生物滴滤法去除低浓度苯乙烯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机化合物(VOCs)是仅次于颗粒污染物的一大类大气污染物。对于低浓度VOCs废气的控制较难。寻求合理的治理途径和控制方案已成为世界各国亟待解决的热点课题。生物法净化VOCs废气具有设备简单、投资少、运行费用低、无二次污染等优点,其中生物滴滤法由于其运行参数易于控制等优点更是成为研究的热点。
     苯乙烯一种典型的单环芳香类VOCs,对人体和环境具有较大的危害性,同时苯乙烯较难溶于水,适于生物滴滤法去除。因此,本实验选择苯乙烯作为目标物,选取改性聚乙烯环为填料,通过快速排泥挂膜法进行微生物的接种驯化,综合考察空床停留时间、气体浓度、循环液营养和循环液pH对生物滴滤法处理苯乙烯性能的影响,并考察了床层压降和矿化率的变化。研究结果表明,
     1.通过快速排泥法挂膜,反应器可在较短周期内实现微生物的驯化,并表现出良好的处理能力。苯乙烯浓度和空床停留时间是影响反应器性能的重要因素,当空床停留时间分别为60 s、45 s、30 s和15 s时,对应的入口浓度分别为1400 mg·m~(-3)、430 mg·m~(-3)、350mg·m~(-3)和200 mg·m~(-3)时,对应的去除负荷为82 g·m~(-3)·h~(-1)、31.2 g·m~(-3)·h~(-1)、35.6 g·m~(-3)·h~(-1)和40.8 g·m~(-3)·h~(-1),可实现达标排放,此时填料床层对苯乙烯的去除能力是:上段>中段>下段。随着空床停留时间的缩短,床层压降的增加与空塔气速的提高成线性关系。
     2.循环喷淋液中的硝酸盐(亚硝酸盐)对生物滴滤池的影响十分明显,在初始阶段,亚硝酸根很快被耗尽,硝酸根则相对缓慢。当循环液中的TN浓度从532.3 mg·L~(-1)下降到102.6mg·L~(-1)时,苯乙烯的去除效率在92%-99%之间波动,苯乙烯废气的入口浓度维持在500mg·m~(-3),滴滤塔的总去除能力在46.0 g·m~(-3)·h~(-1)上下波动:当TN从102mg·L ~(-1)下降到24mg·L~(-1),滴滤池的去除效率由94%下降到43%,苯乙烯废气的进样浓度从500mg·L~(-1)下降到了220 mg·L~(-1),滴滤床的总去除负荷也从45.1 g·m~(-3)·h~(-1)下降到了22.3g·m~(-3)·h~(-1)。部分原因是NO_x~-浓度降低导致反硝化作用减弱,减小碳源的反硝化利用,同时被循环液的pH上升所证明。在这个过程中,生物滴滤塔高负荷运行时的矿化率明显低于低负荷运行时的矿化率。
Volatile organic compounds (VOCs) are major organic pollutants which are only fewer than the particle pollutant. VOCs are difficult to be removed at low concentration specially, and which has been become the hot subjects at all over the world. Biological method is very promising due to many advantages, such as simple devices, less investments, lower operation cost and no second pollutions. Biotrickling filter has been focused on more interesting because of the simple operation parameters.
     Styrene is one of the typical aromatic organic compounds, which has seriously harmful to the human body and the nature environment. On the other hand, styrene is hydrophobic, and it is suitable to be removed by the biological methods. Therefore, styrene is chosen as the target object in this experiment. The modified PE is selected as padding and the method of rapid sludge discharging is employed to inoculate and domesticate the biomass. The influences of empty bed residence time (EBRT) of filter, styrene concentration, the nutrition and the pH value of the circulation solution on the removal of styrene in biotrickling filter have been investigated. Furthermore, the pressure drop and the the mineral ratio of the filter are also considered. The results are shown as following:
     1. In the biofilters, the biomass could be domesticated using the method of rapid sludge discharging in a short period, and the biofiiters exhibited the high ability of VOCs removal. Concentration of styrene and EBRT had important influences on the performance of the reactor. The elimination capacities were 82 g.m~(-3).h~(-1), 31.2 g.m~(-3).h~(-1), 35.6 g.m~(-3).h~(-1) and 40.8 g.m~(-3).h~(-1) at EBRT of 60 s, 45 s, 30 s and 15 s with the inlet concentrations of 1400 mg·m~(-3), 430 mg·m~(-3), 350 mg·m~(-3) and 200 mg·m~(-3), respectively. The effluence of the reactor could achieve the national discharge standard. At the same time, the elimination capacity of the three stages filter is the order: the upper bed > the second bed > the lower bed. When the empty tower gas velocity was shorten, the pressure drop increased largely with shortening the empty tower gas velocity in line.
     2. The effect of the nitrite and nitrate in the sprayer circulation solution on the ability of the biotrickling filter was very clearly. At the starting times, nitrite would exhaust quickly and the nitrate would exhaust much slowly. When the TN concentration of circulation solution dropped from 532.7 mg·L~(-1) to 102.63 mg·L~(-1) and the styrene inlet concentration kept 500 mg.m~(-3), the removal efficiencies were fluctuating between 92%-99%, and the total elimination capacities were fluctuating between 46.0 g.m~(-3).h~(-1) more or less. When the TN concentration of the circulation solution dropped from 102.63 mg·L~(-1) to 24.24 mg·L~(-1), the removal efficiencies dropped from 94% to 43%, the styrene inlet concentration dropped from 500 mg.m~(-3)to 220 mg.m~(-3) else, the total elimination capacities of the biotrickling filter decreased from 45.1 mg·L~(-1)to 22.3 mg·L~(-1). The reason could be that the capacity to use carbon resource decrease due to the lack of NO_x~-, which could be supported by the fact of the increase of pH in the solution treated. In this process, the mineral ratio of the biotrickling filter at large inlet styrene capacity was much lower than that of the low inlet styrene capacity.
引文
[1]李国文,胡洪营,郝吉明,等.生物洗涤塔降解氯苯废气性能研究[J].化学工程,2003,31(5):50-53.
    [2]Cox H H J, Deshusses M A. Biological waste air treatment in biotrickling filters [J]. Current Opinion in Biotechnology, 1998, 9(3): 256-262.
    [3]Arulneyam D, Swami N T. Biodegradation of mixture of VOCs in a biofilter [J]. Journal of Environmental Sciences, 2004, 16(1):30-33.
    [4]霍丹群,王永忠,侯长军,等.生物滴滤床废气净化技术及应用[J].环境污染治理技术与设备,2004,5(2):1-5.
    [5]何坚,季学李.生物滴滤池法处理有机废气甲苯工艺填料的选择[J].环境技术, 2003,17(1):36-39.
    [6]Lee E Y, Ye B D, Park S H. Development and operation of a trickling biofilter system for continuous treatment of gas phase trichloroethylene [J]. Biotechnology Letter, 2003, 25:1757-1761.
    [7]崔小明.苯乙烯的供需现状及发展前景[J].化学工业,2007,25(5):43-50.
    [8]李玉芳,李明.国外苯乙烯生产技术和发展趋势[J].化工技术经济,2005,23(10):12-21.
    [9]吕谦.国内外苯乙烯市场分析[J].石油化工技术经济,2005,10(4):31-39.
    [10]刘知非,高会旺,邹爱华,卫静.生物滴滤塔处理低浓度苯乙烯有机废气填料的选择及运行功效[J].城市环境与城市生态,2007,20(3):28-30.
    [11]苑宏英,郭静.生物焦炭滴滤塔降解苯乙烯废气中试启动研究[J].环境污染治理技术与设备, 2005,6(12):105-107.
    [12]刘强.生物滴滤法净化挥发性有机废气(VOCs)的研究[D].西安:西安建筑科技大学博士论文,2003.
    [13]叶代启,梁红.环境催化技术在大气污染治理中的应用[J].环境保护,1997(7):40-42.
    [14]Noel D N.Air pollution control Engineering(second edition)[M].北京:清华大学出版社,2000.
    [15]李建.涂料和胶粘剂中有毒物质及其检测技术[M].北京:中国计划出版社,2002.
    [16]洪紫萍.挥发性有机化合物的污染与防治[J].环境污染与防治,1994,154(3):24-26.
    [17]高莲,谢永恒.控制挥发性有机化合物污染的技术[J].化工环保,1998,18(6):343-346.
    [18]张文俊,邓九兰,韩国君.低浓度、大风量有机废气治理技术发展和现状[J].安全,1998(6):7-10.
    [19]闰勇.有机废气中VOC的回收方法[J].化工环保,1997,2(17):332-335.
    [20]董志权,陈焕钦.工业废气污染与利用[M].北京:化学工业出版社,1989.
    [21]李志松,蔡复礼.催化焚烧处理挥发性有机物技术进展[J].工业催化,1998,13(5):18-21.
    [22]Jacoby W A, Blake D M. Heterogeneous Photo catalysis for Control of Volatile Organic Compounds in indoors Air [J]. Journal of the Air & Waste Management, 1996,146(5): 441-457.
    [23]季学李,羌宁.空气污染控制工程[M].北京:化学工业出版社,2005.
    [24]羌宁.城市空气质量管理与控制[M].北京:科学出版社,2003.
    [25]Edward N, Ruddy, Leigh A C. Select the Best VOC Control Strategy [J]. Chemical Engineering Porgress, 1993, 7(7): 28-35.
    [26]Edward C, Moretti, Nikhiles M. VOC Control Current practices and Future trends [J]. Chemical Engineering Porgress, 1993, 7(7): 20-26.
    [27]Jeffrey H, Siegell. Exploring VOC Control Options [J]. Chemical Engineering Porgress, 1996, 6:92-96.
    [28]Robert G, Mclnnis P E. Explore new Options for Hazardous Air Pollutant Control [J]. Chemical Engineering Porgress, 1993,11:36-48.
    [29]R.Y珀塞尔,G.S萨里夫.有害大气污染物控制技术手册[M].北京:中国环境科学出版社,1997.
    [30]Robert A, Zerbonia, James J, Spivey, et al. Survey of Control Technologies for Low Concentration Organic Vapor Gas Streams. EAP-456/R-95-003.1995.
    [31]Garg A. Specify better low-NOx Burners For furnaces [J]. Chemical Engineering Porgress, 1995,91(4):57-63.
    [32]黄正宏,康飞宇,梁开明,等.氧化处理ACF对VOC的吸附及其等温线的拟合[J].清华大学学报(自然科学版),2002,42(10):1289-1292.
    [33]Lchiura H, Nozaki M, KitaokaT, et al. Influence of uniformity of zeolite sheets prepared using a papermaking technique on VOC adsorptive [J]. Advances in Environmental Research, 2003,7:975-979.
    [34] Kurt kircrhner, et al. Exhaust Gas purification Using Innllobilised Monocultures (Biocatalyst) Appl Microbial [J]. Biotechnology, 1987,26:579-587.
    [35]王鹏飞,王艺,宫曼丽,等.生物滴滤塔处理“三苯”废气的影响因素研究[J].哈尔滨工业大学学报,2003,35(1):73-80.
    [36]William M M, Robert L L. Effect of nitrogen limitation on Performance of toluene Degrading biofilters [J]. Wat Res, 2001, 35(6): 1407-1414.
    [37]Hadidi K, Chnoetal DR. Economic Study of the tunable Electron Beam Plasma Reactor for Volatile organic Compound Treatment [J]. Air & waste Manage Assoc, 1999,49(2): 225-228.
    [38]吴丹.生物过滤法处理VOCs与NH3混合气的性能研究[D].大连:大连理工大学环境学院,2006.
    [39]谢冰,史家墚.微生物法脱臭及其应用[J].上海环境科学,1997,16(3):14-16.
    [40]陈建孟,王家德,唐翔宇.生物技术在有机废气处理中的研究进展[J].环境科学进展,1998,6(3):30-36.
    [41]Cox H H J, Doddema H J, Harder W. Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei [J]. Biotechnology and Bioengineering, 2000, 53(3): 259-266.
    [42]Deshusses M A. Biological waste air treatment in biofilters [J]. Current Opinion in Biotechnolgoy, 1997, 8(3): 335-339.
    [43]周琪.生物过滤技术在大气污染控制中的应用[J].城市环境与城市生态,1998,11(1):17-21.
    [44]Chou M S, Shui W Z. Bioconversion of methy-lamine in biofilters [J]. Journal of the Air & Waste Management Association, 1997, 47(1): 58-65.
    [45]徐峰,钟秦.生物滴滤塔净化甲苯废气的研究[J].南京理工大学学报,2004,28(3):299-302.
    [46]Okkerse W J H, Ottengraf S P P, Diks R M M, et al. Long term performance of biotrickling filters removing a mixture of volatile organic compounds from an artificial waste gas: dichloromethane and methylmethacrylate [J]. Bioprocess Engineering, 1999,20(1): 49-57.
    [47]Baltzis B C, Mpanias C J, Bhattacharya S. Modeling the removal of VOC mixtures in biotrickling filters [J]. Biotechnology and Bioengineering, 2001,2(4): 389-401.
    [48]Lu C, Lin M R, Lin J. Removal of acrylonitrile vapor from waste gases by a trickle-bed air biofilter [J]. Bioresource Technology, 2000,75(1):35-41.
    [49]Lu C, Lin M R, Chu C. Effects of pH, moisture, and flow pattern on trickle-bed air biofilter performance for BTEX removal [J]. Advances in Environmental Research, 2002,6(2): 99-106.
    [50]Cox H H J, Deshusses M A. Biomass control in waste air biotrickling filters by protozoan predation [J]. Biotechnology and Bioengineering, 1999,62(2) .216-224.
    [51]Fortin N Y, Deshusses M A. Treatment of methyl tert-butyl ether vapors in biotrickling filters. Reactor start up, steady state performance and culture characteristics [J]. Environmental Science & Technology, 1999, 33(17): 2980-2986.
    [52]Kirchner K, Schlachter U, Rehm H J. Biological purification of exhaust air using fixed bacterial monocultures [J]. Applied Microbiology and Biotechnology, 1989, 31(6): 629-632.
    [53]Lu C, Lin M R, Chu C. Temperature effects of trickle-bed biofilter for treating BTEX vapors [J]. Journal of Environmental Engineering, 1999, 125(8): 775-779.
    [54]Pol A, Van Haren F J J, Opden H J M, et al. Styrene removal from waste gas with a bacterial biotrickling filter [J]. Biotechnology Letters, 1998,20(4): 407-410.
    [55] Baltzis B C, Mpanias C J, Bhattacharya S. Modeling the removal of VOC mixtures in biotrickling filters [J]. Biotechnology and Bioengineering, 2001,72(4): 389-401.
    [56] Schonduve P, Sara M, Friedl A. Influence of physiologically relevant parameters on biomass formation in a trickle-bed bioreactor used for waste gas cleaning [J]. Applied Microbiology and Biotechnology, 1996,45(2): 286-292.
    [57] Veiga M C, Kennes C. Parameters affecting performance and modeling of biofilters treating alkylbenzene polluted air [J]. Applied Microbiology and Biotechnology, 2001,55(2): 254-258.
    [58] Lu C, Chang K, Hsu S. A model for the biofiltration of butyl acetate and xylene mixtures in a trickle bed air biofilter [J]. Engineering in Life Sciences, 2005,5(1): 46-53.
    [59] Lu C, Chang K, Hsu S. A model for treating isopropyl alcohol and acetone mixtures in a trickle bed air biofilter [J]. Engineering in Life Sciences, 2004,39(12): 1849-1858.
    [60] Chmiel K, Konieczny A, Palica M. Periodic operation of biofilters. A concise model and experimental validation [J]. Chemical Engineering Science, 2005,60(11): 2845-2850.
    [61] Ottengraf S P P, Vandenever A H C. Kinetics of organic compound removal from waste gases with a biological filter [J]. Biochemical Engineering Journal, 1983,25(12): 3089-3102.
    [62] Krailas S, Pham Q T. Macrokintic determination and water movement in a downward flow biofilter for methanol removal [J]. Biochemical Engineering Journal, 2002,10(2): 103-113.
    [63] Sun P S, Yang X W, Huang R H, et al. A new approach to kinetics of purifying waste gases containing volatile organic compounds (VOC) in low concentration by using the biological method [J]. Journal of Cleaner Production, 2004,12(1): 95-100.
    [64] 张彭义,余刚,蒋展鹏.挥发性有机物和臭味的生物过滤处理[J].环境污染治理技术与设备,2000,1(1):1-5.
    [65] 张晓辉.国外生物过滤器处理化工有机废气进展[J].化工环保,1999,19(2):84-88.
    [66] 孙佩石,杨显万,黄若华等.生物法净化废气中低浓度挥发性有机物的过程机理研究[J].中国环境科学,1997,17(6):545-549.
    [67] 李国文,胡洪营,郝吉明,马广大.生物滴滤塔中挥发性有机物降解模型及应用[J].中国环境科学,2001,21(1):81-84.
    [68] Oscar K, Soon Y, William A A. Removal of hexane in biofilters packed with perlite and a peat-perlite mixture [J]. World Journal of Microbiology & Biotechnology, 2004, 20(4): 1-7.
    [69] 刘永慧,孙玉梅,全燮,陈景文,等.生物过滤床处理甲苯和乙酸乙酯混合废气[J].化工学报,2002,53(8):853-856.
    [70]Smith F L, Sorial G A, Suida M T. Development of Two Biomass Control strategies for Extended, Stable Operation of Highly Efficient Biofilters with High Toluene Loadings [J]. Environ Sci Technol, 1996,30(5): 1744-1751.
    [71]Chou M S. Treatment of 1,3-butadiene in an air stream by a biotrickling filter and a biofilter [J]. Air Waste Manage Assoc, 1998,48(8): 711 -720.
    [72]李惠娟,李季眉,等.生物滤床中甲苯及乙酸乙酩基质抑制效应之研究[J].21世纪可持续发展之环境保护(上卷),2000:640-646.
    [73]甘平,樊耀波,王健敏.氯苯类化合物的生物降解[J].环境科学,2001,22(3):93-96.
    [74]魏在山,徐晓军,黄若华,孙佩石.生物法处理低浓度有机废气的填料选择研究[J].重庆环境科学,2001,23(2):40-45.
    [75]羌宁,季学李,顾国维.气体生物滴滤池载体性能比较实验研究[J].环境科学,2000,21(2): 45-48.
    [76]刘强,汪凤诞,马广大,王艳芳.氮源对气相生物滴滤床净化效果的影响[J].环境污染治理技 术与设备,2003,4(6):61-63.
    [77]Deshusses M A. Behavior of Biofilter for Waste Air Biotreatment: Experimental Evaluation of a Dynamic Model [J]. Environ Sci Technol, 1995,29(4): 1059-1068.
    [78]Molly J R, Xue Q Z, Makram T S, Byung J K. The Effect of Nitrate on VOC Removal in Trickle-Bed Biofilters [J]. Wat Res, 1997, 31(12): 2997-3008.
    [79]Prado O J, Mendoza J A, Veiga M C, Kennes C. Optimization of nutrient supply in a down flow gas-phase biofilter packed with an inert carrier [J]. Appl Microbiol Biotechnol, 2002, 59(12): 567-573.
    [80]Lu C, Lin M R, Chu C. Effects of pH, moisture, and flow pattern on trickle-bed air biofilter performance for BTEX removal [J]. Advances in Environmental Research, 2002, 6(2): 99-106.
    [81]范立维,童志权.生物滴滤塔处理低浓度CS_2废气的研究[J].化工进展,2005,24(3):291-294.
    [82]Van L C. Evaluating design options for biofilters [J]. Journal of the Air & Waste Management Association, 1997,47(1): 37-48.
    [83]Allen L, Ellis S. Laboratory evaluation of trickling biofiltration for treatment of kraft mill noncombustion air emissions [C]. Proceedings TAPPI 2000 International Environmental Conference and Exhibit, Denver, CO, 2000,1:293-309.
    [84]Oh Y S, Bartha R. Removal of nitrobenzene vapors by a trickling air biofilter [J]. Journal of Industrial Microbiology, 1997, 18(5): 293-296.
    [85]Baltzis B, Mpanias C J. Removal of chlorinated VOCs in biotrickling filter [C]. Proceedings 1998 USC-TRG Conference on Biofiltration, Los Angeles, CA: University of Southern California, 1998:115-116.
    [86]孙佩石.生物化学法净化低浓度有机废气研究[D].昆明,昆明理工大学,1999.
    [87]Chung S L, Min R L, Cheng C. Effects of pH, moisture, and flow pattern on trickle-bed air biofilter performance for BTEX removal [J]. Advances in Environmental Research, 2002,6(2): 99-106.
    [88]侯长军,饶佳家,霍丹群,等.生物滴滤塔降解甲苯废气的操作特性[J].中国给水排水,2005,21(12):50-52.
    [89]廖强,田鑫,朱恂,等.有机废气处理生物膜滴滤塔操作方式研究[J].工程热物理学报,2006,27(1):136-138.
    [90]陈欢林.环境生物技术与工程[M].北京:化学工业出版社,2003.
    [91]Victorov A A, Kurlovich A E, Rogozhin I S, et al. Evaluation of the Kinetic Parameters of Trickle Bed Vapor Phase Bioreactors [J]. Applied Biochemistry and Microbiology, 2001,37(5): 497-499.
    [92]魏在山,孙佩石,黄若华,等.生物法处理低浓度有机废气的填料选择研究[J].重庆环境科学,2001,23(2):40-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700