多孔Ni_3Al的制备工艺与催化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微管反应器作为结构紧凑且高效,使用酒精或碳氢化合物作为原料的氢气生产系统引起了研究人员的高度重视,比起传统反应器来,这种反应器有高的表面积一体积比,高的热导率和高的质量迁移。金属问化合物Ni_3Al是一种性能良好的高温结构材料,比不锈钢优异的耐热性能,有着十分广阔的应用前景。本论文,开展了Ni_3Al多孔材料研究。通过粉末冶金反应烧结方法,改变造孔剂的含量,调整烧结温度和时间,优化了Ni_3Al多孔材料的制备工艺。在Ni、Al元素粉末中添加NaCl造孔剂,改变造孔剂的含量,研究了其对材料密度和孔隙度的影响,并对Ni-Al反应机理进行了研究,推导出烧结样品密度随NaCl添加量变化的预测公式。通过XRD、SEM、HRTEM等现代材料分析技术分析了材料的相组成和显微结构。获得以下主要结论:
     1.Ni_3Al的多孔结构主要是依赖于在高温时,作为造孔剂的NaCl在真空状态下从材料中挥发后而形成。通过NaCl颗粒的大小可控制材料中孔隙的大小,所得孔隙形状与NaCl颗粒的形状一致。Ni_3Al多孔材料的孔隙度随NaCl添加量的增加而提高,即材料密度随NaCl添加量的提高而降低,基本呈线性关系。当NaCl的添加量为50%(wt.%)时,得到孔隙分布均匀的多孔Ni_3Al材料。
     2.从理论上,造孔剂的含量对多孔Ni_3Al孔隙度的影响,可由下述方程描述1/(1-θ)=1/(ρ_0)·[K·ρ_(m1)+(e~(ε1)-1)ρ_(01)/ρ(01)ρ_(m1)e~(ε1) +ρ_(m2)+(e~(ε2)-1)ρ_(02)/ρ(02)ρ_(m2)e~(ε2)·x/(1-x)]。在实验中,且在特定的工艺条件下,当采用工艺条件为压制压力为600MPa,以10℃/min的升温速率,先在600℃保温3h,然后在801℃保温1h,1000℃保温1h,可获得多孔Ni_3Al材料,采用最小二乘法得到多孔Ni_3Al的孔隙度θ与NaCl的添加量x之间的关系表达式为
     3.采用甲醇作为碳源,多孔Ni_3Al作为催化剂载体,可催化分解制备出碳纳米管。当反应温度为600℃时,能使催化剂具有较高的活性同时催化裂解甲醇的速率也较快,产生的碳纳米管的数量较多。随催化时间的增加,纳米碳管的产量增加,当催化时间达到24h,碳纳米管的产量达到最大值。经高分辨透射电镜(HRTEM)分析表明生成的碳纳米管为多壁碳纳米管,管壁约为35层。
     4.多孔Ni_3Al材料中生长碳纳米管的可能的生长机理为:在甲醇催化分解的过程中,纳米的Ni颗粒的形成是由于表面的选择氧化作用,在Ni_3Al表面生成纳米的Ni颗粒,或由于反应不完全而残留下的纳米的Ni颗粒。甲醇在600℃时能分解出游离的碳原子,游离的碳原子以纳米的Ni颗粒为基体,生长出碳纳米管,碳纳米管在多孔Ni_3Al材料孔隙内部生长,在多孔Ni_3Al的孔隙内部生成大量的碳纳米管。
In recent years, microchanneled reactors have received much attention as compact and efficient hydrogen production systems utilizing alcohol or hydrocarbon, due to their high surface to volume ratio and high rates of heat and mass transfer compared with conventional reactors.Ni_3Al intermetallic compound is one kind of new materials not only with high heat-resistance but also with good formability and mechanical strength. In this respect, intermetallic compound Ni_3Al, an excellent high-temperature structural material, has considerable promise. In this paper, the investigation focuses on the preparation of porous materials. Reaction Sintering of Powder Metallurgy method is adopted. The kind and the amount of pore forming agent are changed, as well as the sintering temperature and time. Adding different pore forming agents into the Ni, Al element powder, made an optimized choice. The effects of the amount of pore forming agent and the sintering temperature in a definite period on the density and porosity of the materials are studied. A formula that is used to calculate the density of the sintered sample is set up. The phases and microstructure of intermetallic compound porous material are investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). The results are listed as follows:
     1. The form of structure of porous Ni_3Al mainly depend on the volatilization of NaCl from porous Ni_3Al materials at high temperature.NaCl is adopted as pore-from material to prepare porous Ni_3Al materials, the size of pore could be controlled by size of NaCl particle directly, and the shape of pore correspondence with the shape of NaCl particle. Addition amount of NaCl has an important effect on this material porosity and porous structure; this specimen porosity rise as addition amount of NaCl increases but density decline and the relationship of them nearly a line.
     2.In theory, as preparing porosity Ni_3Al by addition pore-forming material, 1/(1-θ)=1/(ρ_0)·[K·ρ_(m1)+(e~(ε1)-1)ρ_(01)/ρ(01)ρ_(m1)e~(ε1) +ρ_(m2)+(e~(ε2)-1)ρ_(02)/ρ(02)ρ_(m2)e~(ε2)·x/(1-x)]isobtained. In experiment, while the rate of temperature rise is 10℃/min,under the sintering process is 600℃for 3h, 801℃for 1h, 1000℃for lh and the pressing pressure is 600MPa,at this process, the relationship between porosity of Ni_3Al and amount of NaClis1/(1-θ)=1.2608 + 2.9235 x/(1-x) .
     3. Carbon nanotube is prepared using porous Ni_3Al as catalyst. The result indicates: while reaction temperature is 600℃, the catalytic both have the high activity and more fast catalyst speed than at others temperature. Meanwhile, the production of carbon nanotube is also large. As the catalytic time increase, the production of carbon nanotube increase. While the catalytic time reaches 24 h, the production of carbon nanotube is the most and not increased. HRTEM analyse indicate that carbon nanotube is muti-wall carbon nanotube and the number of wall is about 35.
     4. The mechanical of muti-wall carbon nanotube growing in the porous Ni_3Al is that: while the catalytic decomposition of methanol happens, due to the election of oxidation on the surface of Ni_3Al, nano Ni particle is formed on the surface Ni_3Al. Carbon atom which from the decomposition of methanol become carbon nanotube. As a result, carbon nanotubes are growing in inward of hole of porous Ni_3Al material; meanwhile, much of carbon nanotubes are growing in the hole of porous Ni_3Al.
引文
[1]张永刚,韩雅芳,等.金属间化合物结构材料.北京:国防工业出版社,2001.245 -247
    
    [2]张永刚,韩雅芳,等.金属间化合物结构材料.北京:国防工业出版社,200 1.142-147
    
    [3]虞党奇.二元合金状态图集.上海:上海科技出版社,1987.13-18
    
    [4]郭建亭,等.两种Ni_3Al合金的应用研究.钢铁研究学报(增 刊),1997,(9):183-186
    
    [5] Sen S, Dhindawb K, Stefanescud W. Evaluation of interface stability and melt-processing techniques of Ni_3Al/ SiC particulate composites. Mater. Sci. Eng.1994,A174(3): 207-216
    
    [6] Sen S, Stefanescu D W. Melt - processed Ni_3Al matrix composites reinforcedwith TiC particles. Metall. Mater. Trans, 1994, 25A(26): 2525-2533
    
    [7] Longming wang , et al. TiB_2 particle strength NiAlFe base compound materialmicrostructure.Mater. Sci. Eng., 1994, A174(3): 209-212
    
    [8] Liming xie, et al.particle strength NiAlFe base compound material of XDsysthesis and casting pyknosis inversitigation. Mater. Sci.Eng., 1994, A174(3):215-219
    
    [9] Stoloff N S, Alman D E. Powder processing of intermetallic matrix composites.1991.51-62
    
    [10]Misiolekw, German RM. Reactive sintering and reactive hot isostatic compactionof aluminide matrix composite . Mater. Sci. Eng., 1991 ,A144(1): 1-10
    
    [11] Hideo Nakae, Hidetetoshi Fuj Ⅱ, et al. Infiltrattion and combustion synthesis ofNi-Al intermetallic composites. Mater. Sci. Eng., 1997, A233(1): 21-28
    
    [12] Alman D E, Dogan C P. Fabrication of Al_2O_3-reinforced Ni_3Al composites by anovel insitu route . Mater. Sci & Eng 1995, A192/ 193(7): 624-632
    
    [13] J Ean-pascal Lebrat, Arvid Varma. Combustion Synthesis of Advanced Materials.J. Mater. Res., 1994, 9(5): 1184-1192
    
    [14]Leebrat J P, Varma A, Miller A E.Combustion synthesis of Ni_3Al andNi_3Al-composites. Metall. Trans., 1992, 23(1): 69-76
    
    [15]Ttwari R, Herman H, Sampath S, et al.Plasma spray consolidation of hightemperature composites. Mater. Sci & Eng, 1991, A144(2): 127-131
    
    [16] William C W, Gregory C S. Fabrication of near-net-shape Al_2O_3-fiber-reinforced Ni_3Al composites by combustion synthesis. J. Mater. Res, 1995,10(7): 1736-1745
    [17]Herman H, Sampa S. Thermal spray processing of nickel aluminizes . Pro. Inter. Sym on Nickel and Alum ides, Processing, properties and applications, Ohio: 1996,112(4):313-319
    [18]Larwrynpwicz D E, Lavernia E J. Spray atomization and deposition of fiber reinforced intermetallic matrix composites. Scripta Metallurgical et Materialia, 1994, 31(9): 1277-1281
    [19] Jim Forest, Richard Price, David Hanlon. Manufaturing clad products by spray forming. Inter. Powder. Metall, 1997, 33(3): 21-29
    [20] Lee Shaw,Claus Spiegelhauer. Spray forming large diameter special steel billets, 1997, 33(3): 31-36
    [21] Roger Dherty, Cheng Cai, Lesilie K, et al. Modeling and microstructure development in spray forming. 1997, 33(3):50-60
    [22]Tiegs T N, Alexander K B, et al. Ceramic composite with a ductile Ni_3Al binder phase. Mater. Sci & Eng, 1996, A209(3): 243-247
    [23]Schneibel J H, Alexander K B. Processing and mechanical properties of laminar Al_2O_3-Ni_3Al composites.2003,16(1):255-260
    [24]Zhangl M, Liu J. Properties of TiC - Ni_3Al and structural optimization of TiC - Ni_3Al functionally materials. Mat. Sci & Eng, 1995, 203(3): 272-277
    [25] Hu W, Underlichand W, Gottstein G. Interfacial chemical stability during diffusion bonding of Al_2O_3-fiber with Ni_3Al-and NiAl-matrices . Acta. Mater., 1996,4(6): 2883-2896
    [26]Bernnan P C, Kao W H, Yang YM. Interfacial reactions between TiB_2 and SiCfiber-reinforced Ni_3Al composites. Scri.Metall et Mater.2003,26(9):192
    [27] Rsnfsll M Grtman, Animesh Bose. Tensile properties of nickel aluminide alloys and composites fabricated by hot isostatic compaction. Int. J. Pow. Metall.2003, 31(4): 167-174
    [28]Bahei Ya, EL Din, Dvorak GJ, Wuj F. Mechanics of hot isostatic pressing in intermetallic matrix composites. J. Mater. Sci., 1995, 30(1): 1223
    [29] Yoon E H, Hongj K, Hwang S K. Mechanical alloying of dispersion-hardened Ni_3Al-B from elemental powder mixtures.J.Mater.Eng.Perfor,1997, 6(1):106-112
    [30]Westbrook J H. Ti_3Al and Its Alloys. Intermetallic Compounds, Principles and Pract. Trans AIME J Met, 1957,6(8):895
    [31]Aoki K, Izumi O. Improvement in room temperature ductility of the Ll_2 type
    ??intermetallics by boron addition .J Japan Inst Metals,1979,43(1):38
    
    [32]Y.A. Bahei,M.A. Zikry."Impact-Induced Deformation Fields in 2D and 3D. Woven Composites," Composites Science and Technology ,2003,63(9):923
    
    [33]许庆彦,熊守美.多孔金属材料的制备工艺综述.铸造,2005,8(9):841
    
    [34]王录才,于利民,王芳.熔体发泡法制备泡沫金属的发展与展望.热加工工 艺,2004,5(12):59
    
    [35]陈雯,等.泡沫金属材料的特性、用途及制备方法.热加工工艺,1999,3(1):35
    
    [36]John Banhart . Manufacture ,characterisation and applicationof cellular metals and metal foams. Mater Sci Proc ,2001 ,46(5):582
    
    [37]杨素媛.过滤净化用多孔金属材料的开发应用与进展.中国稀土学 报,2003,21(2):204
    
    [38]Chen F ,He D P. Metal foams and porous metal st ructures.In Int Conf CeditedBanhart J , Ashby M F , Fleck N A) .Bremen ,Germany ,1995,12(1):14
    
    [39]Drury W J ,Rickles S A ,Sanders T H ,et al. In :Light alloysfor AerospaceApplications , Chin E H , Kim N J Proc.Conf., Las Vegas ,USA ,28 February22March,1989(3):311
    
    [40]Rawal S Planning B R ,Misra M S. Proc Conf ICCM/ 9 ,Zaragoza ,Spain ,12216July,1993 ,1(2):203
    
    [41]Hartmann M ,Singer R F. Metallschaume. In Proc. Symp .Metallschaume (editedBanhart J ). Bremen , Germany ,1997(3),39
    
    [42]Hartmann M , Reindel K, Singer R F. Porous and cellularmaterials for st ructuralapplications. In : MRS Proc ,1998 ,521(2):211
    
    [43]方玉诚,等.粉末冶金多孔材料新型制备与应用技术的探讨.稀有金 属,2005,29(5):791
    
    [44]刘胜林,孙冬柏.碳纳米管制备及其储氢研究现状化学推进剂与高分子材 料,2006,4(1):31-34
    
    [45] Ebbesen T W ,Ajayan P M. Large-scale synthesis of carbonnanotubes.Nature, 1992 ,358(2):220
    
    [46] Guo T. Catalytic growth of single-walled nanotubes by laservaporization. ChemPhys Lett,1995 ,243(1):49
    
    [47]Ivanov V ,Nagy J B ,Lambin Ph ,et al. The study of carbonnanotubules producedby catalytic method . Chem PhysLett ,1994 ,223(3):329
    
    [48]高利珍,李贺,于作龙,等.碳纳米管的生产及其应用.科技导报,2001,6(1):19
    
    [49]K. Kishida, M. Demura, S. Kobayashi, Y. Xu, T. Hirano, Defect. Diffus.Forum??2004,37(2):233-234
    
    [50]Dong Hyun Chun, Ya Xub, Toshiyuki Hirano,et al.Spontaneous catalyticactivation of Ni_3Al thin foilsin methanol decomposition.Journal of Catalysis,2006,243(1):99-107
    
    [51]Westbrook J H. Grain boundary segregation and the grain size dependence ofstrength of nickel-sulfur alloys.Trans AIME J Met,1957,6(8):895-898
    
    [52]Liu C T, Kumar K S. Ordered intermetallic alloys. PART Ⅰ: nickel and ionaluminides. JOM, 1993, 5(1):38-44
    
    [53]Yangj M,Kao W H,Liu C T. Development of nickel aluminide matrixcomposites.Materials Science and Engineering,1989,A107(1):81-91
    
    [54]M T Janicke, H. Kestenbaum, U. Hagendorf, et al. Newly appliedtwo-dimensional solid-state NMR correlation techniques for the characterizationof organically modified silicates. Journal of Catalysis,2000,191(2):282-286
    
    [55]X Yu, S T Tu, Z Wang, et al. Development of a microchannel reactor concerningsteam reforming of methanol .Chemical Engineering Journal, 2006,116(2):123-132
    
    [56] J Y Won, H K Jun, M K Jeon, et al. Performance of microchannel reactor combined withcombustor for methanol steam reforming. Catalysis Today,2006,111(2): 158-163
    
    [57] Y Kawamura, N Ogura, T Yamamoto, et al. A miniaturized methanol reformerwith Si-based microreactor for a small PEMFC .Chemical Engineering Science,2006, 61(11):1092-1101
    
    [58]A S Bodke,S S Bharadwaj, L D Schmidt,et al. Carbon formation on anddeactivation of nickel-based/zirconia anodes in solid oxide fuel cells running onmethane. Catalysis Today,1998,46(2):137-145
    
    [59]I Aartun, H J Venvik, A Holmen. Temperature profiles and residence time effectsduring catalytic partial oxidation and oxidative steam reforming of propane inmetallic microchannel reactors. Catalysis Today,2005,110(1):98-107
    
    [60]E C Wanat, B Suman, L D Schmidt. Partial oxidation of alcohols to producehydrogen and chemicals in millisecond-contact time reactors Journal of Catalysis,2005,235(1):18-27
    
    [61]Devis C,Skka V K. Nickel and ion aluminizes-an view on properties, processingand application.Intermetallics, 1996,134(4):357-375
    
    [62]张永刚,韩雅芳,陈国良.金属间化合物结构材料.北京:国防工业出 版,2001.552-630
    
    [63]Yun-sung Kim, Kwan-yong Lee, Hai-soo Chun. Creep characteristics of porousNi/Ni_3Al anodes for molten carbonate fuel cells. Journal of Power Sources,2001,99(1):26-33
    
    [64]Dong Hyun Chun, Ya Xu, Toshiyuki Hirano, Spontaneous catalytic activation ofNi_3Al thin foils in methanol decomposition. Journal of Catalysis, 2006, 243(2):99-107
    
    [65]梁英教,车荫昌.无机物理化学数据手册.东北大学出版社,1993.520-521
    
    [66]黄培云.粉末冶金原理[M].北京:冶金工业出版社,2004.184-186
    
    [67]S. Iijima. Helical microtubules of graphitic carbon. Nature , 1991, 354(1): 56
    
    [68]S. S. Wong, E. Joselevich, A. T. Woolley, C.L. Cheung, CM. Lieber.Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips forChemical Force.Nature,1998,39(4):394
    
    [69]Yacaman MJ ,Yoshicla MM,Randon L. Catalytic growth of carbon microtubuleswith fullerene structure . Appl Phy Lett ,1993 ,62(3):202-204
    
    [70]Wei Gaoa,*, Zhengwei Lia, Zheng Wua, Sean Lib, Yedong Hec. Oxidationbehavior of Ni_3Al and FeAl intermetallics under low oxygen partial pressures.Intermetallics ,2002,10(3): 263-270
    
    [71]Dong Hyun Chun, Ya Xub, Toshiyuki Hirano,et al. Spontaneous catalyticactivation of Ni_3Al thin foilsin methanol decomposition.Journal of Catalysis,2006,243(1):99-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700