高能球磨法制备气缸套表面强化层的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在了解气缸套表面强化的众多方法的基础上,通过球磨机制备微纳米粉的途径探索出一种新型制备气缸套表面强化层的方法---高能球磨法,通过摩擦磨损试验表明这种方法能能够大大提高铸铁气缸套的耐磨性能。
     文章采用球磨法制备出蛇纹石和SiC颗粒的微纳米球磨材料,通过球磨碰撞法将微纳米材料挤渗在气缸套内表面,来达到表面强化的目的。首先依据Brizmer等建立的弹塑性接触理论,确定试验的基本参数范围;随后利用正交试验的方法,以球磨材料、球磨类型和球磨时间为正交因子制备出12组气缸套。为了验证气缸套的耐磨性能,通过摩擦磨损试验研究气缸套在不同润滑条件下的性能,对正交因子进行优化,找出最佳工艺。最后通过扫描电镜能谱仪从理论上阐述试验硬挤渗、软通道挤渗和耐磨机理。
     试验结果表明:在试验参数范围内,球磨材料为蛇纹石、球磨类型为湿磨、球磨时间为10h时,制备的气缸套强化层具有最佳减磨效果。在压强为40MPa、富油、高速条件下,摩擦副的最终温度为65℃,摩擦系数为0.07,磨损量为6.8mg。将结果与现有缸套材料的摩擦磨损试验进行对比分析,得出在富油条件下,其摩擦系数降低35%,磨损量降低至原来的1/3;而在贫油条件下,其摩擦系数降低15%,磨损量降低至原来的1/2;并测得经强化后的气缸套的表面显微硬度提高了约48%。
This paper explores a new method—high-energy ball milling, to strengthen the surface of the cylinder, which can greatly improve the wear resistance and service life of cast iron cylinder liner by preparing micro and nano powder by ball mill after learning many other surface enhancing methods.
     In this study, the micro and nano powder of serpentine and SiC particles are prepared by the ball-milling, and the micro and nano material is impregnated on the inner-surface of the cylinder liner to harden the surface. Firstly, the basic parameters are determined according to the elastic-plastic contact theory proposed by Brizmer. Next, 12 cylinder liners of different materials, different ball-milling types and different milling time are prepared for the orthogonal factor by orthogonal test. In order to test the wear resistance of the cylinder, the performance of the cylinder under different lubricating conditions is analyzed by the friction and wear test, and the optimal solution is found out by optimizing the orthogonal factors. Finally, the mechanisms of hard impregnation and impregnation through soft channel are described theoretically by using scanning electron microscopy.
     The results of the test show that within the parameters'scope, the optimal wear-reducing result of the strengthened liner layer is achieved when the material is the serpentine, the milling type is wet, and the milling time is 10h. When the pressure is 40Mpa, under well-lubricated and high-speed condition, the final temperature of the friction pair is 65℃, the friction coefficient is 0.07 and the wear loss is 6.8mg. Compared with the original material, the result can be drawn that the friction coefficient could be reduced by 35%, and the wear loss could be reduced to 1/3 of the original under oil-rich condition; while, the friction coefficient could be reduced by 15%, and the wear loss could be reduced to 1/2 of the original under poor-lubricated condition. The microhardness of the liner surface is significantly increased approximately by 48% by strengthening.
引文
[1]李斌.船舶柴油机.大连:大连海事大学出版社,2002:42-44.
    [2]李梅广等.表面技术在内燃机气缸套中的新发展.农业装备与车辆工程2005(3):40-44.
    [3]曾志龙.大型船舶柴油机气缸套再制造中涂层设计与制备工艺研究.期刊论文2009.
    [4]师昌绪等.21世纪表面工程的发展趋势.中国表面工程.2001(1):2-8.
    [5]徐滨士.再制造工程与自动化表面工程技术.金属热处理.2008(1):9-14.
    [6]XuBinshi, ZhangZhenxue. Surface engineering and remanufacturing technology international conference on advanced manufacturing technology'99, Xi'an. New York Press,1999:1129-1132.
    [7]Patnaik P C. Coatings for high temperature corrosion in aero and industrial gas turbines [N].Surface Modification Technologies Ⅱ_MMMS.1999:11.
    [8]The U.S. Department of energy office of industrial technologies. remanufacturing vision statement,1996.
    [9]刘文莲.合金铸铁缸套微观组织耐磨性研究及磨损机理分析:(硕士学位论文).大连:大连理工大学,2005.
    [10]Martin F. Jensen, Jorgen Bottiger,et. al. Simulation of wear characteristics of engine cylinders, Wear,2002:1044-1056.
    [11]李梅魁.内燃机缸套的松孔镀铬.中国表面工程,1993(3):29-31.
    [12]赵士钦.汽缸套点状松孔镀铬工艺研究[J].内燃机配件,2000(5):7-8.
    [13]李梅广.表面技术在气缸套上的应用现状与发展趋势.山东省表面工程协会第四届会员代表大会暨表面处理新技术交流会论文集.2004年11月.
    [14]李鸿年等.电镀工艺手册.上海:上海科技出版社,1989(4):227-228.
    [15]李梅广.表面技术在内燃机气缸套中的新进展AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING.2005 (3):41-42.
    [16]赵士雄.钢质薄壁镀铬缸套的发展概况及生产技术.内燃机,1999(4):6-8.
    [17]舒继兴.兴企须先兴德——锦山机械厂抓紧德育纪事.国防科技工业,2003(7).
    [18]http://www. vast. com. cn/cn/index. asp
    [19]丁毅.微弧氧化技术替代电镀硬铬应用研究[D].长安大学,2006:3-8.
    [20]李家柱,临安.取代重污染六价铬电镀的技术与应用[J].电镀与装饰,2004(04)2-5.
    [21]张庆昕.船用柴油发动机汽缸套表面处理的研究和开发.内燃机配件,2005(6):2-4.
    [22]占剑.内燃机缸套—活塞环激光刻蚀工艺及摩擦磨损特性研究:(博士学位论文).北京:中国科学院力学研究所,2010.
    [23]夏元良.激光热处理技术用于提高大型缸套的使用寿命.第七届全国基础光学、光物理学术报告会论文摘要专辑:465-466.
    [24]左养秀.东风4型内燃机车柴油机气缸套激光热处理.中国表面工程,1995(2):16-19.
    [25]Xiaodong Wu. Effects of plasma-sprayed NiCrAl-ZrO intermediate on the combination ability of coatings. Surface and Coatings Technology,2001:21-237.
    [26]史佩京、徐滨士、刘世参.表面工程技术在发动机零部件修复与强化中的应用.第十一次全国焊接会议论文集:206-209.
    [27]郝巧玲.气缸套等离子多元共渗“等耐磨”处理可行性研究.材料热处理技术,2008:68-70.
    [28]李梅广.表面技术在内燃机气缸套中的新进展AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING.2005(3):42-43.
    [29]高荣发.热喷涂技术.北京:化学工业出版社.1991:6-8.
    [30]等离子喷涂技术及应用[J].昆明冶金高等专科学校学报,2005(05):1-2.
    [31]曾志龙.大型船舶柴油机气缸套再制造种图层设计与制备工艺研究:(硕士学位论文).武汉:武汉理工大学,2009.
    [32]尤明福,邢世凯.等离子喷涂陶瓷图层在内燃机上的应用研究.中国陶瓷,2004(4):13-14.
    [33]刘明,王海军,韩志海等.内控等离子喷涂Ni45-15%Mo涂层与38CrMoAl渗氮层耐磨性研究.中国表面工程,2007(2):47-50.
    [34]Sartwell S, Bretz P E. HVOF Thermal spray coatings replace hard chrome. Advanced Materials Processes.1999(8):25.
    [35]李秀山,吴华杰,张宝欢.活塞环与气缸套摩擦副采用喷涂陶瓷材料研究.天津大学学报,2001(4):503-507.
    [36]余宪海.气缸套活塞环挤渗碳化硅工艺及耐磨机理探讨.内燃机学报.1985(3):278-281.
    [37]余宪海.灰口铸铁挤渗碳化硅工艺及其在柴油机气缸套上的应用.武汉:第五届全国摩擦学学术会议,1992:652-654.
    [38]严立,余宪海.内燃机磨损及可靠性技术[M].北京:人民交通出版社,1992(6):138-147.
    [39]Yang dongmei. Kogiso N. Murotsu Y. Global optimal design based on the experimental design method[C]. Proceedings of the First China-Japan-Korea Joint Symposium on Optimization Structural and Mechanical Systems.1999:526-523.
    [40]闫龙海.基于正交试验方法的薄壁压杆截面优化分析:(硕士学位论文).哈尔滨:哈尔滨工业大学,2009.
    [41]丁厚平.气缸套材料的发展趋势.工艺与材料,1990(5):50-53.
    [42]雷日旦.气缸套理想的生铁材料.内燃机配件,1994(4):17-19.
    [43]周国梁.钒钛中磷铸铁新材质气缸套.拖拉机与农用运输车,1983(3):41-44.
    [44]曾志龙.大型船舶柴油机气缸套再制造种图层设计与制备工艺研究:(硕士学位论文).武汉:武汉理工大学,2009.
    [45]阎平,高棠莉,李九章等.国外气缸套制造技术.内燃机配件,1997(6):12-14.
    [46]纪高全,刘景陶.扫描电镜分析合金碳化物对气缸套耐磨性的影响.铸造技术,1983(4):25-30.
    [47]李学军,王丽娟,鲁安怀等.天然蛇纹石火星机理初探[J].岩石矿物学杂志,2003(4):386-390.
    [48]江少英.蛇纹石矿物学及性能测试[M].北京:地址出版社,1987.
    [49]杨军,高宏,翟玉春.用改性纳米SiC粉体强化灰铸铁性能的研究.现代铸铁,2009(3):28-30.
    [50]Chang W R, Etsion I, Bogy D B. An Elastic-plastic model for the contact of rough surface[J]. ASME, Journal and Ttibology,1987(109):257-263.
    [51]Brizmer V, Zait Y, Kligerman Y, et al. The effect of contact conditions and material properties on the elasticity terminus of a spherical contact [J]. International Journal of Solids and Structures,2006(43):5736-5749.
    [52]Brizmer V, Zait Y, Kligerman Y, et al. The effect of contact conditions and material properties on elastic-plastic spherical contact [J]. Journal of Mechanics of Materials and Structure,2006(5):856-879.
    [53]董慧娟,王林,张广玉等.磁头窝点与舌尖弹塑性接触有限元分析.哈尔滨理工大学学报,2010(2):125-126.
    [54]韦斌,张顺先,蔡春喜.气缸套的种类及磨损情况[J].内燃机配件,2001(04):2-4.
    [55]T E Stanton. The friction of pistions and pistion rings. The Engineer.1925.70P.
    [56]徐久军,严立,王鹏等.船舶柴油机缸套活塞环微观滑动接触模型研究[J].润滑与密封,1999(05):1-4.
    [57]黄国富,匡军彪.柴油机活塞平均速度分析.湖南大学邵阳分校学报,1990(03):27-30.
    [58]Wang Feng. Research on microstructure of the auto~restoration layer of worn surface of metals. Materials Science and Engineering,2005, A339:271-275.
    [59]余宪海,阙黎明.挤渗SiC工艺及其应用.表面技术,1997,26(1):38-41.
    [60]刘文莲 合金铸铁缸套围观组织耐磨性研究及磨损机理分析:(硕士学位论文).大连:大连理工大学,2005.
    [61]余宪海.表面残余应力对滑动磨损的影响.武汉水运工程学院学 报,1991,15(3):306-308.
    [62]戴熊杰.摩擦学基础.上海:上海科技出版社,1984.
    [63]Cretu S S, Popinceanu N G. The Influence of Residual Stresses Induced by Plastic Deformation on Roolling Contact Fatigue. Wear,1985(105):PP153-170.
    [64]吕静.蛇纹石微粒润滑油添加剂的研究:(硕士学位论文).大连:大连海事大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700