渗碳圆柱齿轮淬火过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热处理是齿轮热加工的最后一道工序,而渗碳淬火是热处理的重要环节。渗碳淬火后使齿轮轮齿表面和内部形成残余应力,残余应力对齿轮的抗疲劳强度、加工精度和抗腐蚀能力有显著的影响。但在实际工作中,传统的方法对于测量残余应力的分布有很多限制和不足,而且也很难精确地跟踪试件表面和内部的应力场变化。因此采用有限元模拟的方法,研究渗碳齿轮在淬火过程中的应力场变化,以及最终残余应力的分布具有重要的工程实际意义。
     本文基于热传学基本原理,热弹塑性理论,采用有限元软件ANSYS,对渗碳圆柱齿轮淬火冷却过程的温度场和应力场进行了数值模拟。根据模拟需要,将参数连续变化的渗碳层简化为阶梯变化,利用APDL语言编制了创建圆柱直齿轮模型以及渗碳层模型,各种材料参数的输入的命令流文件,可方便模型和参数的修改,实现模拟渗碳齿轮淬火过程的参数化分析。
     通过模拟计算,研究了渗碳圆柱齿轮在整个淬火过程中温度场和应力场的变化规律,以及最终齿轮轮齿残余应力的分布情况。并对残余应力场的分布特点进行了分析,为齿轮渗碳工艺的确定提供理论参考。
     将上述分析得到的残余应力场作为初始应力,研究了残余应力场对齿轮工作性能的影响,从数值计算的角度验证了渗碳齿轮在淬火后形成的残余压应力对齿轮的保护作用,并研究了不同渗碳层厚度对残余应力分布的影响,提出了合理的模型。
Heat treatment is the last procedure of the gear’s hot-procession, whereas carburizing and quenching is the important step of the heat treatment. After carburizing and quenching, residual stress is formed on gear’s tooth surface. The residual stress has an obvious influence on gear’s fatigue strength, processing precision and the ability of resisting to be eroded. But in reality, there are many restrictions and deficiency in the traditional methods for measuring the residual stress distribution, it also hardly track the surface and inner stress accurately. Therefore, it is very useful to of study the stress field and final residual stress distribution of gear in carburizing and quenching procession by the finite element simulation.
     Based on the principle of heat transfer, and the principle of thermal elastic-plastic, it uses the finite element software ANSYS to research and simulate the carburizing and quenching cooling process of gear. According to the simulation needs, the continuous change parameters of carburizing layer is simplified to step change, and it uses the APDL language to simulate all the process, which includes the creation of model of cylindrical gear and carburized layer, the input of all material parameters, mesh of model, and the solution of the temperature field and stress field. It can modify the size of gear and the thickness of carburizing layer by adjusting the parameters of the command flow, which can realize the parametric analysis for quenching process of carburizing gear.
     Through the simulation and calculation, this paper researches the changing of the temperature and stress field in the whole quenching process of carburizing cylindrical gears, and it also gets the final distribution of residual stress on gear tooth surface. In addition, this paper analyzes the distribution feature of residual stress field, which provides a theoretical reference for determining the gear carburizing technology.
     Taking the above analysis of residual stress as the initial stress, it researches the residual stress field on the performance of the gear, it examines residual stress on the protection for the gear from the numerical point of view, and it studies the effect of different carburizing layers’thickness to the residual stress distribution, and proposes the reasonable model.
引文
1陈国民.对我国齿轮渗碳淬火技术的评述.金属热处理, 2008,33(1):25-33
    2陈国民.如何提高我国汽车齿轮的热处理质量.现代零部件, 2006,4(7):68-69
    3刘庄,吴肇基等.热处理过程的数值模拟.北京:科学出版杜, 1996:5-26
    4毕启玲.浅谈大型工件热处理过程中的内裂.科技资讯, 2010,8(18):98-99
    5张悦.淬火过程数值模拟中应力和相变相互作用的研究. [清华大学机械工程系硕士论文]. 1994:30-35
    6潘建生,胡民国,田东顾剑锋.淬火过程计算机模拟研究的若干进展.金属热处理, 1998,41(12):30-31
    7潘健生,胡明娟.计算机模拟与热处理智能化.金属热处理, 1998,41(7):21-23
    8方博武.金属冷热加工的残余应力.北京:高等教育出版社, 1991:3-4
    9 [日]米谷茂.残余应力的产生和对策.朱荆璞,邵会孟译.北京:机械工业出版社, 1983:129-140
    10 Inoue Katsumi, Lyu Sung-Ki, Deng Gang. Estimation of Residual Stress due to Shot Peening in Carburized Gears and its Effect on the Stress Intensity Factor. Transactions of the Japan Society of Mechanical Engineers, 1994,18(9):3504-3509
    11雷声.齿轮热处理变形的控制.机械工程师, 2008,40(5):74-76
    12柳晓鹏,雷建波.齿轮渗碳淬火变形原因及控制措施.四川兵工学报, 2009,30(5): 58-60
    13马宝丽.齿轮热处理变形控制对策.机械工程师, 2007,41(12):130-131
    14许春青,刘岩.渗碳齿轮热处理工艺的改进.数控机床市场, 2009,28(12):73-74
    15史天振,吴思良.齿轮热处理变形及预防.金属加工:热加工, 2010,61(17):12-13
    16金荣植.汽车齿轮热处理车间环保、安全防火、防爆的设计与安装.汽车工艺与材料, 2009,24(7):34-38
    17 Gliner, R.E. Analysis of critical rates of quenching of carburizing steels. Metal Science and Heat Treatment, 2009,51(7-8):360-362
    18 Grepp, David .Extruder gear pump systems for straining applications in the mill room. Rubber World, 2009,240(4):25-27
    19 Lee, Geun-An. Finite element analysis for precision forging process of united transfer driven parking gear. Materials Science Forum, 2007,544(6):327-330
    20 Jurci, P. Investigation of distortion behaviour of machine components due to carburizing and quenching. HTM-Haerterei-Technische Mitteilungen, 2008,63(1): 27-32
    21 Boniardi, Marco. Influence of carburizing and nitriding on failure of gears-A case study. Engineering Failure Analysis, 2006,13(3):321-339
    22 L.Dimitrov, D.Michalopoulos. Investigation of Contact Fatigue of High Strength Steel Gears Subjected to Surface Treatment. Journal of Materials Engineering and Performance, 2009,7(10):100-145
    23 Rentsch, R.. Material flow analysis for hot-forming of 20MnCr5 gear wheel blanks. Materialwissenschaft and Werkstofftechnik, 2009,40(5):374-379
    24龙华,杨金堂.基于ANSYS的重轨淬火过程的温度场研究.机械设计与制造, 2009, 47(4): 132-134
    25韩斌慧,阎献国.基于ANSYS的丝锥淬火冷却过程计算机模拟.制造技术与机床, 2008,58(6):121-124
    26 R.Muka, T.mastumoto. Modeling of numerical simulation and experimental verification for carburizing-nitriding quenching process. Transactions of Nonferrous Metals Society of China, 2006,4(16):566-571
    27 Arimoto, K.. Explanation of the origin of distortion and residual stress in carburized ring using computer simulation. Journal of ASTM International, 2008,5(10):105-120
    28 Song, DongLi. Numerical simulation on quenching process of large die block of 718 steel. Material Science and Technology, 2005,13(4):394-397
    29 Zhang, Junge. Numerical simulation of dynamic quenching process based on fluid-solid coupled calculation.Transactions of Materials and Heat Treatment, 2008,29(3):176-180
    30 Ming, Pingjian. Numerical simulation of flow and heat transfer during quenching process. Journal of Chemical Industry and Engineering, 2007,58(5):1132-1137
    31 Lin ZoneChing. Three Dimensional Rolling Process Analysis with a Coupled Finite Element Model. Journal of the Chinese Society of Mechanical Engineers, 1996,23(8): 309-321
    32 Liu, Juan. Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear. Journal of Materials Processing Technology, 2009, 209(18): 5871-5880
    33刘飞燕,樊新民.渗碳件渗层碳浓度与硬度分布的模拟.热处理, 2007,22(5):54-55
    34王平.浅层渗碳工艺控制.热处理技术与装备, 2008,29(5):68-70
    35王广生.金属热处理缺陷分析及案例.北京:机械工业出版社, 1997:84-90
    36胡明娟.渗碳层淬火组织的预测.热加工工艺, 1997,27(1):3-6
    37袁发荣,伍尚礼.残余应力测试与计算.长沙:湖南大学出版社, 1987:35-71
    38陈会丽,钟毅,王华昆,张家涛,起华荣.残余应力测试方法的研究进展.云南冶金, 2005,34(3):52-54
    39虞付进,华云松,张克华,丁金福.轧辊表面残余应力测试方法的对比试验研究.表面技术, 2008,37(6):44-46
    40于友林.探析齿轮传动受力方法.装备制造, 2010,4(7):90-91
    41俞昌铭.热传导及数值分析.北京:清华大学出版社, 1981:9-15
    42 L.Meekisho, X.Chen. Computer Modeling: an Important Tool in Materials Processing. The Proceedings of 1st International Conference on Thermal Process Modeling and Computer Simulation. Shanghai, 2000,5(1):26-32
    43王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社, 1997: 421-442
    44李艳丽. 20CrMnTi钢渗碳淬火试样残余应力实验研究及数值模拟. [燕山大学硕士论文]. 2002: 33-40
    45王剑.渗碳淬火及喷丸强化试件表面残余应力场的数值模拟. [燕山大学硕士论文]. 2002: 22-26
    46 Liu, Ligang. Stress field simulation of carburized specimens with different carbon content during quenching process. Materials Letters, 2007,61(4-5):1251-1255
    47徐斌业,黄炎等.弹塑性力学及其应用.北京:机械工业出版社, 1984:131-149
    48谢怡权,何福宝.弹性和塑性力学中的有限单元法.北京:机械工业出版社, 1981: 198-220
    49冯再新,裴国良,贾青云.直齿轮“渗碳-温挤”渗碳层分布与性能研究.金属加工:热加工, 2008(11):53-54
    50 S.Sen, B.Aksakal, A.Ozel. Transient and Residual Thermal Stresses in Quenched Cylindrical Bodies. International Journal of Mechanical Science, 2000,34(5):2014-2029
    51 Jelaska, Damir. Gear tooth root fatigue assessments by estimating the real stress cycle. 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2007,7(3): 887-894
    52王荣.汽车主轴齿轮断裂失效分析.理化检验:物理分册, 2007,43(5):257-259
    53谭莹,曹标,陈明,刘建斌.齿轮断裂原因分析.理化检验:物理分册, 2005,41(8): 421-422
    54 Franco, Leandro A.L. Fatigue fracture of a nose landing gear in a military transport aircraft. Engineering Failure Analysis, 2006,13(3):474-422
    55 Podrug, S. Influence of different load models on gear crack path shapes and fatigue lives. Fatigue and Fracture of Engineering Materials and Structures, 2008,31(5): 327-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700