加工、性能与应用.中国油脂,2004,29(1):65–67
    [24]王哲,宋宏哲,田娟娟等.大豆浓缩蛋白的酶水解改性的研究.中国油脂,2006,31(7):69–72
    [25]王春梅,刘学文,曹万新等.微波对醇法大豆浓缩蛋白乳化性的影响.中国油脂,2006,31(12):65–67
    [26] Surówka K., ?mudziński D. Functional properties modification of extruded soy protein using neutrase. Czech Journal of Food Sciences, 2004, 22: 163–174
    [27]田琨,管娟,邵正中等.大豆分离蛋白结构与性能[J].化学进展,2008,9:565–573
    [28]王钰,程涛,宋恒祥.大豆分离蛋白的生产工艺.中国乳品工业,2002,30(5):110–112
    [29]雷淑芳,晁芳芳,张雪苍.大豆分离蛋白的生产工艺及其在食品工业中的应用.粮食加工,2004,4:53–56
    [30] Wagner J. R., Sorgentini D. A., A?ón M. C. Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. Journal of Agricultural and Food Chemistry, 2000, 48: 3159–3165.
    [31] Lee K. H., Ryu H. S., Rhee, K. C. Protein solubility characteristics of commercial soy protein products. Journal of the American Oil Chemists’Society, 2003, 80: 85–90
    [32] Kinsella J. E. Functional properties of proteins in foods: a survey [J]. Critical Review in Food Science and Nutrition, 1976, 7: 113–186
    [33]王璋,许时婴,江波等.食品化学[M].北京:中国轻工业出版社,2004
    [34] Yeshajahu D. Chapter 5 Proteins: General. In: Functional properties of food components (second Edition) [M]; Academic Press: New York, 1985; pp 126–185
    [35] Kinsella J. E. Relationship between structure and functional properties of food proteins. In: Food Proteins [M]; Fox P. F., Condon J. J. (Ed.). Applied Science Publishers: London, 1982; pp 51–103
    [36] Dickinson, E. An Introduction to Food Colloids [M]. Oxford: Oxford Science Publishers. 1992
    [37] Sorgentini D. A., Wagner J. R., A?ón M. C. Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions. Journal of Agricultural and Food Chemistry, 1995, 43: 2471–2479
    [38]王丽,张英华.大豆分离蛋白的凝胶性及其应用的研究进展.中国粮油学报,2010,25(4):96–99
    [39] Nakamura T., Utsumi S., Mori T. Network structure formation in thermally induced gelation of glycinin [J]. Journal of Agricultural and Food Chemistry, 1984, 32: 349–352
    [40] Puppo M. C., A?ón M. C. Structural properties of heat-induced soy protein gels as affected by ionic strength and pH [J]. Journal of Agricultural and Food Chemistry, 1998, 469: 3583–3589
    [41] Hermansson A. M. Soy protein gelation [J]. Oil Chemistry Society, 1986, 63: 658–666
    [42] Renkema J. M. S., Lakemond C. M. M., de Jongh H. H. J., et al. The effect of pH on heat denaturation and gel forming properties of soy proteins [J]. Journal of Biotechnology, 2000, 79: 223–230
    [43] Walstra P. Principles of emulsion formation. Chemical Engineering Science, 1993, 48: 333–349
    [44] Dickinson, E. Emulsions and droplet size control. In Controlled Particle, Droplet and Bubble Formation [M]; Wedlock, D. J. (Ed.); Butter-worth-Heinemann: Oxford, 1994; pp 191–216
    [45] McClements D. J. Protein-stabilized emulsions. Current Opinion in Colloid & Interface Science, 2004, 9: 305–313
    [46] McClements, D. J. Food emulsions: Principles, practice and techniques. CRC Press: Boca Raton, 2005
    [47] Damodaran S. Protein stabilization of emulsions and foams. Current Opinion in Colloid & Interface Science, 2004, 9, 305–313
    [48] Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 2009, 23, 1473–1482
    [49] Roesch R. R., Corredig M. Texture and microstructure of emulsions prepared with soy protein concentrate by high-pressure homogenization. Food Science and Technology, 2003, 36, 113–124
    [50] Tcholakova, S., Denkov, N. D., Ivanov, I. B., & Campbell, B.. Coalescence in beta-lactoglobulin-stabilized emulsions: effect of protein adsorption and drop size. Langmuir, 2002, 18(23), 8960–8971
    [51] Dickinson E. Interfacial particle in food emulsions and foams. In: Colloidal particles at liquid interfaces [M]; Binks B. P., Horozov T. S., (Ed.); Cambridge University Press: Cambridge, 2006; pp 298–327
    [52] Utsumi S., Matsumura Y., Mori T. Structure-function relationships of soy proteins. In: Food Proteins and their application [M]; Damodaran S., Paraf A., (Ed.); Marcel Dekker: New York, 1997; pp 257–291
    [53] Maruyama N., Satoh R., Wada Y., et al. Structure-physicochemical function relationships of soybeanβ-conglycinin constituent subunits [J]. Journal of Agricultural and Food Chemistry, 1999, 47: 5278–5284
    [54]岳莉.大豆蛋白的生产加工及其利用.甘肃科技,2005,21(5):167–168
    [55]郑红艳.大豆分离蛋白改性对其功能性质影响.粮食与油脂,2010,(1):6–8
    [56]李海萍,易菊珍.大豆分离蛋白改性的研究进展.高分子通报,2009,2:58–63
    [57]钟振声,文锡莲,陈然.物理改性对大豆分离蛋白功能性质的影响.中国油脂,2008,33(5):21–24
    [58] Hua Y. F., Ni P. D., Gu W. Y., et al. Mechanism of physical modification of insoluble soy protein concentrate. Journal of the American Oil Chemists’Society, 1996, 73(8): 1067–1070
    [59]华欲飞.大豆分离蛋白性能优化关键技术[J].中国油脂,2001,26(6):79–81
    [60]杨敏,田少君,周瑞宝等.大豆浓缩蛋白物理改性研究进展.粮油食品科技,2007,15(6):42–45
    [61]张春岭,潘思轶.化学改性对大豆分离蛋白表面疏水性的影响.中国粮油学报,2009,24(6):26–30
    [62] Mitchell J. R., Hill S. E. The use and control of chemical reactions to enhance the functionality of macromolecules in heat-produced foods [J]. Trends in Food Science and Technology, 1995, 6: 219–224
    [63]黄友如,华欲飞.大豆分离蛋白化学改性及其对功能性质的影响.粮油与食品,2003,(4):17–19
    [64] Skanderby M. Protein hydrolysates: their functionality and applications [J]. Food Technology European, 1994, 10: 141–148
    [65] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification. Trends Food Science and Technology, 1996, 7: 120–125
    [66]赵谋明,罗东辉,赵强忠等. Alcalase酶解7S富集组分及酶解产物的功能特性.华南理工大学学报(自然科学版),2010,38(4):45–49
    [67] Jung S., Roussel-Philippe C., Briggs J. L., et al. Limited hydrolysis of soy proteins with endo- and exo- proteases. Journal of the American Oil Chemists’Society, 2004, 81(10): 953–960
    [68] Lamsal B. P., Jung S., Johnson L. A. Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. Food Science and Technology, 2007, 40: 1215–1223
    [69] Babiker E. F. E., Khan M. A. S., Matsudomi N., et al. Polymerization of soy protein digests by microbial transglutaminase for improvement of the functional properties [J]. Food Research International, 1996, 29: 627–634
    [70] Nielsen P. M. Functionality of protein hydrolysates. In: Food Proteins and Their Applications; Damodaran S., Paraf A., (Ed.); Marcel Dekker: New York, 1997; pp 43–73
    [71] Adler-Nissen J. Enzymic Hydrolysis of Food Proteins. Applied Science Publishers: London, 1986.
    [72] Tan D. M. R., Atsuta N., Maruyama N., et al. Evaluation of the solubility and emulsifying property of soybean proglycinin and rapeseed procruciferin in relation to structure modified by protein engineering [J]. Journal of Agricultural and Food Chemistry, 2005, 53(22): 8736–8744
    [73]蔡一荣,李望丰,刘立侠等.大豆品质改良的基因工程育种概况.大豆科学,2006,25(1):62–66
    [74]刘粼.大豆分离蛋白酶法有限水解工艺过程及动力学分析.食品科学,2001,22(4):36–39
    [75] Sule L., Hajos G., Tomoskozi S. Functional properties of the enzymatically modified soya protein isolate. Acta Alimentaria, 1997, 26(3): 279–285
    [76] Qi M., Hettiarachchy N. S., Kalapathy U. Solubility and emulsifying properties of soy protein isolates modified by pancreatin. Journal of Food Science, 1997, 62, 1110–1115
    [77] Barca A. M. C., Ruiz-Salazar R. A., Jara-Marini M. E. Enzymatic hydrolysis and synthesis of soy protein to improve its amino acid composition and functional properties. Journal of Food Science, 2000, 65, 246–253
    [78]刘粼.酶法有限水解对大豆分离蛋白乳化性能的影响.中国粮油学报,2000,15(1):26–29
    [79] Surówka K., ?mudziński D., Fik M., et al. New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates. Innovative Food Science and Emerging Technologies, 2004, 5, 225–234
    [80] Jung S., Murphy P. A., Johnson L. Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. Journal of Food Science, 2005, 70, 180–187
    [81] Wu W. U., Hettiarachchy N. S., Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. Journal of the American Oil Chemists’Society, 1998, 75: 845–849
    [82]孙玉冰,石彦国,朱会芳.木瓜蛋白酶提高醇法大豆浓缩蛋白乳化性的研究.食品科学,2006,27(12):505–508
    [83] Tsumura K., Saito T., Kugimiya W., et al. Selective proteolysis of the glycinin andβ-conglycinin fractions in a soy protein isolate by pepsin and papain with controlled pH and temperature. Journal of Food Science, 2004, 69(5): 363–367
    [84] Zhong F., Yang X., Li Y., et al. Papain-induced gelation of soy glycinin. Journal of Food Science, 2006, 71(5): 232–237
    [85] Tsumura K., Saito T., Tsuge K., et al. Functional properties of soy protein hydrolysates obtained by selective proteolysis. Food Science and Technology, 2005, 38: 255–261
    [86]徐红华,刘欣.不同酶类改性对大豆分离蛋白功能性质的影响.食品科技,2007,3:35–38
    [87] Zhao X. H., Hou Y. Limited hydrolysis of soybean protein concentrate and isolate with two proteases and the impact on emulsifying activity index of hydrolysates. African Journal of Biotechnology, 2010,8(14): 3314–3319
    [88] Seo W. H., Lee H. G., Baek H. H. Evaluation of bitterness in enzymatic hydrolysates of soy protein isolate by taste dilution analysis. Journal of Food Science, 2008, 73(1): 41–46
    [89] Hamada J. S., Marshall W. E. Preparation and functional properties of enzymatically deamidated soy proteins. Journal of Food Science, 1989, 54(3): 598–601
    [90] Guo S. G., Zhao M. M., Wang J. S., et al. Proteolytic degradation and amino acid liberation during extensive hydrolysis of porcine blood hemoglobin by protease admixture. Journal of Food Engineering, 2007, 30: 640?659
    [91]柴华.小麦面筋蛋白挤压预处理酶解特性研究[D].华南理工大学硕士学位论文. 2008
    [92] Kong X. Z., Zhou H. M., Qian H. F. Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chemistry, 2007, 101: 615–620
    [93]吴建中,赵谋明,宁正祥等.木瓜蛋白酶水解大豆分离蛋白研究.大豆科学,2002,21(3):187–190
    [94] Lieske B., Konrad G. Physico-chemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration. International Dairy Journal, 1996, 6(1): 13–31
    [95]胡爱军,邓捷.大豆蛋白酶解技术比较[J].精细化工,2005,22(6):461–463
    [96] Marsman G. J. P., Gruppen H., Mul A. J., et al. In vitro accessibility of untreated, toasted and extruded soybean meals for proteases and carbohydrates. Journal of Agricultural and Food Chemistry, 1997, 45: 4088–4095
    [97]杨国龙.酶解-膜分离制备改性大豆蛋白的研究.华南理工大学博士学位论文[D]. 2005.
    [98]豆康宁,黄纪念,郑学玲.热处理对大豆蛋白酶解的影响.食品工业科技,2007,(3):76–78
    [99] Pe?as E., Préstamo G., Gomez R. High pressure and the enzymatic hydrolysis of soybean whey proteins. Food Chemistry, 2004, 85: 641–648
    [100] Chicón R., López-Fandi?o R., Quirós A., et al. Changes in chymotrypsin hydrolysis ofβ-lactoglobulin A induced by high hydrostatic pressure. Journal of Agricultural and Food Chemistry, 2006, 54: 2333–2341
    [101] Jia J. Q., Ma H. L., Zhao W. R., et al. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry, 2010, 119: 336–342
    [102] Gall, M. L.; Guéguen, J.; Séve, B.; Quillien, L. Effects of grinding and thermal treatments on hydrolysis susceptibility of pea proteins (pisum sativum L.). Journal of Agricultural and Food Chemistry, 2005, 53: 3057–3064
    [103]朱小乔,刘通讯.大豆分离蛋白(SPI)乳化稳定性的研究.粮油食品科技,2003,11(1):16–18
    [104]姚菊香,王卫国.酸预处理对碱性蛋白酶水解大豆粕蛋白的影响.饲料与畜牧,2006,(2):12–15
    [105]何昕.大豆蛋白酶解工艺条件的研究.科技通报,2000,16(4):278–282
    [106]胡春林,潘岳平.大豆蛋白酶解前处理方法的研究.食品与药品,2007,9(3):27–29
    [107]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[D].华南理工大学博士学位论文. 2005
    [108] Zeece M., Huppertz T., Kelly A. Effect of high-pressure treatment on in-vitro digestibility ofβ-lactoglobulin. Innovative Food Science and Emerging Technology, 2008, 9(1): 62–69 ?
    [1]李海萍,易菊珍.大豆分离蛋白改性的研究进展.高分子通报,2009,2:58–63
    [2]陈伟斌.大豆分离蛋白的功能性和改性研究进展.粮食加工,2006,(4):67–71
    [3]王洪武.大豆蛋白挤压组织化技术研究进展.粮油加工,2009,(11):46–49
    [4]康立宁.大豆蛋白高水分挤压组织化技术和机理研究[D].西北农林科技大学博士学位论文. 2005
    [5]沈宁,杨光,吴景等.双螺杆挤压对大豆蛋白质的影响.食品工业科技,2007,28(7):69–71
    [6] Marsman G. J. P., Gruppen H., Mul A. J., et al. In vitro accessibility of untreated, toasted and extruded soybean meals for proteases and carbohydrates. Journal of Agricultural and Food Chemistry, 1997, 45: 4088–4095
    [7]柴华.小麦面筋蛋白挤压预处理酶解特性研究[D].华南理工大学硕士学位论文. 2008
    [8]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[D].华南理工大学博士学位论文. 2005
    [9]徐红华,申得超.不同挤压参数对大豆粕蛋白质结构的影响.农业工程学报,2007,23(7):267–271
    [10] Ainsworth P., Fuller D., Plunkett A., et al. Influence of extrusion variables on the protein in vitro digestibility and protein solubility of extruded soy tarhana. Journal of the Science of Food and Agriculture, 1999, 79: 675–678
    [11] Adler-Nissen J. Enzymic Hydrolysis of Food Proteins. Applied Science Publishers: London, 1986
    [12] Lowry O. H. Rosebrough N. J., Farr A. L., et al. Protein measurement with the Folin phenol reagent [J]. The Journal of Biological Chemistry, 1951, 193: 265–275
    [13] Lamsal B. P., Jung S., Johnson L. A. Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. Food Science and Technology, 2007, 40: 1215–1223
    [14] Burgaud I., Dickinson E., Nelson P. V. An improved high pressure homogenizer for making fine emulsions on a small scale. International Journal of Food Science and Technology, 1990, 25: 39–46
    [15] Dickinson, E. An Introduction to Food Colloids [M]. Oxford: Oxford Science Publishers. 1992
    [16] Jung S., Mahfuz A. Structure, protein interaction and in vitro protease accessibility of extruded and pressurized full-fat soybean flakes. Journal of the American Oil Chemists’Society, 2009, 86: 475–483
    [17] Renkema J. M. S., Lakemond C. M. M., de Jongh H. H. J., et al. The effect of pH on heat denaturation and gel forming properties of soy proteins [J]. Journal of Biotechnology, 2000, 79: 223–230
    [18] Kinsella J. E. Functional properties of proteins in foods: a survey [J]. Critical Review in Food Science and Nutrition, 1976, 7: 113–186
    [19] Wagner J. R., Sorgentini D. A., A?ón M. C. Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. Journal of Agricultural and Food Chemistry, 2000, 48: 3159–3165
    [20] Jung S., Murphy P. A., Johnson L. Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. Journal of Food Science, 2005, 70, 180–187
    [21] Surówka K., ?mudziński D., Fik M., et al. New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates. Innovative Food Science and Emerging Technologies, 2004, 5, 225–234
    [22] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification. Trends Food Science and Technology, 1996, 7: 120–125
    [23] Surówka K., ?mudziński D. Functional properties modification of extruded soy protein using neutrase. Czech Journal of Food Sciences, 2004, 22: 163–174
    [24] Kinsella J. E. Relationship between structure and functional properties of food proteins. In: Food Proteins [M]; Fox P. F., Condon J. J. (Ed.). Applied Science Publishers: London, 1982; pp 51–103
    [25] Lee K. H., Ryu H. S., Rhee, K. C. Protein solubility characteristics of commercial soy protein products. Journal of the American Oil Chemists’Society, 2003, 80: 85–90
    [26] Yeshajahu D. Chapter 5 Proteins: General. In: Functional properties of food components (second Edition) [M]; Academic Press: New York, 1985; pp 126–185
    [27] Nakamura T., Utsumi S., Mori T. Network structure formation in thermally induced gelation of glycinin [J]. Journal of Agricultural and Food Chemistry, 1984, 32: 349–352
    [28]王丽,张英华.大豆分离蛋白的凝胶性及其应用的研究进展.中国粮油学报,2010,25(4):96–99
    [29] Hermansson A. M. Soy protein gelation [J]. Oil Chemistry Society, 1986, 63: 658–666
    [30] Puppo M. C., A?ón M. C. Structural properties of heat-induced soy protein gels as affected by ionic strength and pH [J]. Journal of Agricultural and Food Chemistry, 1998, 469: 3583–3589
    [31]康立宁,刘香英,田志刚等.大豆蛋白挤压组织化过程中生物大分子之间的相互作用.大豆科技,2009,55:54–58
    [32] Chen L., Chen J. S., Ren J. Y., et al. Modification of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocolloids, 2010, available online in advance of print
    [33] Dickinson, E. Emulsions and droplet size control. In Controlled Particle, Droplet and Bubble Formation [M]; Wedlock, D. J. (Ed.); Butter-worth-Heinemann: Oxford, 1994; pp 191–216
    [34] McClements D. J. Protein-stabilized emulsions. Current Opinion in Colloid & Interface Science, 2004, 9: 305–313
    [1] Walstra P., Smulders, I. Making emulsions and foams: An overview. In food colloids: proeins, lipids and polysaccharides; Dickinson, E., Bergenstahl, B., (Eds.); The Royal Society of Chemistry: Cambridge, 1997; pp 367–381
    [2] Baret J. C., Kleinschmidt F., Harrak A., et al. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir, 2009, 25(11): 6088–6093
    [3] Dickinson, E. Emulsions and droplet size control. In Controlled Particle, Droplet and Bubble Formation [M]; Wedlock, D. J. (Ed.); Butter-worth-Heinemann: Oxford, 1994; pp 191–216
    [4] Walstra, P. Principles of emulsion formation. Chemical Engineering Science, 1993, 48: 333–349
    [5] Walstra, P. Principles of emulsion formation. Chemical Engineering Science, 1993, 48: 333–349
    [6] Molina E., Papadopoulou A., Ledward D. A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids,2001, 15: 263–269.
    [7] Tcholakova, S., Denkov, N. D., Ivanov, I. B., & Campbell, B.. Coalescence in beta-lactoglobulin-stabilized emulsions: effect of protein adsorption and drop size. Langmuir, 2002, 18(23), 8960–8971
    [8] Dickinson E. Interfacial particle in food emulsions and foams. In: Colloidal particles at liquid interfaces [M]; Binks B. P., Horozov T. S., (Ed.); Cambridge University Press: Cambridge, 2006; pp 298–327
    [9] Damodaran S. Protein stabilization of emulsions and foams. Current Opinion in Colloid & Interface Science, 2004, 9, 305–313
    [10] Utsumi S., Matsumura Y., Mori T. Structure-function relationships of soy proteins. In: Food Proteins and their application [M]; Damodaran S., Paraf A., (Ed.); Marcel Dekker: New York, 1997; pp 257–291
    [11] Ven C. V. D., Gruppen H., Bont D. B. A., et al.. Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. Journal of Agricultural and Food Chemistry, 2001, 49, 5005–5012
    [12] Maruyama N., Satoh R., Wada Y., et al. Structure-physicochemical function relationships of soybeanβ-conglycinin constituent subunits. Journal of Agricultural and Food Chemistry, 1999, 47: 5278–5284
    [13]周春霞.大豆蛋白在空气–水和油–水界面上的流变学研究[D].华南理工大学博士论文
    [14] Akhtar M., Dickinson E., Mazoyer J., et al. Emulsion stabilizing properties of depolymerised pectin. Food Hydrocolloids, 2002, 16, 249–256
    [15] Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680–685
    [16] Kato A., Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica et Biophysica Acta, 1980, 624, 13–20.
    [17] Rickert D. A., Johnson L. A., Murphy P. A. Functional properties of improved glycinin andβ-conglycinin fractions. Journal of Food Science, 2004, 69: 303–311
    [18] Jourdain L., Leser M. E., Schmitt C., et al. Stability of emulsions containing sodium caseinate and dextran sulfate: relationship to complexation in solution. Food Hydrocolloids, 2008, 22: 647–659
    [19] Dickinson, E. An Introduction to Food Colloids [M]. Oxford: Oxford Science Publishers. 1992
    [20] Ye A., Hemar Y., Singh H. Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch. Colloids and Surface, B: Biointerfaces, 2004, 38: 1–9
    [21] Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 2009, 23, 1473–1482
    [22] Surh J., Decker E. A., McClements J. Properties and stability of oil-in-water emulsions stabilized by fish gelatine. Food Hydrocolloids, 2006, 20: 596?606
    [23] Onsaard E., Vittayanont M., Srigam S., et al. Comparison of properties of oil-in-water emulsions stabilized by coconut cream proteins with those stabilized by whey protein isolate. Food Research International, 39: 78–86
    [24] McClements D. J. Protein-stabilized emulsions. Current Opinion in Colloid & Interface Science, 2004, 9: 305–313
    [25] Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed system. Food Hydrocolloids, 2003, 17: 25?39
    [26] Dalgleish D. G. Food emulsions. In: Emulsions and emulsions stability; Sjoblom J. (Ed.). Marcel Dekker: New York, 1996: pp 287?325
    [27] Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed system. Food Hydrocolloids, 2003, 17: 25?39
    [28] Kuipers B. J. H., van Koningsveld G. A., Alting A. C., et al. Enzymatic hydrolysis as ameans of expanding the cold gelation conditions of soy proteins. Journal of Agricultural and Food Chemistry, 2005, 53: 1031?1038
    [29] Lamsal B. P., Jung S., Johnson L. A. Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. Food Science and Technology, 2007, 40: 1215–1223
    [30] Achouri A., Zhang W. Effect of succinylation on the physicochemical properties of soy protein hydrolysate. Food Research International, 2001, 34, 507–514
    [31] Tsumura, K. Improvement of physicochemical properties of soybean proteins by enzymatic hydrolysis. Food Science and Technology Research, 2009, 15: 381–388.
    [32] Qi M., Hettiarachchy N. S., Kalapathy U. Solubility and emulsifying properties of soy protein isolates modified by pancreatin. Journal of Food Science,1997, 62: 1110–1115
    [33] Marsman G. J. P., Gruppen H., Mul A. J., et al. In vitro accessibility of untreated, toasted and extruded soybean meals for proteases and carbohydrates. Journal of Agricultural and Food Chemistry, 1997, 45: 4088–4095
    [34] Simpson R. J. Purifying proteins for proteomics: a laboratory manual. Cold Spring Harbor Press: New York, 2004; pp 201–202
    [35] Luo D. H., Zhao Q. Z., Zhao M. M., et al. Effects of limited proteolysis and high-pressure homogenization on structural and functional characteristics of glycinin. Food Chemistry, 2010, 122, 25–30.
    [36] Dickinson E. Proteins at interfaces and in emulsions. J. Chem. Soc. Faraday Trans. 1998, 94: 1657–1669
    [37] Haskard C. A., Li-Chan E. C. Y. Hydrophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANSˉ) fluorescent probes. J. Agric. Food Chem. 1998, 46: 2671–2677
    [38]康立宁,刘香英,田志刚等.大豆蛋白挤压组织化过程中生物大分子之间的相互作用.大豆科技,2009,55:54–58
    [39] Surówka K., ?mudziński D., Fik M., et al. New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates. Innovative Food Science and Emerging Technologies, 2004, 5, 225–234
    [40] Jung S., Murphy P. A., Johnson L. Physicochemical and Functional Properties of Soy Protein Substrates Modified by Low Levels of Protease Hydrolysis. Journal of Food Science, 2005, 70: 180–187.
    [41] Celus I., Brijs K., Delcour, J. A. Enzymatic hydrolysis of brewers’spent grain proteins and technofunctional properties of the resulting hydrolysates. Journal of Agricultural and Food chemistry, 2007, 55: 8703–8710
    [42] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification. Trends Food Science and Technology, 1996, 7: 120–125
    [43] Radha C., Prakash, V. Structural and functional properties of heat-processed soybean flour: effect of proteolytic modification. Food Science and Technology International, 2009, 15, 453–463.
    [44] McClements, D. J. Food emulsions: Principles, practice and techniques. CRC Press: Boca Raton, 2005
    [45]赵南明,周海梦.生物物理学[M].北京:中国高等教育出版社,2000.
    [41]陶慰孙,李惟,姜涌明.蛋白质分子基础[M].北京:高等教育出版社,1995:260
    [46] Lee S. H., Lefevre T., Subirade M., et al. Changes and roles of secondary structures of whey protein for the formatin of protein membrane at soy oil/water inter face under high-pressure homogenization. Journal of Agricultural and Food Chemistry, 2007, 55: 10924?10931
    [47]沈星灿,梁宏,何锡文等.圆二色谱分析蛋白质构象的方法及研究进展.分析化学,2004,32(3):388–394
    [48] Zirwer D., Gast K., Welfle H., et al. Secondary structure of globulins from plant seeds: A re-evaluation from circular dichroism measurement. International Journal of Biological Molecules, 1985: 105?108
    [49] Kinsella J. E. Relationship between structure and functional properties of food proteins. In: Food Proteins [M]; Fox P. F., Condon J. J. (Ed.). Applied Science Publishers: London, 1982; pp 51–103
    [50] Utsumi S., Matsumura Y., Mori T. Structure-function relationships of soy proteins. In: Food Proteins and their application [M]; Damodaran S., Paraf A., (Ed.); Marcel Dekker: New York, 1997; pp 257–291
    [51] Ortiz S. E., Carrera S. C. Structural characterization and surface activity of spread and adsorbed soy globulin films at equilibrium. Colloids and surface B: Biointerfaces, 2003, 32: 57–67
    [52] Caessens P. W., De Jongh H. H., Norde, W., et al. The adsorption induced secondary structure ofβ-casein and of distinct parts of its sequence in relation to foam and emulsion properties. Biochim Biophysics Acta, 1999, 140: 73–83
    [53] Bosker W. T. E., Agoston K., Stuart, M. A. C., et al. Synthesis and interfacial behavior of polystyrene-polysaccharide diblock copolymers. Macromolecules,2003, 36: 1982–1987
    [54] Damodaran S. Protein stabilization of emulsions and foams. Current Opinion in Colloid & Interface Science, 2004, 9, 305–313
    [55] Dickinson E. Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids and Surfaces B: Biointerfaces, 1999, 15: 161–176
    [1] Mason T. J. Power ultrasound in food processing ? the way forward. In: Ultrasound in Food Processing [M]; Povey M. J. W., Mason T. J., (Ed.). Thomson Science: London, UK, 1998; pp 22?25
    [2]杨红兵,丁为民,陈坤杰等.超声技术在农业的应用现状与前景.农机化研究,2004,(1):202?204
    [3] Yamani A. Flaw impulse response estimation in ultrasonic non-destructive evaluation using bi-cepstra. NDT and E International, 2007, 40(1): 57?61
    [4]冯若,李化茂.声化及其应用[M].合肥:安徽科学技术出版社,1992.
    [5] McClements J. Advances in the application of ultrasound in food analysis and processing. Trends in Food Science and Technology, 1995, 6: 293?299
    [6] Entezari M. H., Hagh-Nazary S., Khodaparast M. H. The direct effect of ultrasound on the extraction of date syrup and its micro-organisms. Ultrasonics Sonochemistry, 11(6): 379?384
    [7] Ma Y. Q., Ye X. Q., Hao Y. B., et al. Ultrasound-assisted extraction of hesperidin from Penggan peel. Ultrasonics Sonochemistry, 15(3): 227?232
    [8] Mason T. J. A general introduction to sonochemistry. In: The uses of ultrasound in Chemistry; Mason T. J. (Ed.). The Royal Society of Chemistry: Cambridge, 1990; pp 1?8
    [9] Suslick K. S. Ultrasound: its chemiscal, physical, and biological effects. In: Ultrasound; Suslick K. S., (Ed.). VCH Press: New York, 1988; pp 47?69
    [10] Mason T. J., Paniwnyk L., Lorimer J. P. The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 1996, 3: 253?260
    [11] Jia, J. Q., Ma, H. L., Zhao, W. R., et al. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry, 2010, 119: 336–342
    [12]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究.华南理工大学博士学位论文[M],2005
    [13]唐传核,姜燕,杨晓泉等.超声处理对商用大豆分离蛋白凝胶性能的影响.中国粮油学报,2005,20(5):72–77
    [14] Jambrak A. R., Lelas V., Mason T. J., et al. Physical properties of ultrasound treated soy proteins. Journal of Food Engineer, 2009, 93: 386–393
    [15] Güzey D., Gülseren ?, Bruce B., et al. Interfacial properties and structural conformation of thermosonicated bovine serum albumin. Food Hydrocolloids, 2006, 20: 669–677
    [16] Jambrak A. R., Mason T. J., Lelas V., et al. Ultrasonic effect on physicochemical and functional properties ofα-lactalbumin. Food Science and Technology, 2010, 43: 254?262
    [17] Wagner J. R., Sorgentini D. A., A?ón M. C. Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes ofcommercial and laboratory-prepared soy protein isolates. Journal of Agricultural and Food Chemistry, 2000, 48: 3159–3165
    [18] Jambrak, A. R.; Mason, T. M.; Lelas, V.; Herceg, Z.; Herceg, I. L. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineer, 2008, 86: 281–287
    [19] Karki B., Lamsal B. P., Grewell D., et al. Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. Journal of the American Oil Chemists’Society, 2009, 86: 1021–1028
    [20] Gülseren ?., Güzey D., Bruce B. D., et al. Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry, 2007, 14: 173–183
    [21]刘国琴,李琳,李冰等.超声和超高压处理对大豆分离蛋白特性影响的研究.河南工业大学学报(自然科学版),2005,26(3):1–4
    [22]杨晓泉,陈中.低频超声对豆粕浸出率及大豆分离蛋白功能性质的影响.华南理工大学学报,2003,(11):30–31
    [23] Tang C. H., Wang X. Y., Yang X. Q., et al. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. Journal of Food Engineering, 2009, 92: 432–437
    [24]田其英,华欲飞.物理方法对大豆分离蛋白功能性质影响.粮食与油脂,2006,(3):10–12
    [25]韦小英,任红,杨洋等.超声对大豆蛋白膜性能和微观结构的影响.食品科技,2006,(10):55–58
    [26] Wu W. U., Hettiarachchy N. S., Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. Journal of the American Oil Chemists’Society, 1998, 75: 845–849
    [27]吴建中,赵谋明,宁正祥等.木瓜蛋白酶水解大豆分离蛋白研究.大豆科学,2002,21(3):187–190
    [28]殷军.高浓度大豆蛋白体系乳化性能及其结构的关系[D].江南大学硕士学位论文,2005
    [29] Nakamura T., Utsumi S., Mori T. Network structure formation in thermally induced gelation of glycinin [J]. Journal of Agricultural and Food Chemistry, 1984, 32: 349–352
    [30] Puppo M. C., A?ón M. C. Structural properties of heat-induced soy protein gels as affected by ionic strength and pH [J]. Journal of Agricultural and Food Chemistry, 1998, 469: 3583–3589
    [31]华欲飞,Cui S. W., Wang Q.大豆蛋白-亲水胶体混合凝胶的强度和相行为.无锡轻工大学学报,2004,23(2):21–26
    [32]李玥,钟芳,麻建国.大豆蛋白组分7S和11S的凝胶特性.食品生物技术学报,2005,24(6):19–23
    [33]任红,杨洋.超声波强化大豆分离蛋白膜性能的研究.现代食品科技,2006,(2):101?103
    [34] Hermansson A. M. Soy protein gelation. Journal of the American Oil Chemists’Oil Society, 1986, 63: 658?666
    [35] Foegeding E. A., Bowland E. L., Hardin C. C. Factors that determine the fracture properties and microstructure of globular protein gels. Food Hydrocolloids, 1995, 9: 273?279
    [1]顾振宇,江美都,付道才等.大豆分离蛋白乳化性的研究.中国粮油学报,2000,15(3):32?35
    [2]张根生,岳晓霞,李继光等.大豆分离蛋白乳化性影响因素的研究.食品科学,2006,27(7):48?51
    [3] Molina E., Papadopoulou, A., Ledward D. A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids, 2001, 15: 263–269
    [4] Roesch R. R., Corredig M. Texture and microstructure of emulsions prepared with soy protein concentrate by high-pressure homogenization. Food Science and Technology, 2003, 36: 113–124
    [5] Staswick P. E., Hermodson M. A., Nielsen, N. C. Identification of the cysteines which link the acidic and basic components of the glycinin subunits. Journal of Biological Chemistry, 1984, 259: 13431–13435
    [6] Radha C., Prakash V. Structural and functional properties of heat-processed soybean flour: effect of proteolytic modification. Food Science and Technology International, 2009, 15: 453–463
    [7]张涛,江波,王璋.鹰嘴豆分离蛋白的乳化性及结构关系.食品与发酵工业,2004,30(12):10–14
    [8] Damodaran S. Protein stabilization of emulsions and foams. Current Opinion in Colloid & Interface Science, 2004, 9, 305–313
    [9] Ye, A.; Hemar, Y.; Singh, H. Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch. Colloids Surface, B: Biointerfaces. 2004, 38, 1–9
    [10] Skanderby M. Protein hydrolysates: their functionality and applications [J]. Food Technology European, 1994, 10: 141–148
    [11] McClements, D. J. Food emulsions: Principles, practice and techniques. CRC Press: Boca Raton, 2005
    [12] Surh J., Decker E. A., McClements J. Properties and stability of oil-in-water emulsions stabilized by fish gelatine. Food Hydrocolloids, 2006, 20: 596?606
    [13] Dalgleish D. G. Food emulsions. In: Emulsions and emulsions stability; Sjoblom J. (Ed.). Marcel Dekker: New York, 1996: pp 287?325
    [14] Karki B., Lamsal B. P., Grewell D., et al. Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. Journal of the American Oil Chemists’Society, 2009, 86: 1021–1028
    [15] Gülseren ?., Güzey D., Bruce B. D., et al. Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry, 2007, 14: 173–183
    [16] Jambrak A. R., Mason T. M., Lelas V., et al. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 2008, 86: 281–287
    [17] Jung S., Murphy P. A., Johnson L. Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. Journal of Food Science, 2005, 70: 180–187
    [18] Ye A., Hemar Y., Singh H. Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch. Colloids and Surface, B: Biointerfaces, 2004, 38: 1–9
    [19] Dexter A., Middelberg A. P. J. Peptides as functional surfactants. Industrial & Engineering Chemistry Research, 2008, 47: 6391–6398
    [20] Palazolo G. G., Sorgentini D. A., Wagner J. R. Coalescence and flocculation in o/w emulsions of native and denatured whey soy proteins in comparison with soy protein isolates. Food Hydrocolloids, 2005, 19: 595–604
    [21] Tcholakova S., Denkov N. D., Ivanov I. B., et al. Coalescence stability of emulsions containing globular milk protein. Advance in Colloid and Interface Science, 2006, 123?126: 259?293
    [22] Jambrak A. R., Lelas V., Mason T. J., et al. Physical properties of ultrasound treated soy proteins. Journal of Food Engineer, 2009, 93: 386–393
    [23] Jambrak A. R., Mason T. J., Lelas V., et al. Ultrasonic effect on physicochemical and functional properties ofα-lactalbumin. Food Science and Technology, 2010, 43: 254?262
    [24] Pe?as E., Préstamo G., Baeza M. L., et al. Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. International Dairy Journal, 2006, 116: 831–839
    [25] Jia, J. Q., Ma, H. L., Zhao, W. R., et al. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry, 2010, 119: 336–342
    [26] Dickinson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 2009, 23, 1473–1482
    [27] Ortiz S. E. M., Wagner J. R. Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties. Food Research International, 2002, 35: 511–518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700